


.NET MAUI Cross-Platform 
Application Development

Leverage a first-class cross-platform UI framework to build 
native apps on multiple platforms

Roger Ye

BIRMINGHAM—MUMBAI



.NET MAUI Cross-Platform Application Development

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any 
form or by any means, without the prior written permission of the publisher, except in the case of brief quotations 
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. 
However, the information contained in this book is sold without warranty, either express or implied. Neither the 
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged 
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products 
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the 
accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Nitin Nainani
Senior Editor: Keagan Carneiro
Senior Content Development Editor: Debolina Acharyya
Technical Editor: Simran Udasi
Copy Editor: Safis Editing
Project Coordinator: Sonam Pandey
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Aparna Bhagat
Marketing Coordinator: Nivedita Pandey

First published: February 2023

Production reference: 1050123

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-922-5

www.packt.com

http://www.packt.com


To my family: my wife Bo Quan and my daughter Yuxin Ye,  
and the memory of my father and my mother.

– Roger Ye



Contributors

About the author
Roger Ye is a software engineering manager who has worked in the software industry for many years.

Roger started his career as a software engineer in embedded system development at companies such 
as Motorola, Emerson, and Intersil. During this period, he wrote two books about embedded system 
programming, Embedded Programming with Android and Android System Programming.

In 2013, Roger joined McAfee as a software engineering manager. He recently started working at 
EPAM Systems, moving from system programming to application programming. His first book on 
application programming is on .NET MAUI.

I want to thank the team at Packt, who worked very hard with me to keep to schedule.



About the reviewers
Glenn Stephens is a software developer and product designer, implementing solutions for the mobile-, 
desktop-, and cloud-centered worlds we all live in. Glenn has worked in many different roles, such 
as managing director, chief executive officer, solution architect, software development manager, and 
programmer; has worked in fields spanning high-end security, e-health, education, and finance; and 
has won several awards along the way. Glenn has a bachelor’s degree in computer science, an MBA 
with a specialization in e-business, and a Graduate Certificate in Arts in theatre and performance. 
He considers himself a lifelong learner.  

An author, speaker, and product builder, he has been writing code since the 80s, with the musical 
taste to match. When he’s not working, he enjoys playing the piano, reading, and spending time with 
his children.  

Rohit Vinod Kelkar is an artist, a techie, and an experienced mobile application developer who is 
enthusiastic about cross-platform mobile application technologies. He has expertise in technologies 
such as Xamarin, Flutter, native iOS, and .NET as a full stack developer. He was an early adopter of 
.NET MAUI and works with a community of developers to share updates and blog about the technology. 
He also shares an interest in consulting and helping products in their initial stages. 

Siddharth Singh has over 12 years of software development experience, having worked on a variety 
of platforms such as Windows, web, and mobile applications. Having worked at Expedia, Adobe, 
and Salesforce, his experience ranges from COM-/ASP-based legacy apps to React/ASP.NET Core 
modern applications. While working on Xamarin apps, he developed a passion for the Microsoft 
cross-platform framework. 

He currently works at Microsoft as a senior developer for Azure Data Factory, writing data integration 
applications. When not at work, you can find him reading about theoretical computer science and 
artificial general intelligence. 





Preface xiii

Part 1: Exploring .NET MAUI

1
Getting Started with .NET MAUI 3

An overview of cross-platform 
technologies 3
Native applications 4
Web applications 4
Backend services 4
Cross-platform technologies 4
A comparison of .NET, Java, and JavaScript 5

Exploring the .NET landscape 7
.NET Framework 7
Mono 7
.NET Core 8
.NET Standard and portable class libraries 8

Using Xamarin for mobile development 9
Xamarin.Forms 10
Xamarin.Essentials 10

Moving to .NET MAUI 12
.NET MAUI Blazor apps 14
Choosing XAML versus Razor in .NET MAUI 15

Development environment setup 15
Installing .NET MAUI on Windows 16
Installing .NET MAUI on macOS 17

What you will learn in this book 19
The app that we will build in this book 19
Summary 20
Further reading 20

2
Building Our First .NET MAUI App 21

Technical requirements 21
Managing the source code in this book 21

Setting up a new .NET MAUI project 23
Creating a new project using Visual Studio 23

Table of Contents



Table of Contentsviii

Creating a new project using the dotnet 
command 27

App startup and lifecycle 27
Lifecycle management 29

Configuring the resources 36
App icon 37
Splash screen 37
Setting custom font icons 38

Building and debugging 43
Windows 44
Android 44
iOS and macOS 45

Scaffolding a Model-View-
ViewModel project 47
Migrating and reusing a Shell template from 
Xamarin.Forms 49
Visual Studio project template 54

Summary 56

3
User Interface Design with XAML 57

Technical requirements 58
Creating a XAML page 58
XAML syntax 60
Element 60
Attribute 62
XML namespaces and XAML namespaces 62

XAML markup extensions 66
Master-detail UI design 67
Side-by-side 69

Stacked 69
Controls in .NET MAUI 70
Layouts in .NET MAUI 71
Navigation in the master-detail UI design 74

Supporting multiple languages – 
localization 81
Creating a .resx file 81
Localizing text 83

Summary 85
Further reading 86

4
Exploring MVVM and Data Binding 87

Technical requirements 87
Understanding MVVM and MVC 88
MVVM in PassXYZ.Vault 89

Data binding 90
Binding mode 94
Changing notifications in viewmodels 96

Improving the data model and service 98
KPCLib 99
PassXYZLib 102
Updating the model 103
Updating the service 103



Table of Contents ix

Binding to collections 104
Summary 111

Further reading 111

5
Navigation using .NET MAUI Shell and NavigationPage 113

Technical requirements 113
Implementing navigation 114
INavigation interface and NavigationPage 114
Using the navigation stack 115
Manipulating the navigation stack 116

Using Shell 117
Flyout 119

Tabs 122
Shell navigation 125

Improving our model 133
Understanding the data model and its services 134
Improving the login process 137
The Command interface 140

Summary 143

6
Introducing Dependency Injection and Platform-Specific Services 145

Technical requirements 145
A quick review of design principles 146
Exploring types of design principles 146
Using design principles 147

Using DI 149
Dependency Service 149

Using built-in MS.DI DI service 151

Connecting to the database 160
Initializing the database 162
Performing CRUD operations 163

Summary 172
Further reading 172

Part 2: Implementing .NET MAUI Blazor

7
Introducing Blazor Hybrid App Development 175

Technical requirements 175
What is Blazor? 176
Learning about Blazor Server 176
Understanding Blazor Wasm 177
Exploring Blazor Hybrid 179

Creating a new .NET MAUI Blazor 
project 182
Generating a .NET MAUI Blazor project with 
the dotnet command line 183



Table of Contentsx

Creating a .NET MAUI Blazor project using 
Visual Studio on Windows 184
Running the new project 185
The startup code of the .NET MAUI Blazor app 187

Migrating to a .NET MAUI Blazor 
app 190
Understanding Razor syntax 191
Code blocks in Razor 191
Implicit Razor expressions 191
Explicit Razor expressions 192
Expression encoding 192

Directives 193
Directive attributes 193

Creating a Razor component 194
Redesigning the login page using a Razor 
component 194
The Model-View-ViewModel (MVVM) 
pattern in Blazor 201
Dependency injection in Blazor 203
CSS isolation 204

Summary 206

8
Understanding the Blazor Layout and Routing 207

Technical requirements 207
Understanding client-side routing 208
Setup of BlazorWebView 208
Setup of Router 209
Defining routes 210

Using Blazor layout components 214
Applying a layout to a component 218

Nesting layouts 220

Implementing navigation elements 220
Implementing a list view 222
Adding a new item and navigating back 228

Summary 230

9
Implementing Blazor Components 233

Technical requirements 233
Understanding Razor components 234
Inheritance 236

Creating a Razor class library 237
Using static assets in the Razor class library 239

Creating reusable Razor components 239
Creating a base modal dialog component 241

Data binding 243
Component parameters 244
Nested components 246
Two-way data binding 250
Communicating with cascading values and 
parameters 253



Table of Contents xi

Understanding the component 
lifecycle 255
SetParametersAsync 256
OnInitialized and OnInitializedAsync 257
OnParametersSet and OnParametersSetAsync 257
ShouldRender 258

OnAfterRender and OnAfterRenderAsync 258

Implementing CRUD operations 262
CRUD operations of items 262
CRUD operations of fields 266

Summary 271

10
Advanced Topics in Creating Razor Components 273

Technical requirements 273
Creating more Razor components 274
Creating the Navbar component 274
Creating a Dropdown component for the 
context menu 277

Using templated components 281
Creating a ListView component 282

Using the ListView component 284

Built-in components and validation 285
Using built-in components 286
Using the EditForm component 287
Creating an EditFormDialog component 288

Summary 299
Further reading 300

Part 3: Testing and Deployment

11
Developing Unit Tests 303

Technical requirements 303
Unit testing in .NET 304
Setting up the unit test project 305
Creating test cases to test the IDataStore 
interface 307
Sharing context between tests 309

Razor component testing using bUnit 317
Changing project configuration for bUnit 318

Creating a bUnit test case 319
Creating test cases in Razor files 320
Using the RenderFragment delegate 323
Testing Razor pages 327

Summary 332
Further reading 333



Table of Contentsxii

12
Deploying and Publishing in App Stores 335

Technical requirements 335
Preparing application packages for 
publishing 336
What to prepare for publishing 336
Publishing to Microsoft Store 337

Publishing to the Google Play Store 343
Publishing to Apple’s App Store 347

GitHub Actions 352
Understanding GitHub Actions 353

Summary 362

Index 363

Other Books You May Enjoy 374



Preface

In 2017, when we hit performance issues in one of our projects using Cordova, I started to look for an 
alternative cross platform programming solution. Xamarin was one of the solutions that I investigated 
at that time. From then until now, I have spent many years on the development of Xamarin and its 
descendant .NET MAUI. It’s one of the technologies that I love.

Even though we have more cross platform programming options today, such as Flutter or React Native, 
.NET MAUI has some particularly unique features that we may consider when we are looking for a 
cross-platform solution.

.NET MAUI uses a single project structure, which is a major improvement compared to Xamarin.
Forms. With a single project, we can see the improvement in the following areas:

• Better debug and test experience – We can select and debug multiple targets in one project. 
We don’t have switch to different projects to debug or test different targets.

• Sharing resources – In Xamarin, we have to manage resources in each platform individually. 
With the improvement of .NET MAUI, we can share most resources cross-platform, such as 
fonts, images, icons, and so on.

• Simplified configuration – We can use a single app manifest most of time, so we don’t need to 
manage platform configuration files separately, such as AndroidManifest.xml, Info.
plist, or Package.appxmanifest.

In Flutter or React Native, you can use the Flutter plugin or React Native module to access native device 
features. To use plugins or native modules, you have to rely on the developer community, or you have 
to develop your own. These interfaces are designed by developers, so they are not standardized. In 
.NET MAUI, Microsoft has done the job of standardizing APIs for the most frequently used native 
device features as part of the .NET MAUI release.

In .NET MAUI, we not only can develop apps using the traditional XAML-based UI, but we also can 
develop Blazor-based UIs as Blazor Hybrid apps. This opens a door for a higher-level reuse of source 
code. If you are working on a project that includes a web and mobile app, you can even share the user 
interface (UI) design and source code between the web and mobile app.

Since .NET MAUI is part of the .NET platform release now, we can always use the latest .NET platform 
and C# language features with each release of .NET. We can use advanced features, such as .NET 
generic hosting, dependency injection, or the MVVM Toolkit from the latest .NET release.



Prefacexiv

In this book, I will share my journey in .NET MAUI development with you using the open source 
app that I have developed. Both .NET MAUI and .NET platform features will be covered in this book.

Who this book is for
This book is for frontend developers or native app developers who want to explore cross platform 
programming technology. This book assumes the audiences have C# programming knowledge or 
knowledge of any object-oriented programming language similar to C#.

What this book covers
Chapter 1, Getting Started with .NET MAUI, provides an introduction to cross-platform technologies. 
As part of the introduction, .NET MAUI is compared with other cross-platform technologies. The 
.NET MAUI development environment setup is also covered in this chapter. You will be given an 
overview of cross-platform technologies that can help you to make the choice for your own project.

Chapter 2, Building Our First .NET MAUI App, is about setting up the new project for the development 
work in this book. The .NET MAUI project structure and application life cycle will be discussed as 
well. You will learn how to create a new project and some basic debugging skills for a .NET MAUI app.

Chapter 3, User Interface Design with XAML, covers the UI design using XAML. Basic knowledge 
of the XAML and .NET MAUI UI elements will be discussed. By the end of this chapter, you will be 
able to work on your own UI design.

Chapter 4, MVVM and Data Binding, explains some key topics in .NET MAUI app development, 
including the MVVM pattern and data binding. We will start with the theory first and then apply 
what we have learned to the development work of the password management app. You will learn how 
to use data binding and apply it to the MVVM pattern.

Chapter 5, Introducing Shell and Navigation, introduces Shell and navigation in .NET MAUI. We 
use Shell to build the skeleton and navigation hierarchy of our app. You will learn about the usage 
of navigation stack and the Shell elements, which can help you to create your application layout and 
navigation hierarchy. 

Chapter 6, Dependency Injection and Refining Design, discusses design principles and provides an 
overview of SOLID design principles. After that, we explain the usage of dependency injection in 
.NET MAUI. We also apply it in our app development. In this chapter, you will get an overview of the 
SOLID design principles and see a deep dive into dependency injection.

Chapter 7, Introducing .NET MAUI Blazor, takes .NET MAUI Blazor application development as 
its central topic. We will demonstrate how to create a new Blazor Hybrid app and teach you how to 
convert a .NET MAUI XAML app into a .NET MAUI Blazor Hybrid app. You will learn about the 
basic environment setup and Razor syntax in this chapter.



Preface xv

Chapter 8, Understanding Blazor Layout and Routing, explores the layout and routing of Blazor Hybrid 
apps. We will learn about the router setup and layout components. You will learn how to create a 
layout and set up routing for your own application.

Chapter 9, Razor Components and Data Binding, clarifies what a Razor component is and how to use 
data binding in a Razor component. You will learn how to create a Razor class library and how to 
refine existing Razor code to create reusable Razor components.

Chapter 10, Advanced Topics in Creating a Razor Components, brings in some more advanced topics 
on Razor components. You will learn how to use templated Razor components and built-in Razor 
components. You will also learn what data validation is and how to perform data validation using 
built-in components.

Chapter 11, Unit Test Development using xUnit, presents the unit test frameworks available for .NET 
MAUI. You will learn how to use xUnit and bUnit to develop unit test cases. You will also learn how 
to create unit test cases for the .NET class and how to create unit test cases for Razor components 
using bUnit.

Chapter 12, Preparing for Deployment in App Stores, discusses how to prepare packages for app stores 
and how to set up a CI/CD workflow using GitHub Actions. You will learn how to create packages 
for Google Play, the App Store, and Microsoft Store. You will also learn how to automate the package 
creation process using GitHub Actions.

To get the most out of this book
After you have read the first chapter, you can continue with Part 1 or move on to Part 2. In the first 
part of this book, we discuss classic .NET MAUI app development using a XAML UI. In the second 
part of this book, we introduce Blazor Hybrid app development, which is new in .NET MAUI. In the 
third part, we introduce unit tests and deployment.

Both Windows and macOS computers are necessary to build the projects in this book. Visual Studio 
2022 and the .NET 6 SDK are used in this book. To build iOS and macOS targets on Windows, you 
need to connect to a network-accessible Mac, referring to the following Microsoft document:

https://learn.microsoft.com/en-us/dotnet/maui/ios/pair-to-mac?view=net-
maui-6.0

Software/hardware covered in the book OS requirements

Visual Studio 2022 Windows

Visual Studio 2022 for Mac macOS

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

https://learn.microsoft.com/en-us/dotnet/maui/ios/pair-to-mac?view=net-maui-6.0
https://learn.microsoft.com/en-us/dotnet/maui/ios/pair-to-mac?view=net-maui-6.0


Prefacexvi

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development. If 
there’s an update to the code, it will be updated in the GitHub repository. 

My working repository is https://github.com/shugaoye/PassXYZ.Vault2.

I will update the source code in my working repository first and then push the commits to Packt repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/nvY4N.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Blazor 
apps are built using Razor components. The first Razor component in our app is Main and it is 
defined in Main.razor.”

A block of code is set as follows:

private async Task<bool> UpdateItemAsync(string key, string 
value)

{

  if (listGroupItem == null) return false;

  if (string.IsNullOrEmpty(key) || string.IsNullOrEmpty(value)) 

    return false;

  listGroupItem.Name = key;

  listGroupItem.Notes = value;

  if (_isNewItem) {...}

  else {...}

  StateHasChanged();

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development
https://github.com/shugaoye/PassXYZ.Vault2
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/nvY4N


Preface xvii

  return true;

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

git clone -b chapter09

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-
Application-Development

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “We can right-click on the project node 
and select Add -> New Item… -> Razor Component in the project template.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com


Prefacexviii

Share Your Thoughts
Once you’ve read .NET MAUI Cross-Platform Application Development, we’d love to hear your thoughts! 
Please click here to go straight to the Amazon review page for this book 
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content..

https://packt.link/r/180056922X


Preface xix

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? 
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781800569225

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://dev.packt.link/free-ebook/9781801071109




Part 1:  
Exploring .NET MAUI

In the first part of this book, we will learn about .NET MAUI programming. We will start with the 
introduction of .NET MAUI and its ancestor Xamarin.Forms. After that, we will create a code base 
using the Visual Studio template for our application. We will build a password manager app called 
PassXYZ.Vault step by step in this book. During the development of this app, we will introduce user 
interface design using XAML, the MVVM pattern, data binding, the shell, dependency injection, and 
so on. By the end of Part 1, we will have a fully functional password manager application.

This section comprises the following chapters:

• Chapter 1, Getting Started with .NET MAUI

• Chapter 2, Building Our First .NET MAUI App

• Chapter 3, User Interface Design with XAML

• Chapter 4, Exploring MVVM and Data Binding

• Chapter 5, Navigation using .NET MAUI Shell and NavigationPage

• Chapter 6, Introducing Dependency Injection and Platform-Specific Services





1
Getting Started with .NET MAUI

Since the release of .NET 5, Microsoft has been trying to unify different .NET implementations into 
one .NET release. .NET Multi-platform App UI (or .NET MAUI) is an effort to provide a unified 
cross-platform UI framework. We will learn how to use .NET MAUI to develop cross-platform 
applications in this book.

The following is what we will learn in this chapter:

• An overview of cross-platform technologies

• A comparison of cross-platform technologies (.NET, Java, and JavaScript)

• The .NET landscape and the history of Xamarin

• .NET MAUI features

• .NET MAUI Blazor apps

• A development environment setup

If you’re new to .NET development, this chapter will help you to understand the .NET landscape. For 
Xamarin developers, many topics in this book may sound familiar, and this chapter will give you an 
overview of what we will discuss in this book.

An overview of cross-platform technologies
Before discussing cross-platform technologies, let’s review the application development landscape 
first to understand the different cross-platform technologies better.

.NET MAUI is a cross-platform development framework from Microsoft for building apps, targeting 
both mobile and desktop form factors on Android, iOS, macOS, Windows, and Tizen.



Getting Started with .NET MAUI4

Generally, software development can be divided into two categories – systems programming and 
application programming. Application programming aims to produce software that provides services 
to the user directly, whereas system programming aims to produce software and software platforms 
that provide services to other software. In the .NET domain, the development of the .NET platform 
itself belongs to systems programming, whereas the application development on top of the .NET 
platform belongs to application programming.

The design or architecture in a modern system includes the client and server side of software, which 
we can refer to as the frontend and backend.

For the software on the client side, we can further divide it into two categories – native applications 
and web applications.

Native applications

In native application development, we usually refer to application development for a particular operating 
system. With desktop applications, this could be Windows applications, macOS applications, or Linux 
applications. With mobile applications, this could be Android or iOS.

When we develop a native application, we have to develop it for each platform (Windows, Linux, 
Android, or macOS/iOS). We need to use different programming languages, tools, and libraries to 
develop each of them individually.

Web applications

Web application development has gone through several generations of evolution over the past few 
decades, from a Netscape browser with static web pages to a modern single-page application (SPA) 
using JavaScript frameworks (such as React or Angular). In web application development, JavaScript 
and various JavaScript-based frameworks dominate the market. In the .NET ecosystem, Blazor is 
trying to catch up in this area.

Backend services

Both native applications and web applications usually need some backend services to access business 
logic or a database. For backend development, many languages and frameworks can be used, such as 
Java/Spring, .NET, Node.js, Ruby on Rails, or Python/Django. Usually, native applications and web 
applications can share the same backend service. Java and .NET are the most popular choices for 
backend service developments.

Cross-platform technologies

Technologies used in web application development and backend services development are not 
platform-specific and can be used on different platforms as they are. When we talk about cross-platform 
development, we usually refer to native application development. In native application development, 



An overview of cross-platform technologies 5

cross-platform development technologies can help to reduce costs and improve efficiency. The most 
popular cross-platform development technologies in this category include Flutter, .NET MAUI/
Xamarin, and React Native. Table 1.1 provides an overview of available cross-platform technologies 
and alternative solutions from Microsoft. The technologies listed here are not exhaustive. I just want 
to give you a feeling of what kind of technologies exist in each category and what Microsoft solution 
can be used as an alternative.

Category
Cross-platform technologies

Microsoft solution
Language Framework

Web application JavaScript React, Angular, or Vue Blazor/Razor Pages

Native application
JavaScript React Native, Cordova, 

Ionic, Electron, or NW.js
.NET MAUI/Blazor/XamarinDart Flutter

Java/Kotlin Swing/Codename One

Backend services
Java Spring

ASP.NET CoreJavaScript Node.js
Python Diango/Flask/Tornado

Table 1.1: A comparison of languages and frameworks with Microsoft solutions

There is no best choice of cross-platform tool or framework. The final choice is usually decided 
according to business requirements. However, from the preceding table, we can see that the .NET 
ecosystem provides a full spectrum of tools for your requirements. The development team for a large 
system usually requires people with experience in different programming languages and frameworks. 
With .NET, the complexity of programming languages and frameworks can be dramatically simplified.

A comparison of .NET, Java, and JavaScript

We had an overview of the tools and frameworks used in web apps, native apps, and backend services 
development. If we look at a higher level, that is, at the .NET ecosystem level, the ecosystem of Java or 
JavaScript can match almost what we have in a .NET solution. Java, JavaScript, or .NET solutions can 
provide tools or frameworks at nearly all layers. It would be interesting to compare Java, JavaScript, 
and .NET at a higher level.

Java is developed as a language with the goal to write once and run anywhere. It is built around the Java 
programming language and the Java Virtual Machine (JVM). The JVM is a mechanism to run on 
supported platforms that helps to remove platform dependency for developers. With this cross-platform 
capability, Java becomes a common choice for cross-platform applications and services development.



Getting Started with .NET MAUI6

JavaScript is a language created for web browsers, and its capability is extensive due to the demands of 
web development. The limitation of JavaScript is that it is a scripting language, so it lacks the language 
features that can be found in Java or C#. However, this limitation doesn’t limit its usage and popularity. 
Table 1.2 offers a comparison of three technologies:

Area of comparison .NET Java JavaScript
Programming languages C#, F#, VB, C++, 

PHP, Ruby, Python, 
and more

Java, Kotlin, Clojure, 
Groovy, Scala, 
and more

JavaScript, TypeScript, 
CoffeeScript, and more

Runtime CLR JVM V8/SpiderMonkey/ 
JavaScriptCore

Supported IDE Microsoft Visual 
Studio, Rider, 
MonoDevelop, and 
Visual Studio Code

Eclipse, IntelliJ Idea, 
Oracle NetBeans, and 
Oracle JDeveloper

Visual Studio Code, 
Webstorm, and Atom

Frontend framework ASP.NET 
Core Razor/Blazor

Only supports server-
side rendering such 
as JSP or Thymeleaf

React, Angular, or Vue

Desktop apps WinForms, Win 
UI, WPF, UWP, 
and more

Swing, JavaFX, 
and more

Electron, NW.js, 
and more

Mobile apps .NET MAUI/Xamarin Codename One React Native, Cordova, 
Iconic, and more

Backend framework ASP.NET Core The 
Spring Framework

Node.js

Table 1.2: A comparison of Java, JavaScript, and .NET

From Table 1.2, we can see that both .NET and Java have a good infrastructure to support multiple 
languages. JavaScript has its limitation as a scripting language, so TypeScript and CoffeeScript were 
invented to enhance it. TypeScript was developed by Microsoft to bring modern object-oriented 
language features to JavaScript. TypeScript is compiled into JavaScript for execution, so it can work 
well with existing JavaScript libraries.

Java is built around the JVM while .NET is built around the Common Language Runtime (CLR) and 
the Common Type System (CTS). With the CTS and CLR as the core of a .NET implementation, it 
supports multiple languages naturally with the capability to share a Base Class Library (BCL) in all 
supported languages.

While there are multiple languages that use the JVM as the abstraction layer for cross-platform capability, 
the interoperation between Java-derived languages is not at the same level as .NET languages. All 
.NET languages are built on one architecture and share the same BCL, while Java languages, such as 
Java, Kotlin, or Scala, are developed separately for very different purposes.



Exploring the .NET landscape 7

This comparison helps us to choose or evaluate a tech stack for cross-platform development. As a 
.NET MAUI developer, this analysis can help you understand your choice better. To understand where 
.NET MAUI is located in the .NET ecosystem, let’s have a quick overview of the history of the .NET 
landscape in the next section.

Exploring the .NET landscape
Before we dive into the details of .NET MAUI, let’s have an overview of the .NET landscape. This 
section is relevant if you are new to .NET. If you are a .NET developer, you can skip this section.

Since Microsoft introduced the .NET platform, it has evolved from a proprietary software framework 
for Windows to a cross-platform and open source platform.

There are many ways to look at the .NET technology stack. Basically, it contains the following components:

• Common infrastructure (Compiler and tools suite)

• BCLs

• Runtime (Windows Runtime (WinRT) or Mono)

.NET Framework

The history of .NET history begins with .NET Framework. It is a proprietary software framework 
developed by Microsoft that runs primarily on Microsoft Windows. .NET Framework started as a 
future-oriented application framework to standardize the software stack in the Windows ecosystem. 
It is built around a Common Language Infrastructure (CLI) and C#. Even though the primary 
programming language is C#, it is designed to be a language-agnostic framework. Supported languages 
can share the same CTS and CLR. Most Windows desktop applications are developed using .NET 
Framework, and it is shipped as a part of the Windows operating system.

Mono

The first attempt to make .NET an open source framework was made by a company called Ximian. 
When the CLI and C# were ratified by ECMA in 2001 and ISO in 2003, it provided a potential 
opportunity for independent implementations.

In 2001, the open source project Mono was launched, aimed at implementing .NET Framework on 
Linux desktop software.

Since .NET Framework was a proprietary technology at that time, .NET Framework and Mono had 
their own compiler, BCL, and runtime.

Over time, Microsoft moved toward open source, and .NET source code became open source. The 
Mono project adopted some source code and tools from the .NET code base.



Getting Started with .NET MAUI8

At the same time, Mono projects went through many changes as well. At the time that Mono was 
owned by the Xamarin company, Xamarin developed the Xamarin platform based on Mono to 
support the .NET platform on Android, iOS, Universal Windows Platform (UWP), and macOS. In 
2016, Microsoft acquired Xamarin, which became the cross-platform solution in the .NET ecosystem.

.NET Core

Before the acquisition of Xamarin, Microsoft has already started work to make .NET a cross-platform 
framework. The first attempt was the release of .NET Core 1.0 in 2016. .NET Core is a free and open 
source framework, available for Windows, Linux, and macOS. It can be used to create modern web 
apps, microservices, libraries, and console applications. Since .NET Core applications can run on 
Linux, we can build microservices using containers and cloud infrastructure.

After .NET Core 3.x was released, Microsoft worked toward integrating and unifying .NET technology 
on various platforms. This unified version was to supersede both .NET Core and .NET Framework. To 
avoid confusion with .NET Framework 4.x, this unified framework was named .NET 5. Since .NET 
5, a common BCL can be used on all platforms. In .NET 5, there are still two runtimes, which are 
WinRT (used for Windows) and the Mono runtime (used for mobile and macOS).

In this book, we use will the .NET 6 release.

.NET Standard and portable class libraries

Before the .NET 5 releases, with .NET Framework, Mono, and .NET Core, we had a different subset 
of BCLs on different platforms. In order to share code between different runtimes or platforms, a 
technique called Portable Class Libraries (PCLs) was used. When you create a PCL, you have to 
choose a combination of platforms that you want to support. The level of compatibility choices is 
decided by the developers. If you want to reuse any PCL, you must carefully study the list of platforms 
that can be supported.

Even though a PCL provides a way to share code, it cannot resolve compatibility issues nicely. To 
overcome the compatibility issues, Microsoft introduced .NET Standard.

.NET Standard is not a separate .NET release but instead a specification of a set of .NET APIs that 
must be supported by most .NET implementations (.NET Framework, Mono, .NET Core, .NET 5 or 
6, and so on).

After .NET 5 and later versions, a unified BCL is available, but .NET Standard will be still part of 
this unified BCL. If your applications only need to support .NET 5 or later, you don’t really need to 
care too much about .NET Standard. However, if you want to be compatible with old .NET releases, 
.NET Standard is still the best choice for you. We will use .NET Standard 2.0 in this book to build 
our data model, since this is a version that can support most existing .NET implementations and all 
future .NET releases.



Using Xamarin for mobile development 9

There will be no new versions of .NET Standard from Microsoft, but .NET 5, .NET 6, and all future 
versions will continue to support .NET Standard 2.1 and earlier. Table 1.3 shows the platforms and 
versions that .NET Standard 2.0 can support, and this is also the compatible list for our data model 
in this book.

.NET implementation Version support

.NET and .NET Core 2.0, 2.1, 2.2, 3.0, 3.1, 5.0, and 6.0

.NET Framework 1 4.6.1 2, 4.6.2, 4.7, 4.7.1, 4.7.2, and 4.8
Mono 5.4 and 6.4
Xamarin.iOS 10.14 and 12.16
Xamarin.Mac 3.8 and 5.16
Xamarin.Android 8.0 and 10.0
UWP 10.0.16299, TBD
Unity 2018.1

Table 1.3: .NET Standard 2.0-compatible implementations

The open-source project KPCLib is a .NET Standard 2.0 library, and we will use it in our app. In 
Table 1.3, we can see that .NET Standard libraries can be used in both Xamarin and .NET MAUI apps.

Using Xamarin for mobile development
As we mentioned in an earlier section, Xamarin was part of the Mono project and was an effort to 
support .NET on Android, iOS, and macOS. Xamarin.Forms is a cross-platform UI framework from 
Xamarin. .NET MAUI is an evolution of Xamarin.Forms. Before we discuss .NET MAUI and Xamarin.
Forms, let us review the following diagram of Xamarin implementation on various platforms.

Figure 1.1: Xamarin implementations

Figure 1.1 shows the overall architecture of Xamarin. Xamarin allows developers to create native UIs 
on each platform and write business logic in C# that can be shared across platforms.



Getting Started with .NET MAUI10

On supported platforms, Xamarin contains bindings for nearly the entire underlying platform SDKs. 
Xamarin also provides facilities for directly invoking the Objective-C, Java, C, and C++ libraries, 
giving you the power to use a wide array of third-party code. You can use existing Android, iOS, or 
macOS libraries written in Objective-C, Swift, Java, or C/C++.

The Mono runtime is used as the .NET runtime on these platforms. It has two modes of operation – 
Just-in-Time (JIT) and Ahead-of-Time (AOT). JIT compilation generates code dynamically as it is 
executed. In AOT compilation mode, Mono precompiles everything, so it can be used on operating 
systems where dynamic code generation is not possible.

As we can see in Figure 1.1, JIT can be used on Android and macOS, while AOT is used for iOS where 
dynamic code generation is not allowed.

There are two ways to develop native applications using Xamarin.

You can develop native applications just like Android, iOS, or macOS developers, using native APIs 
on each platform. The difference is that you use .NET libraries and C# instead of the platform-specific 
language and libraries directly. The advantage of this approach is you can use one language and share 
a lot of components through the .NET BCL, even if you work on different platforms. You can also 
leverage the power of underlying platforms like native application developers.

If you want to reuse code on the user interface layer, you can use Xamarin.Forms instead of the native UI.

Xamarin.Forms

Xamarin.Android, Xamarin.iOS, and Xamarin.Mac provide a .NET environment that exposes almost 
the entire original SDK capability on their respective platforms. For example, as a developer, you 
have almost the same capability with Xamarin.Android as you do with the original Android SDK. To 
further improve code sharing, an open source UI framework, Xamarin.Forms, was created. Xamarin.
Forms includes a collection of cross-platform user interface components. The user interface design 
can be implemented using the XAML markup language, which is similar to Windows user interface 
design in WinUI or WPF.

Xamarin.Essentials

Since Xamarin exposes the capability of the underlying platform SDKs, you can access device features 
using the .NET API. However, the implementation is platform-specific. For example, when you use a 
location service on Android or iOS, the .NET API can be different. To further improve code sharing 
across platforms, Xamarin.Essentials can be used to access native device features. Xamarin.Essentials 
provides a unified .NET interface for native device features. If you use Xamarin.Essentials instead of 
native APIs, your code can be reused across platforms.



Using Xamarin for mobile development 11

Some examples of functionalities provided by Xamarin.Essentials include the following:

• Device info

• The filesystem

• An accelerometer

• A phone dialer

• Text-to-speech

• Screen lock

Using Xamarin.Forms together with Xamarin.Essentials, most implementations, including business 
logic, user interface design, and some level of device-specific features, can be shared across platforms.

Comparing user interface design on different platforms

Most modern application development on various platforms uses the Model-View-Controller 
(MVC) design pattern. To separate the business logic and user interface design, there are different 
approaches used on Android, iOS/macOS, and Windows. On all the platforms involved, even though 
the programming languages used are different, they all use XML-based markup language to design 
user interfaces.

On an iOS/macOS platform, developers can use Interface Builder in XCode to generate .storyboard 
or .xib files. Both are XML-based script files used to keep user interface information, and this script 
is interpreted at runtime together with Swift or Objective-C code to create the user interface. In 2019, 
Apple announced a new framework, SwiftUI. Using SwiftUI, developers can build user interfaces using 
the Swift language in a declarative way directly.

On the Android platform, developers can use Layout Editor in Android Studio to create a user 
interface graphically and store the result in layout files. The layout files are in the XML format as well 
and can be loaded at runtime to create the user interface.

On the Windows platform, Extensible Application Markup Language (XAML) is used in user 
interface design. XAML is an XML-based language used for user interface design on the Windows 
platform. For a WPF or UWP application, the XAML Designer can be used for user interface design. 
In .NET MAUI, the XAML-based UI is the default application UI. Another pattern, the Model View 
Update (MVU) pattern, can also be used. In the MVU pattern, the user interface is implemented in 
C# directly without XAML. The coding style of MVU is similar to SwiftUI.

Even though SwiftUI on Apple platforms or MVU in .NET MAUI can be used, but the classic user 
interface implementation is the XML-based markup language. Let us do a comparison in Table 1.4.

Platform IDE Editor Language File extension

Windows Visual Studio XAML Designer XAML/C# .xaml



Getting Started with .NET MAUI12

Platform IDE Editor Language File extension

Android Android Studio Layout Editor XML/Java/Kotlin .layout

iOS/macOS Xcode Interface  
Builder

XML/Swift/ 
Objective C

.storyboard 
or .xib

.NET MAUI/ 
Xamarin.Forms Visual Studio N.A.

XAML/C# .xaml

.NET MAUI Blazor Razor/C# .razor

Table 1.4: A comparison of user interface design

In Table 1.4, we can see a comparison of user interface design on different platforms.

.NET MAUI and Xamarin.Forms use a dialect of XAML to design user interfaces on all supported 
platforms. For .NET MAUI, we have another choice for user interface design, which is Blazor. We 
will discuss Blazor later in this chapter.

In Xamarin.Forms, we create user interfaces in XAML and code-behind in C#. The underlying 
implementation is still the native controls on each platform, so the look and feel of Xamarin.Forms 
applications are the same as native ones.

Some examples of features provided by Xamarin.Forms include the following:

• XAML user interface language

• Data binding

• Gestures

• Effects

• Styling

Even though we can share almost all UI code with Xamarin.Forms, we still need to handle most of 
the resources used by an application in each platform individually. These resources could be images, 
fonts, or strings. In the project structure of Xamarin.Forms, we have a common .NET standard project 
and multiple platform-specific projects. Most of the development work will be done in the common 
project, but the resources are still handled in the platform-specific projects separately.

Moving to .NET MAUI
With the .NET unification, Xamarin has become a part of the .NET platform, and Xamarin.Forms 
integrates with .NET in the form of .NET MAUI.

.NET MAUI is a first-class .NET citizen with the Microsoft.Maui namespace.



Moving to .NET MAUI 13

Making the move to .NET MAUI is also an opportunity for Microsoft to redesign and rebuild Xamarin.
Forms from the ground up and tackle some of the issues that have been lingering at a lower level. 
Compared to Xamarin.Forms, .NET MAUI uses a single project structure, supports hot reloads better, 
and supports MVU and Blazor development patterns.

From Figure 1.2, we can see that there is a common BCL for all supported operating systems. Under the 
BCL, there are two runtimes, WinRT and the Mono Runtime, according to the platform. For each platform, 
there is a dedicated .NET implementation to provide full support for native application development.

 Figure 1.2: .NET MAUI architecture

Comparing to Xamarin.Forms, we can see from Table 1.5, there are many improvements in .NET MAUI.

.NET MAUI uses a single project structure to simplify project management. We can manage resources, 
dependency injection, and configurations in one location instead of managing them separately 
per platform.

.NET MAUI is fully integrated as part of .NET, so we can create and build projects using the .NET 
SDK command line. In this case, we have more choices in terms of development environments.

.NET MAUI Xamarin.Forms
Project structure Single project Multiple projects
Resource  
management

One location for all platforms Managed per platform



Getting Started with .NET MAUI14

.NET MAUI Xamarin.Forms
Fully integrated 
with .NET

Namespace in Microsoft.Maui and other 
IDEs can be chosen beside Visual Studio.
Command-line support. We can create, build, 
and run in a console:

dotnet new maui

dotnet build -t:Run -f 
net6.0-android

dotnet build -t:Run -f 
net6.0-ios

dotnet build -t:Run -f 
net6.0-maccatalyst

Namespace in Xamarin.
Forms and it uses Visual 
Studio as an IDE

Design  
improvement

• Configuration through .NET Generic Host
• Dependency injection support

• Configuration scattered 
in different locations

MVU pattern A modern type of UI implementation No

Blazor Hybrid Support through BlazorWebView No

Table 1.5: .NET MAUI improvement

In Table 1.5, we can see that .NET MAUI supports application configuration using .NET generic host, 
can work with multiple IDE environments, supports dependency injection, and can use the MVVM 
toolkit, etc. It also supports the MVU pattern and Blazor Hybrid UI. Next, we will look at the Blazor 
Hybrid app.

.NET MAUI Blazor apps

In Table 1.4, where we compared the user interface design options on different platforms, we mentioned 
that there is another way to design cross-platform user interfaces in .NET MAUI, which is Blazor.

Released in ASP.NET Core 3.0, Blazor is a framework for building an interactive client-side web UI with 
.NET. With .NET MAUI and Blazor, we can build cross-platform apps in the form of Blazor Hybrid 
apps. This way, the boundary between a native application and a web application becomes blurred. 
.NET MAUI Blazor Hybrid apps enable Blazor components to be integrated with native platform 
features and UI controls. The Blazor components have full access to the native capabilities of a device.

The way to use the Blazor web framework in .NET MAUI is through a BlazorWebView component. 
.NET MAUI Blazor enables both native and web UIs in a single application, and they can co-exist in a 
single view. With .NET MAUI Blazor, applications can leverage the Blazor component model (Razor 
components), which uses HTML, CSS, and the Razor syntax. The Blazor part of an app can reuse 
components, layouts, and styles that are used in an existing regular web app. BlazorWebView can 
be composed alongside native elements; additionally, they leverage platform features and share states 
with their native counterparts.



Development environment setup 15

Choosing XAML versus Razor in .NET MAUI

To design the user interface of your .NET MAUI application, you have a few choices for implementation:

• XAML: Implement user interface in XAML that is only similar to Xamarin.Forms. We can also 
choose the MVU pattern to use C# code to create and style UI elements directly. No matter 
whether you choose XAML or C# code directly, the underlying implementation is the same.

• Blazor: Implement a user interface in Razor Pages, which is similar to web application development.

• Blazor Hybrid app: Use both XAML and Razor Pages in your application.

It’s your decision how you want to design your application. You can choose one of the preceding 
options or mix XAML and the Blazor UI according to the best fit. To develop Blazor Hybrid apps, you 
should be able to use most of the existing Blazor libraries directly. Blazor provides good JavaScript 
interoperability, and you can use your favorite JavaScript library in your development.

Development environment setup
Both Windows and macOS can be used for .NET MAUI development, but you won’t be able to build 
all targets with only one of them. You will need both Windows and Mac computers to build all targets. 
In this book, the Windows environment is used to build and test Android and Windows targets. iOS 
and macOS targets are built on a Mac computer.

.NET MAUI app can target the following platforms:

• Android 5.0 (API 21) or higher

• iOS 10 or higher

• macOS 10.13 or higher, using Mac Catalyst

• Windows 11 and Windows 10 version 1809 or higher, using Windows UI Library (WinUI) 3

.NET MAUI Blazor apps use the platform-specific WebView control, so they have the following 
additional requirements:

• Android 7.0 (API 24) or higher

• iOS 14 or higher

• macOS 11 or higher, using Mac Catalyst

.NET MAUI build targets of Android, iOS, macOS, and Windows can be built using Visual Studio 
on a Windows computer. In this environment, a networked Mac is required to build iOS and macOS 
targets. Xcode must be installed on the paired Mac to debug and test an iOS MAUI app in a Windows 
development environment.



Getting Started with .NET MAUI16

.NET MAUI targets of Android, iOS, and macOS can be built and tested on macOS. 

Target platform Windows macOS
Windows Yes No
Android Yes Yes
iOS Yes (pair to Mac) Yes
macOS Build only (pair to Mac) Yes

Table 1.6: The development environment of .NET MAUI

Please refer to Table 1.6 to find out the build configurations on Windows and macOS.

Installing .NET MAUI on Windows

.NET MAUI can be installed as part of Visual Studio 2022. The Visual Studio Community edition is free, 
and we can download it from the Microsoft website at https://visualstudio.microsoft.
com/vs/community/.

After launching Visual Studio Installer, we will see a screen similar to the one shown in Figure 1.3. 
Please select .NET Multi-platform App UI development and .NET desktop development in the list 
of options. We also need to select ASP.NET and web development for the .NET MAUI Blazor app, 
which will be covered in Part 2 of this book.

Figure 1.3: Visual Studio 2022 installation

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/


Development environment setup 17

After the installation is completed, we can check the installation from the command line using the 
following dotnet command:

C:\>dotnet workload list

Installed Workload Ids  Manifest Version    Installation Source

--------------------------------------------------------------
------

maui-windows          6.0.486/6.0.400       VS 17.3.32811.315

maui-maccatalyst      6.0.486/6.0.400       VS 17.3.32811.315

maccatalyst           15.4.446-ci.-release-6-0-
4xx.446/6.0.400      VS 17.3.32811.315

maui-ios              6.0.486/6.0.400         VS 17.3.32811.315

ios                    15.4.446-ci.-release-6-0-
4xx.446/6.0.400      VS 17.3.32811.315

maui-android          6.0.486/6.0.400         VS 17.3.32811.315

android               32.0.448/6.0.400        VS 17.3.32811.315

Use `dotnet workload search` to find additional workloads to 
install.

We are ready to create, build, and run a .NET MAUI app on Windows.

Installing .NET MAUI on macOS

The installation of the Visual Studio Community edition is similar to what we have done on Windows. 
The installation package can be downloaded from the same link.



Getting Started with .NET MAUI18

After launching Visual Studio Installer, we can see a screen similar to the one shown in Figure 1.4.

Figure 1.4: Visual Studio for Mac 2022 installation

Please select .NET and .NET MAUI from the list of options in Figure 1.4.

After the installation is completed, we can check the installation from the command line using the 
following dotnet command:

% dotnet workload list

Installed Workload Ids      Manifest Version       
Installation Source

--------------------------------------------------------------
------

wasm-tools                  6.0.9/6.0.400         SDK 6.0.400

macos                       12.3.453/6.0.400      SDK 6.0.400

maui-maccatalyst            6.0.536/6.0.400       SDK 6.0.400

maui-ios                    6.0.536/6.0.400       SDK 6.0.400

maui-android                6.0.536/6.0.400       SDK 6.0.400

ios                         15.4.453/6.0.400      SDK 6.0.400



What you will learn in this book 19

maccatalyst                 15.4.453/6.0.400      SDK 6.0.400

maui                        6.0.536/6.0.400       SDK 6.0.400

tvos                        15.4.453/6.0.400      SDK 6.0.400

android                     32.0.465/6.0.400      SDK 6.0.400

Use `dotnet workload search` to find additional workloads to 
install.

We are ready to create, build, and run a .NET MAUI app on macOS.

What you will learn in this book
In this book, you will learn how to develop cross-platform applications using .NET MAUI. The 
following are the topics covered in this book:

• The .NET ecosystem and .NET MAUI

• User interface design using XAML

• Data binding using the MVVM design pattern

• .NET MAUI Shell navigation and design navigations using routes

• Dependency injection

• Exploring Blazor to design a user interface using the .NET MAUI Blazor Hybrid app

• Using xUnit.net to write unit test cases for .NET classes and bUnit to implement test 
cases for Razor Pages

• Publishing an application to Google Play, Apple Store, and Microsoft Store

The app that we will build in this book
Throughout the book, we will learn about .NET MAUI programming by building a password manager 
app. KeePass is an open source password manager used by many people. However, it is an application 
built for .NET Framework, so it can run on Windows only. KeePass has a library, KeePassLib, which 
implements most of the logic for encrypted database management. This is a popular database format 
for password management. For example, IntelliJ IDEA uses the KeePass database to store passwords 
used during development phases.

To make KeePassLib a cross-platform library, I ported KeePassLib to .NET Standard 2.0 as 
the open source KPCLib project. The source code can be found at https://github.com/
passxyz/KPCLib.

I published an app, PassXYZ.Vault, developed using Xamarin.Forms and KPCLib in app stores. 
In this book, we will rewrite PassXYZ.Vault together, using .NET MAUI. You can learn about 
cross-platform programming through the progressive development of this app until it is published 
in app stores.

https://github.com/passxyz/KPCLib
https://github.com/passxyz/KPCLib


Getting Started with .NET MAUI20

Summary
In this chapter, we started with an overview of cross-platform technologies. We compared a .NET 
solution with other cross-platform technologies. After that, we went through the .NET landscape. 
I explained the relationship between .NET Framework, Mono, and .NET Core. Then, we discussed 
Xamarin and .NET MAUI. We reviewed the difference between Xamarin.Forms and .NET MAUI. 
One important feature in .NET MAUI is that we can use Blazor together with XAML user interface 
design. Then, we had an overview of .NET MAUI Blazor. Finally, we set up a development environment 
for the rest of the chapters.

In the next chapter, we will explore how to build a .NET MAUI application from scratch.

Further reading
• .NET MAUI: You can find more information about .NET MAUI in Microsoft’s official 

documentation: https://docs.microsoft.com/en-us/dotnet/maui/

• KeePass: The official website for KeePass can be found at https://keepass.info/

https://docs.microsoft.com/en-us/dotnet/maui/
https://keepass.info/


2
Building Our First .NET  

MAUI App

In this chapter, we will create a new .NET MAUI project and make the necessary changes so that we 
can use it in the subsequent development. The app that we will develop is a password manager app. 
We will add features to it gradually in the coming chapters. When we complete Part 1, we will have 
a functional password manager app. In this chapter, we will create the app using the Visual Studio 
template, and initialize the resources of the application. After that, we will build and test it on supported 
platforms. To use Shell in our app, we will create a new Xamarin.Forms project with Shell support 
and then migrate it to our .NET MAUI project.

The following topics will be covered in this chapter:

• Setting up a new .NET MAUI project

• App startup and lifecycle management

• Configuring resources

• Creating a new Xamarin.Forms project with Shell

• Migrating this Xamarin.Forms project to .NET MAUI

Technical requirements
To test and debug the source code in this chapter, you need Visual Studio 2022 installed on both 
Windows and macOS. Please refer to the Development environment setup section in Chapter 1, Getting 
Started with .NET MAUI, for the details.

Managing the source code in this book
Since we develop a password manager app incrementally in this book, the source code of each chapter 
is built on top of the previous chapters. To keep working on continuous improvement, we will have 



Building Our First .NET MAUI App22

separate branches to keep the source code of each chapter. If you want to clone the source code of 
all chapters in one command, you can clone from the main branch. In the main branch, we have all 
chapters in separate folders. If you don’t want to use Git, you can also download the source code as a 
compressed file from the release area, as shown in the following diagram (Figure 2.1):

Figure 2.1: Source code in GitHub

Since new .NET MAUI releases may be available from time to time, the Git tags and versions in the 
release area will be updated according to the new .NET MAUI releases and bug fixes.

The source code of this book can be found in the following GitHub repository:

https://github.com/PacktPublishing/Modern-Cross-Platform-Application-
Development-with-.NET-MAUI

There are three ways to download the source code in this book:

• Download the source code in a compressed file.

The source code can be downloaded in the release area, or use the following URL:

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-
Application-Development/releases/tag/V1.0.0

The release tag may be changed when a new release is available.

https://github.com/PacktPublishing/Modern-Cross-Platform-Application-Development-with-.NET-MAUI
https://github.com/PacktPublishing/Modern-Cross-Platform-Application-Development-with-.NET-MAUI
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/releases/tag/V1.0.0
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/releases/tag/V1.0.0


Setting up a new .NET MAUI project 23

• Clone the source code of one chapter.

To check out the source code of a chapter, you can use the following command as an example:

$ git clone https://github.com/PacktPublishing/.NET-MAUI-
Cross-Platform-Application-Development.git -b chapter02

• Clone the source code from the main branch.

To check out the source code of all chapters from the main branch, you can use the 
following command:

$ git clone https://github.com/PacktPublishing/.NET-MAUI-
Cross-Platform-Application-Development.git

Setting up a new .NET MAUI project
We can create a new .NET MAUI project using Visual Studio or the command line.

Creating a new project using Visual Studio

To create a new .NET MAUI project, follow these steps:

1. Launch Visual Studio 2022 and select Create a new project on the startup screen. This will 
open the Create a new project wizard.

In the top-middle section of the screen, there is a search box. We can type Maui in the search 
box, and .NET MAUI-related project templates will be shown (see Figure 2.2):



Building Our First .NET MAUI App24

Figure 2.2: New project setup – Create a new project

There are three templates for the .NET MAUI app or library:

 � .NET MAUI App – This is for a XAML-based .NET MAUI app.

 � .NET MAUI Blazor App – This template can be used to create a .NET MAUI Blazor app.

 � .NET MAUI Class Library – This is the option to build a .NET MAUI class library. We can 
build shared components as a .NET MAUI class library when we develop a .NET MAUI app.

2. Let’s select .NET MAUI App and click the Next button; it goes to the next step to configure 
your new project, as shown in Figure 2.3:



Setting up a new .NET MAUI project 25

Figure 2.3: New project setup – Configure your new project

3. Enter the project name and solution name as PassXYZ.Vault and click the Next button. After 
the project is created, the project structure will look like Figure 2.4, displaying the following:

 � Common files – In a new project, there are three files included in the template – App.xaml, 
MainPage.xaml, and MauiProgram.cs. This is the group of files that we will work 
on throughout the book. They are platform agnostic. Both business logic and UI can be 
developed here and shared on all platforms.

 � Platform-specific files – There are five subfolders (Android, iOS, MacCatalyst, Windows, 
and Tizen) in the Platforms folder. Since we won’t support Tizen, we can remove it 
from our project.



Building Our First .NET MAUI App26

 � Resources – A variety of resources ranging from images, fonts, splash screens, styles, and raw 
assets are in the Resources folder. These resources can be used in all supported platforms.

Figure 2.4: .NET MAUI project structure

In the .NET MAUI project, there is only one project structure. Later, we will see that the development 
of Xamarin.Forms involves multiple projects.



App startup and lifecycle 27

Creating a new project using the dotnet command

Even though we installed .NET MAUI as part of the Visual Studio installation, .NET MAUI can be 
installed separately using the command line as well. In this way, we can choose other development 
tools than Visual Studio. We can create and build a .NET MAUI app using the dotnet command 
line. To find out about the installed project templates, we can use the following command:

C:\ > dotnet new --list

To create a new project using the command line, we can execute the following command:

C:\ > dotnet new maui -n "PassXYZ.Vault"

The new .NET MAUI project has been created, and we can build and test it now. Before we move to 
that, let’s spend some time having a look at the .NET MAUI app startup code and lifecycle.

App startup and lifecycle
In the .NET MAUI project, the app startup and lifecycle management are handled in the following 
two files:

• MauiProgram.cs

• App.xaml/App.xaml.cs

For the app startup and configuration, .NET Generic Host is used. When the application starts, a 
.NET Generic Host object is created to encapsulate an app’s resources and lifetime functionality, such 
as the following:

• Dependency injection (DI)

• Logging

• Configuration

• App shutdown

This enables apps to be initialized in a single location and provides the ability to configure fonts, 
services, and third-party libraries.

.NET Generic Host
If you are a Xamarin developer, you may not be familiar with .NET Generic Host. In ASP.NET 
Core, .NET Generic Host is used to encapsulate the resources in an app. In .NET MAUI, the 
same pattern is borrowed and used for startup and configuration management.



Building Our First .NET MAUI App28

Let’s examine the app startup code in Listing 2.1 (MauiProgram.cs):

Listing 2.1: MauiProgram.cs (https://epa.ms/MauiProgram2-1)

namespace PassXYZ.Vault;

public static class MauiProgram

{

  public static MauiApp CreateMauiApp()                    ➊

  {

      var builder = MauiApp.CreateBuilder();               ➋

      builder

        .UseMauiApp<App>()                                 ❹

        .ConfigureFonts(fonts =>

        {

          fonts.AddFont("OpenSans-Regular.ttf",  
            "OpenSansRegular");

        });

      return builder.Build();                              ➌

  }

}

We can see the following in Listing 2.1:

➊ In each platform, the entry point is in platform-specific code. The entry point calls the 
CreateMauiApp function, which is a method of the MauiProgram static class.

➋ Inside CreateMauiApp, it calls the CreateBuilder function, which is a method of the 
MauiApp static class, and returns a MauiAppBuilder instance, which provides a .NET Generic 
Host interface.

➌ The return value of CreateMauiApp is a MauiApp instance, which is the entry point of your app.



App startup and lifecycle 29

❹ The App class referenced in the UseMauiApp method is the root object of our application. Let’s 
review the definition of the App class in Listing 2.2:

Listing 2.2: App.xaml.cs  (https://epa.ms/App2-2)

namespace PassXYZ.Vault;

public partial class App : Application                     ①

{

 public App()

 {

  InitializeComponent();

  MainPage = new AppShell();                      ②

 }

}

In Listing 2.2, ① the App class is derived from the Application class, and the Application 
class is defined in the Microsoft.Maui.Controls namespace. 

② AppShell is an instance of Shell, and it defines the UI of the initial page of the app. Application 
creates an instance of the Window class within which the application will run and views will be 
displayed. In the App class, we can overwrite the CreateWindow method to manage the lifecycle, 
which we will see soon.

Lifecycle management

In the .NET MAUI app, there are the following four lifecycle states:

• Running

• Not running

• Deactivated

• Stopped



Building Our First .NET MAUI App30

During the state transitions, the predefined lifecycle events will be triggered. There are six cross-
platform lifecycle events defined, as we can see in Table 2.1:

Event Description State transition Override method
Created This event is raised after 

the native window has 
been created.

Not running -> Running OnCreated

Activated This event is raised when the 
window has been activated 
and is, or will become, the 
focused window.

Not running -> Running OnActivated

Deactivated This event is raised when 
the window is no longer the 
focused window. However, the 
window might still be visible.

Running -> Deactivated OnDeactivated

Stopped This event is raised when the 
window is no longer visible.

Deactivated -> Stopped OnStopped

Resumed This event is raised when 
an app resumes after 
being stopped.

Stopped -> Running OnResumed

Destroying This event is raised when 
the native window is being 
destroyed and deallocated.

Stopped -> Not running OnDestroying

Table 2.1: Lifecycle events and override methods

These lifecycle events are associated with the instance of the Window class created by Application. 
For each event, there is a corresponding override method defined. We can either subscribe to the 
lifecycle events or create override functions to handle lifecycle management.

Subscribing to the Window lifecycle events

To subscribe to the lifecycle events, as we can see in Listing 2.3, at ➊ we can override the CreateWindow 
method in the App class to create a Window instance on which we can subscribe to events:

Listing 2.3: App.xaml.cs with lifecycle events (https://epa.ms/App2-3)

using System.Diagnostics;

namespace PassXYZ.Vault;



App startup and lifecycle 31

public partial class App : Application {

  public App() {

    InitializeComponent();

    MainPage = new MainPage();

  }

  protected override Window CreateWindow(IActivationState

    activationState)                                       ➊

  {

    Window window = base.CreateWindow(activationState);

    window.Created += (s, e) => {

      Debug.WriteLine("PassXYZ.Vault.App: 1. Created event");

    };

    window.Activated += (s, e) => {

      Debug.WriteLine("PassXYZ.Vault.App: 2. Activated event");

    };

    window.Deactivated += (s, e) => {

      Debug.WriteLine("PassXYZ.Vault.App: 3. Deactivated  
        event");

    };

    window.Stopped += (s, e) => {

      Debug.WriteLine("PassXYZ.Vault.App: 4. Stopped event");

    };

    window.Resumed += (s, e) => {

      Debug.WriteLine("PassXYZ.Vault.App: 5. Resumed event");

    };

    window.Destroying += (s, e) => {

      Debug.WriteLine("PassXYZ.Vault.App: 6. Destroying  
        event");

    };

    return window;

  }

}

In Listing 2.3, we revised the code of App.xaml.cs and we subscribed to all six events so that we 
can run a test and observe the state from the Visual Studio Output window, as shown next. After we 
launch our app, we can see that Created and Activated events are fired. Then, we minimize 



Building Our First .NET MAUI App32

our app. We can see that Deactivated and Stopped events are fired. When we resume our app, 
Resumed and Activated events are fired. Finally, we close our app, and a Destroying event 
is fired:

PassXYZ.Vault.App: 1. Created event

PassXYZ.Vault.App: 2. Activated event

PassXYZ.Vault.App: 4. Stopped event

PassXYZ.Vault.App: 3. Deactivated event

PassXYZ.Vault.App: 5. Resumed event

PassXYZ.Vault.App: 2. Activated event

PassXYZ.Vault.App: 5. Resumed event

PassXYZ.Vault.App: 2. Activated event

The thread 0x6f94 has exited with code 0 (0x0).

PassXYZ.Vault.App: 6. Destroying event

The program '[30628] PassXYZ.Vault.exe' has exited with code 0 
(0x0).

Consuming the lifecycle override methods

Alternatively, we can consume the lifecycle override methods. We can create our own derived class 
from the Window class:

1. In Visual Studio, right-click on the project node and select Add and then New Item….

2. In the Add New Item window, select C# Class from the template and name it PxWindow. We 
created a new class, as shown next in Listing 2.4:

Listing 2.4: PxWindow.cs (https://epa.ms/PxWindow2-4)

using System.Diagnostics;

namespace PassXYZ.Vault;

public class PxWindow : Window

{

    public PxWindow() : base() {}

    public PxWindow(Page page) : base(page) {}

    protected override void OnCreated() {

        Debug.WriteLine("PassXYZ.Vault.App: 1. OnCreated");

    }



App startup and lifecycle 33

    protected override void OnActivated() {

        Debug.WriteLine("PassXYZ.Vault.App: 2. OnActivated");

    }

    protected override void OnDeactivated() {

        Debug.WriteLine("PassXYZ.Vault.App: 3. OnDeactivated");

    }

    protected override void OnStopped() {

        Debug.WriteLine("PassXYZ.Vault.App: 4. OnStopped");

    }

    protected override void OnResumed() {

        Debug.WriteLine("PassXYZ.Vault.App: 5. OnResumed");

    }

    protected override void OnDestroying() {

        Debug.WriteLine("PassXYZ.Vault.App: 6. OnDestroying");

    }

}

In Listing 2.4, we created a new class, PxWindow. In this class, we define our lifecycle override 
methods. We can use this new class in App.xaml.cs.

Next, let’s look at the modified version of App.xaml.cs (Listing 2.5):

Listing 2.5 Modified App.xaml.cs with PxWindow (https://epa.ms/App2-5)

namespace PassXYZ.Vault;

public partial class App : Application

{

 public App()

 {

  InitializeComponent();

 }

protected override Window CreateWindow(IActivationState

    activationState)                                       ➊

    {

        return new PxWindow(new MainPage());

    }

}



Building Our First .NET MAUI App34

When we repeat the test steps, we can see the following output from Visual Studio Output windows. 
The output looks very similar to the previous one. Basically, both approaches have the same effect on 
lifecycle management:

PassXYZ.Vault.App: 1. OnCreated

PassXYZ.Vault.App: 2. OnActivated

PassXYZ.Vault.App: 4. OnStopped

PassXYZ.Vault.App: 3. OnDeactivated

PassXYZ.Vault.App: 5. OnResumed

PassXYZ.Vault.App: 2. OnActivated

PassXYZ.Vault.App: 5. OnResumed

PassXYZ.Vault.App: 2. OnActivated

PassXYZ.Vault.App: 6. OnDestroying

The program '[25996] PassXYZ.Vault.exe' has exited with code 0 
(0x0).

We have learned about app lifecycle management in .NET MAUI through the Window class. We can 
either subscribe to lifecycle events or override the overridable methods to manage the app lifecycle. 
Table 2.1 shows the comparison of these two approaches.

If you were a Xamarin.Forms developer, you might know that there were lifecycle methods defined 
in the Application class as well. In .NET MAUI, the following virtual methods are still available:

• OnStart – Called when the application starts

• OnSleep – Called each time the application goes to the background

• OnResume – Called when the application is resumed, after being sent to the background

To observe the behavior of these methods, we can override the following methods in our App class, 
as shown in Listing 2.6:

Listing 2.6: App.xaml.cs (https://epa.ms/App2-6)

using System.Diagnostics;

namespace PassXYZ.Vault;

public partial class App : Application

{

 public App()

 {



App startup and lifecycle 35

  InitializeComponent();

  MainPage = new MainPage();

 }

 protected override void OnStart() {                    ➊

  Debug.WriteLine("PassXYZ.Vault.App: OnStart");

 }

 protected override void OnSleep() {                    ➋

  Debug.WriteLine("PassXYZ.Vault.App: OnSleep");

 }

 protected override void OnResume() {                   ➌

  Debug.WriteLine("PassXYZ.Vault.App: OnResume");

 }

}

When we test the preceding code on Windows, we can see the following debug message in the Visual 
Studio Output window:

PassXYZ.Vault.App: OnStart

PassXYZ.Vault.App: OnSleep

The thread 0x6844 has exited with code 0 (0x0).

The thread 0x6828 has exited with code 0 (0x0).

The thread 0x683c has exited with code 0 (0x0).

PassXYZ.Vault.App: OnResume

As seen in Listing 2.6,

➊ When the app starts, we can see the OnStart method is invoked.

➋ When we minimize our app, we can see the OnSleep method is invoked.

➌ When we resume the app from the taskbar, the OnResume method is invoked.

We have learned about the lifecycle states of the .NET MAUI app. We also learned that we could 
subscribe to the lifecycle events or use override methods to manage the lifecycle. Next, let’s explore 
the configuration of resources during the app startup.



Building Our First .NET MAUI App36

Configuring the resources
Resource management is one of the major differences between .NET MAUI and Xamarin.

When it comes to cross-platform development, each platform has its own way of managing resources, 
and it’s a daunting task for the development team to know and manage all those things. For example, 
we must include images in multiple sizes to support different resolutions.

In Xamarin, most of the resources are managed separately in platform-specific projects. If we want 
to add an image, we must add the image files with different sizes to all platform projects separately.

.NET MAUI provides an elegant solution to manage resources effectively. The design goal of one single 
project for all supported platforms helps to manage resources in one place.

In .NET MAUI, resource files can be tagged into different categories using a build action based on 
the role they play in the project, as we can see in Table 2.2:

Resource Type Build Action Example
Images MauiImage dotnet_bot.svg

Icons MauiIcon appicon.svg

Splash screen image MauiSplashScreen appiconfg.svg

Fonts MauiFont OpenSans-Regular.ttf

Style definition using external CSS MauiCss

Raw assets MauiAsset

XAML UI definition MauiXaml

Table 2.2: .NET MAUI resource types

After adding a resource file, the build action can be set in the Properties window in Visual Studio. 
If we look at the project file, we can see the following ItemGroup. If we put resources according to 
the convention of default folder setup, the resources will be treated as the respective category and the 
build action will be set automatically:

<ItemGroup>

  <!-- App Icon -->

  <MauiIcon Include="Resources\AppIcon\appicon.svg"

    ForegroundFile="Resources\AppIcon\appiconfg.svg"

Color="#512BD4" />

  <!—Splash Screen 

  <MauiSplashScreen Include= "Resources\Splash\splash.svg"



Configuring the resources 37

    Color="#512BD4" BaseSize="128,128" />

  <!-- Images -->

  <MauiImage Include="Resources\Images\*" />

  <!-- Custom Fonts -->

  <MauiFont Include="Resources\Fonts\*" />

</ItemGroup>

App icon

In our app setup, we have an SVG image file, appicon.svg, under the Resources\AppIcon 
folder, with the build action set to MauiIcon. At build time, this file is used to generate the icon 
images on the target platform for various purposes, such as on the device, or in the app store.

It is possible to move this SVG file together with other images to the Resources\Images folder. 
In that case, we should use the following entry in the project file:

<MauiIcon Include="Resources\Images\appicon.png" 
ForegroundFile="Resources\Images\appiconfg.svg" Color="#512BD4" 
/>

However, in this case, the build action is inconsistent for the files under the same folder, so appicon.
svg resides in the Resources\AppIcon folder instead of Resources\Images in our project.

Splash screen

This is like an app icon. We have an SVG image file, splash.svg, in the Resources/Splash 
folder, with the build action set to MauiSplashScreen:

  <MauiSplashScreen Include="Resources\Splash\splash.svg" 
Color="#512BD4" />

App icons, splash screens, and other images are simple resources, and we configure them in the 
project file directly.

Some frequently used resources, such as custom font and DI, may have to be configured in code, or 
both code and project files. We will discuss custom fonts here, and leave DI in w, Dependency Injection 
and Refining Design.



Building Our First .NET MAUI App38

Setting custom font icons

Custom fonts can be managed as part of resources. In a mobile app, the visual representation is generally 
delivered through images. We use images in all kinds of navigation activities. In Android and iOS 
development, we need to manage image resources for different screen resolutions. In both Xamarin.
Forms and .NET MAUI, we can use a custom font (icon font) instead of images for application icons.

In .NET MAUI, if controls can display text, these controls usually define properties that we can use 
to configure font settings for the text. The following properties are configurable:

• FontAttributes, which is an enumeration with three members: None, Bold, and Italic. 
The default value of this property is None.

• FontSize, which is the property of the font size, and the type is double.

• FontFamily, which is the property of the font family, and the type is string.

What is the advantage of using custom fonts for icons?

There are many advantages to using custom fonts as icons instead of images.

Font icons are vector icons instead of bitmap icons. Vector icons are scalable, meaning you don’t need 
different images with different sizes and different resolutions based on the device. Icon font scaling 
can be handled through the FontSize property. The font file size is also much smaller than the 
images. A font file with hundreds of icons in it can be only a few KB in size.

Besides font size, the icon color can be changed with the TextColor property. With static images, 
we are not able to change the icon color.

Finally, font files can be managed in the shared project, so we don’t have to manage fonts separately 
on different platforms.

Custom font setup

Custom font setup includes two parts – font files and configuration.

Custom font files can be added to the .NET MAUI or Xamarin.Forms shared project. The configuration 
of custom fonts in .NET MAUI is different than Xamarin.Forms. In Xamarin.Forms, we must configure 
it in AssemblyInfo.cs, while we can manage the configuration through .NET Generic Host in 
.NET MAUI.

In Xamarin.Forms, the process for accomplishing this is as follows:

1. Add the font file to the Xamarin.Forms shared project as an embedded resource (build 
action: EmbeddedResource).

2. Register the font file with the assembly in a file such as AssemblyInfo.cs, using the 
ExportFont attribute. An optional alias can also be specified.



Configuring the resources 39

In .NET MAUI, the process is changed and simplified as follows:

1. Add the font files in the Resources->Fonts folder. The build action is set to MauiFont, 
as we can see in Figure 2.5:

 

Figure 2.5: .NET MAUI Resources

2. Instead of registering the font file with the assembly, .NET MAUI initializes most of the resources 
through .NET Generic Host in the startup code, as shown in the following Listing 2.7 at ➊. 
Font files are added using the ConfigureFonts() method, which is an extension method 
of the MauiAppBuilder class.

In our project, we use the Font Awesome icon library from the following open source project:

https://github.com/FortAwesome/Font-Awesome

The fa-brands-400.ttf, fa-regular-400.ttf, and fa-solid-900.ttf font files can 
be downloaded from the preceding website.

Let’s review the source code Listing 2.7 and see how to add these fonts to the app configuration.

Listing 2.7: MauiProgram.cs (https://epa.ms/MauiProgram2-7)

namespace PassXYZ.Vault;

public static class MauiProgram

{

  public static MauiApp CreateMauiApp()

https://github.com/FortAwesome/Font-Awesome


Building Our First .NET MAUI App40

  {

    var builder = MauiApp.CreateBuilder();

    builder

      .UseMauiApp<App>()

      .ConfigureFonts(fonts =>                             ➊

      {

        fonts.AddFont("fa-regular-400.ttf",  
          "FontAwesomeRegular");

        fonts.AddFont("fa-solid-900.ttf", "FontAwesomeSolid");

        fonts.AddFont("fa-brands-400.ttf",  
          "FontAwesomeBrands");

        fonts.AddFont("OpenSans-Regular.ttf",  
          "OpenSansRegular");

      });

    return builder.Build();

  }

}

In the above code, we can add fonts by invoking the ConfigureFonts ➊ method on the 
MauiAppBuilder object. To pass arguments to ConfigureFonts, we call AddFont method 
to add font to IFontCollection object.

Displaying font icons

To display font icons in .NET MAUI applications, we can specify the font icon data in a 
FontImageSource object. This class, which derives from the ImageSource class, has the 
following properties, as shown in Table 2.3:

Property name Type Description

Glyph string Unicode character value, such as "&#xf007;"

Size double The size of the font in device-independent units

FontFamily string A string representing the font family, such 
as FontAwesomeRegular

Color Color Font icon color in Microsoft.Maui.Graphics.
Color

Table 2.3: Properties of FontImageSource



Configuring the resources 41

The following XAML example has a single font icon being displayed by an Image view:

<Image BackgroundColor="#D1D1D1">

    <Image.Source>

        <FontImageSource Glyph="&#xf007;"

                         FontFamily="FontAwesomeRegular"

                         Size="32" />

    </Image.Source>

</Image>

If you are not familiar with the XAML syntax in the preceding example, don’t worry. We will learn 
about it in the next chapter. In the preceding code, a User icon is displayed in an Image control, 
which is from the FontAwesomeRegular font family that we just added in the configuration. The 
Glyph of the User icon is \uf007 in hex format and this is the C# escaped format. To use it in 
XML, we have to use the escaped format of XML, which is &#xf007;.

The equivalent C# code is as follows:

Image image = new Image {

    BackgroundColor = Color.FromHex("#D1D1D1")

};

image.Source = new FontImageSource {

    Glyph = "\uf007",

    FontFamily = "FontAwesomeRegular",

    Size = 32

};

In the preceding example, we refer to a font icon using Glyph in a hex number as a string. This is 
not convenient to use practically. We can define font glyphs as C# string constants so that we can 
refer to something more meaningful. There are many ways to do this. Here, we use the open source 
tool IconFont2Code to generate string constants. IconFont2Code can be found at the following 
URL in GitHub:

https://github.com/andreinitescu/IconFont2Code

We use Font Awesome in our project. On the website of IconFont2Code, we can upload our font 
library from the Resources\Fonts folder, and IconFont2Code will generate the code for us, as 
in the following example:

namespace PassXYZ.Vault.Resources.Styles;

static class FontAwesomeRegular

https://github.com/andreinitescu/IconFont2Code


Building Our First .NET MAUI App42

{

     public const string Heart = "\uf004";

     public const string Star = "\uf005";

     public const string Scan = "\uf006";

     public const string User = "\uf007";

     public const string Qrcode = "\uf008";

     public const string Fingerprint = "\uf009";

     public const string Clock = "\uf017";

     public const string ListAlt = "\uf022";

     public const string Flag = "\uf024";

     public const string Bookmark = "\uf02e";

     ...

 public const string SmileBeam = "\uf5b8";

 public const string Surprise = "\uf5c2";

 public const string Tired = "\uf5c8";

}

We can save the generated C# files in the Resources\Styles folder. The preceding file can be 
found here:

Resources\Styles\FontAwesomeRegular.cs

With the preceding FontAwesomeRegular static class, a font icon can be used just like the normal 
text in a XAML file:

<Button

     Text="Click me"

     FontAttributes="Bold"

     Grid.Row="3"

     SemanticProperties.Hint="Counts the number of times you  
       click"

     Clicked="OnCounterClicked"

     HorizontalOptions="Center">

     <Button.ImageSource>

          <FontImageSource FontFamily="FontAwesomeSolid"

               Glyph="{x:Static app:FontAwesomeSolid. 
                 PlusCircle}"



Building and debugging 43

               Color="{DynamicResource SecondaryColor}"

               Size="16" />

     </Button.ImageSource>

</Button>

In the preceding code, we add a circle plus icon to the Button control in front of the text "Click 
me". To refer to the icon name in the generated C# class, we added an app namespace, as defined here:

xmlns:app="clr-namespace:PassXYZ.Vault.Resources.Styles"

So far, we have created our project and configured the necessary resources that we need. It’s time to 
build and test our app.

Building and debugging
As we recall in Chapter 1, Getting Started with .NET MAUI, regarding the development environment 
setup, we cannot build and test all targets using one platform. Please refer to Table 1.8 about the 
available build targets on Windows and macOS platforms. To make it simple, we will build and test 
Windows and Android on the Windows platform. For iOS and macOS builds, we will do it on the 
macOS platform.

Once we are ready, we can build and debug our app.

Let’s build and test on the Windows platform first. We can choose a framework that we want to run 
or debug, as shown in Figure 2.6:

Figure 2.6: Building and debugging



Building Our First .NET MAUI App44

Windows

We can run or debug a Windows build on a local machine by selecting net6.0-windows10.0.19041 
as the framework. To do this, we must enable Developer Mode on Windows, if it is not enabled yet. 
Please refer to Figure 2.7 to enable Developer Mode on Windows 10 or 11:

1. Open the Start menu.

2. Search for Developer settings and select it.

3. Turn on Developer Mode.

4. If you receive a warning message about Developer Mode, read it, and select Yes.

Figure 2.7: Developer Mode

Android

For the Android build, we can test it using an Android emulator or device. Before building or debugging, 
we need to connect a device or set up an instance of an emulator. Please refer to the following Microsoft 
documentation about how to set up a device or an emulator instance:

https://learn.microsoft.com/en-us/dotnet/maui/

We can run or debug from Visual Studio (Figure 2.6) by selecting net6.0-android as the framework.

Alternatively, we can also build and run from the command line using the following command:

dotnet build -t:Run -f net6.0-android

https://learn.microsoft.com/en-us/dotnet/maui/


Building and debugging 45

Figure 2.8: Running on Android and Windows

After we run the app on Android and Windows targets, we can see the preceding screen (Figure 2.8).

iOS and macOS

We can build and test iOS and macOS targets on a Mac computer. The steps to build and test using 
Microsoft Visual 2022 for Mac are similar to what we have done in Windows and Android. Let’s look 
at how to do it using a command line.

To build and test the iOS target, we can use the following command in the project folder:

dotnet build -t:Run -f net6.0-ios -p:_
DeviceName=:v2:udid=02C556DA-64B8-440B-8F06-F8C56BB7CC22

To select a target iOS emulator, we need to provide the device ID using the following parameter:

 -p:_DeviceName=:v2:udid=



Building Our First .NET MAUI App46

To find the device ID, we can launch Xcode on a Mac computer and go to Windows -> Devices and 
Simulators, as shown in Figure 2.9:

Figure 2.9: Devices and simulators in Xcode

For the macOS target, we can use the following command to build and test:

dotnet build -t:Run -f net6.0-maccatalyst

The screenshot for iOS and macOS is shown in Figure 2.10 and we can see that the look and feel are 
similar to Android and Windows.



Scaffolding a Model-View-ViewModel project 47

Figure 2.10: Running on iOS and macOS

The environment setup for Android, iOS, and macOS involves platform-specific details. Please refer 
to the Microsoft documentation for detailed instructions.

Even though this app works well, you can see that the app we just built is a simple one with only one 
window. To lay a better foundation for our subsequent development, we will use Shell as a navigation 
framework. There is a good Shell-based template in Xamarin.Forms, and we can use that to create 
the initial code for our app.

Scaffolding a Model-View-ViewModel project
We can run the app that we just created successfully now. We are going to develop a password manager 
app named PassXYZ.Vault in the rest of this book. Version 1.x.x of this app is implemented in Xamarin.
Forms, and you can find it in GitHub here:

https://github.com/passxyz/Vault

Version 1.x.x is built using Xamarin.Forms 5.0.0. We will recreate it using .NET MAUI and share the 
experience in this book. The new release will be version 2.x.x, and the source code is located here:

https://github.com/passxyz/Vault2

https://github.com/passxyz/Vault
https://github.com/passxyz/Vault2


Building Our First .NET MAUI App48

Shell is supported by Microsoft.Maui.Controls.Shell and Xamarin.Forms.Shell in 
.NET MAUI and Xamarin.Forms. It provides a common navigation user experience that can be used 
on all platforms. We will explain more about Shell in Chapter 5, Introducing Shell and Navigation. We 
will use .NET MAUI Shell as the UI framework and navigation method in this book.

The projects created from the Visual Studio template of both .NET MAUI and Xamarin.Forms use 
Shell. However, the default .NET MAUI project template contains only the simplest form of Shell, as 
we can see in Listing 2.8:

Listing 2.8: AppShell.xaml (https://epa.ms/AppShell2-8)

<?xml version="1.0" encoding="UTF-8" ?>

<Shell

    x:Class="PassXYZ.Vault.AppShell"

    xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

    xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

    xmlns:local="clr-namespace:PassXYZ.Vault"

    Shell.FlyoutBehavior="Disabled">

    <ShellContent

        Title="Home"

        ContentTemplate="{DataTemplate local:MainPage}"

        Route="MainPage" />

</Shell>

In Listing 2.8, if you are not familiar with XAML, don’t worry. We will introduce XAML syntax in Chapter 3, 
User Interface Design with XAML. We can see that MainPage is displayed in ShellContent. It is 
the simplest UI without too much content in it. In our app, we will use the Model-View-ViewModel 
(MVVM) pattern and UI based on Shell. The MVVM pattern is a commonly used UI design pattern 
in .NET MAUI app development. We need to create the boilerplate code to include both the MVVM 
pattern and the Shell navigation structure. We could do it from scratch. However, the Xamarin.Forms 
template includes such boilerplate codes that I used in version 1.x.x of PassXYZ.Vault. We can create 
the same project template for .NET MAUI. By doing this, we can also have an overview of how to 
migrate or reuse existing code from Xamarin.Forms.



Scaffolding a Model-View-ViewModel project 49

Migrating and reusing a Shell template from Xamarin.Forms

Xamarin.Forms include a more complex Shell template that can be configured to generate boilerplate 
code for flyout or tabbed Shell navigation. We can create a new Xamarin.Forms project using this 
template. After that, we can use this boilerplate code in the .NET MAUI app that we just created.

To create a new Xamarin.Forms project, follow these steps:

1. Launch Visual Studio 2022 and select Create a new project. This opens the Create a new project 
wizard. In the search box, we can type Xamarin, and all Xamarin-related project templates 
will be shown (see Figure 2.11):

Figure 2.11: New Xamarin project

2. Select Mobile App (Xamarin.Forms) from the list and click Next. On the next screen, as 
shown in Figure 2.12, we should choose a different location, but use the same project name, 
PassXYZ.Vault, and click the Create button:



Building Our First .NET MAUI App50

Figure 2.12: Configure the Xamarin project

3. We have one more step, as shown in Figure 2.13. Let’s select the Flyout template and click Create:

Figure 2.13: Configure the Xamarin project – Flyout



Scaffolding a Model-View-ViewModel project 51

After the new solution is created, we can see that there are four projects in the solution, as shown in 
Figure 2.14:

• PassXYZ.Vault – This is a .NET Standard project that is shared by other projects, and all 
platform-independent code should be here

• PassXYZ.Vault.Android – This is the Android platform-specific project

• PassXYZ.Vault.iOS – This is the iOS platform-specific project

• PassXYZ.Vault.UWP – This is the UWP-specific project

We can see that the project structure of Xamarin.Forms is quite different from .NET MAUI. There are 
multiple projects in the solution. All resources are managed separately in platform-specific projects. 
Most of the development work should be done in the .NET Standard project, PassXYZ.Vault, and we 
will migrate and reuse the code in this project.

Figure 2.14: Xamarin.Forms project structure



Building Our First .NET MAUI App52

The source code of this Xamarin.Forms project can be found here:

https://github.com/shugaoye/PassXYZ.Vault2/tree/xamarin

If platform-specific code is not involved, the migration process is relatively simple. We are handling the 
simplest case here. The production code is usually much more complicated than this so any migration 
should be planned after a detailed analysis.

Let’s focus on the .NET Standard project. The content in the .NET Standard project includes the 
boilerplate code of the MVVM pattern and Shell UI, which is what we need. We can copy files in the 
previous list to the .NET MAUI project and change namespaces in the source code.

The following are the steps to be taken in the migration process:

1. Please refer to Table 2.4, which shows a list of actions corresponding to the list of files and 
folders in the .NET Standard project:

Xamarin.Forms Actions .NET MAUI
App.xaml No Keep the .NET MAUI version. It defines the instance 

of the Application class.

AppShell.xaml Replace Overwrite the .NET MAUI version and change 
namespaces to .NET MAUI. This file defines the 
Shell navigation hierarchy.

Views/ Copy New folder in .NET MAUI project. Need to 
change namespaces.

ViewModels/ Copy New folder in .NET MAUI project. Need to 
change namespaces.

Services/ Copy Interface to export models. New folder in .NET 
MAUI project. Need to change namespaces.

Models/ Copy New folder in .NET MAUI project. Need to 
change namespaces.

Table 2.4: Actions in the .NET standard project

https://github.com/shugaoye/PassXYZ.Vault2/tree/xamarin


Scaffolding a Model-View-ViewModel project 53

2. In the .NET MAUI project, please refer to Table 2.4 to replace the following namespaces:

Old namespace New namespace
xmlns="http://xamarin.com/
schemas/2014/forms"

xmlns="http://schemas.microsoft.
com/dotnet/2021/maui"

using Xamarin.Forms using Microsoft.Maui AND using 
Microsoft.Maui.Controls

using Xamarin.Forms.Xaml using Microsoft.Maui.Controls.Xaml

Table 2.5: Namespaces in .NET MAUI and Xamarin.Forms

3. Test and fix any errors.

In Figure 2.15, we can see that the list of files changed is views and view models:

Figure 2.15: Changed files in migration (https://bit.ly/3NlfqvO)

For this simple case, all changes are related to the namespace. This is not true in real-world situations. 
Even though the process looks simple, it is still relatively complicated for people who are new to .NET 
MAUI. I don’t recommend you to repeat this. Instead, I created a new Visual Studio project template 
to include the desired outcome.

https://bit.ly/3NlfqvO


Building Our First .NET MAUI App54

Let’s build and test this updated app.

Figure 2.16: PassXYZ.Vault with .NET MAUI Shell

In Figure 2.16, we can see that there are three pages included in the default Shell menu:

• About – This is an about page

• Browse – This is the entry point of a list of items

• Logout – This is the link to the login page where you can log in or log out

We will use this as the boilerplate code for further development in this book. To summarize the work 
that we have done in this section, I created a Visual Studio project template for it. By using this project 
template, we can generate the project structure we want.

Visual Studio project template

The project template can be downloaded as a Visual Studio extension package from the Visual Studio 
Marketplace, as shown in Figure 2.17:



Scaffolding a Model-View-ViewModel project 55

Figure 2.17: Project template in Visual Studio Marketplace

After the installation of this project template, we can create a new .NET MAUI project, as shown in 
Figure 2.18:

Figure 2.18: Creating a new .NET MAUI project using the project template



Building Our First .NET MAUI App56

In the project created using this template, the project structure is the same as the one in this chapter. 
The source code of this project template can be found here:

https://github.com/passxyz/MauiTemplate

Summary
We created a new .NET MAUI project in this chapter. We learned how to configure the .NET MAUI 
app using .NET Generic Host, and we can use a custom font (Font Awesome) after updating the 
configuration of the resources. We also learned about the .NET MAUI application lifecycle. We tested 
how to subscribe to lifecycle events by overriding the CreateWindow method and by creating a 
derived class of the Window class. To create the boilerplate code with the MVVM pattern and Shell 
support, we created a new .NET MAUI project template. Throughout the process, we demonstrated 
how to migrate Xamarin.Forms code to .NET MAUI.

In the next chapter, we will learn how to create a user interface using XAML. XAML can be used to 
build user interfaces for WPF, UWP, Xamarin.Forms, and .NET MAUI. We will create and improve 
the user interfaces of our password manager app using XAML.

https://github.com/passxyz/MauiTemplate


3
User Interface Design  

with XAML

We created a new .NET MAUI project called PassXYZ.Vault in the previous chapter. We will start to 
improve it with the capabilities that we will master throughout this book. In this chapter, we will use 
the master-detail pattern and XAML to design and build our app user interface.

The following topics will be covered in this chapter related to user interface design with XAML:

• How to create a XAML page

• Basic XAML syntax

• XAML markup extension

• How to design the user interface with the master-detail pattern

• Localization of the .NET MAUI app

The eXtensible Application Markup Language (XAML) is an XML-based language that is used to 
define user interfaces for Windows Presentation Foundation (WPF), Universal Windows Platform 
(UWP), Xamarin.Forms, and .NET MAUI. The XAML dialects in these platforms share the same 
syntax but differ in their vocabularies.

XAML allows developers to define user interfaces in XML-based markup language rather than code. 
It is possible to write all our user interfaces in code, but the user interface design with XAML will 
be more succinct and more visually coherent. XAML cannot contain code. This is a disadvantage, 
but it is also an advantage as it forces the developer to separate the code logic from the user interface 
design. XAML is well suited for the Model-View-ViewModel (MVVM) pattern, which we will learn 
about later in this book.



User Interface Design with XAML58

Technical requirements
To test and debug the source code in this chapter, you need to have Visual Studio 2022 installed on 
your PC or Mac. Please refer to the Development environment setup section in Chapter 1, Getting 
Started with .NET MAUI, for the details.

The source code for this chapter is available in the following GitHub repository:

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-
Application-Development/tree/main/Chapter03

Creating a XAML page
Before we learn XAML syntax, let’s learn how to create a XAML page in Visual Studio and via the 
dotnet command line.

To create a XAML page using Visual Studio, we can right-click on the project node. After, select Add 
> New Item…; we will see what’s shown in Figure 3.1:

Figure 3.1: Adding a XAML page

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter03
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter03


Creating a XAML page 59

On this screen, select Content Page from the templates and click Add. This will create a pair of files 
– a XAML file and a C# code-behind file.

We can do the same using the dotnet command.

To find all .NET MAUI templates, we can use the dotnet command like so in a PowerShell console:

dotnet new --list | findstr -i maui

.NET MAUI App                       maui              [C#]  MAUI/...

.NET MAUI Blazor App                maui-blazor       [C#]  MAUI/...

.NET MAUI Class Library             mauilib           [C#]  MAUI/...

.NET MAUI ContentPage (C#)          maui-page-csharp  [C#]  MAUI/...

.NET MAUI ContentPage (XAML)        maui-page-xaml    [C#]  MAUI/...

.NET MAUI ContentView (C#)          maui-view-csharp  [C#]  MAUI/...

.NET MAUI ContentView (XAML)        maui-view-xaml    [C#]  MAUI/...

.NET MAUI ResourceDictionary (XAML) maui-dict-xaml    [C#]  MAUI/...

From the preceding output, we can see that the short name of the XAML content page is  
maui-page-xaml. We can create a XAML page using the following command:

dotnet new maui-page-xaml -n ItemsPage

The template ".NET MAUI ContentPage (XAML)" was created 
successfully.

Processing post-creation actions…

The post action 84c0da21-51c8-4541-9940-6ca19af04ee6 is not 
supported.

Description: Opens NewPage1.xaml in the editor.

Two files called ItemsPage.xaml and ItemsPage.xaml.cs will be created by the 
preceding command.



User Interface Design with XAML60

XAML syntax
Since XAML is an XML-based language, we need to understand basic XML syntax. An XML or 
XAML file includes a hierarchy of elements. Each element may have attributes associated with it. 
Let’s review App.xaml in the project that we created in Chapter 2, Building Our First .NET MAUI 
App, as an example:

Listing 3.1: App.xaml (https://epa.ms/App3-1)

<?xml version = "1.0" encoding = "UTF-8" ?>

<Application xmlns="http://schemas.microsoft.com

    /dotnet/2021/maui"

             xmlns:x="http://schemas.microsoft.com/

                 winfx/2009/xaml"

             xmlns:local="clr-namespace:PassXYZ.Vault"

             x:Class="PassXYZ.Vault.App">

    <Application.Resources>

        <ResourceDictionary...>

    </Application.Resources>

</Application>

As shown in Listing 3.1, we have an element called Application and its associated attributes, x:Class 
and xmlns:{prefix}. Let’s analyze this example to understand XML elements and attributes.

Element

The element syntax includes a start and end tag, such as the Application tag:

<Application></Application>

For an empty element, the end tag can be omitted by adding a forward slash at the end of the start 
tag, like so:

<Application />

When we mention an XML element, we may use element, node, and tag as terms. When we say 
element, we are referring to the start tag and the end tag of that element together. When we say tag, 
we are referring to either the start or end tag of the element. When we say node, we are referring to 
an element and all its inner content, including all child elements.



XAML syntax 61

A XAML document is comprised of many nested elements. There is only one top element, which is 
called the root element. In .NET MAUI or Xamarin.Forms, the root element is usually Application, 
ContentPage, Shell, or ResourceDictionary.

For each XAML file, we usually have a corresponding C# code-behind file. Let’s review the code-
behind file in Listing 3.2:

Listing 3.2: App.xaml.cs (https://epa.ms/App3-2)

using PassXYZ.Vault.Services;

using PassXYZ.Vault.Views;

namespace PassXYZ.Vault;

public partial class App : Application   {  ➊

  public App() {

    InitializeComponent();                  ➋

    Routing.RegisterRoute(nameof(ItemDetailPage),

               typeof(ItemDetailPage));

    Routing.RegisterRoute(nameof(NewItemPage),

               typeof(NewItemPage));

    DependencyService.Register<MockDataStore>();

    MainPage = new AppShell();

  }

  private async void OnMenuItemClicked(System.Object

            sender, System.EventArgs e) {

    await Shell.Current.GoToAsync("//LoginPage");

  }

}

In XAML, elements usually represent actual C# classes that are instantiated to objects at runtime. 
Together, the XAML and code-behind files define a complete class. For example, App.xaml (Listing 
3.1) and App.xaml.cs (Listing 3.2) define the App class, which is a sub-class of Application.

➊ The App class, whose full name is PassXYZ.Vault.App, is the same as the one defined in the 
XAML file using the x:Class attribute:

x:Class="PassXYZ.Vault.App"



User Interface Design with XAML62

➋ In the constructor of the App class, the InitializeComponent() method is called to load 
the XAML and parse it. UI elements defined in the XAML file are created at this point. We can access 
these UI elements by the name defined with the x:Name attribute, as we’ll see shortly.

Attribute

An element can have multiple unique attributes. An attribute provides additional information about 
XML elements. An XML attribute is a name-value pair attached to an element. In XAML, an element 
represents a C# class and attributes represent the members of this class:

<Button x:Name="loginButton" VerticalOptions="Center"  
  IsEnabled="True" Text="Login"/>

As we can see, four attributes – x:Name, VerticalOptions, IsEnabled, and Text – are 
defined for the Button element. To define an attribute, we need to specify the attribute’s name and 
value with an equal sign. We need to put the attribute value in double or single quotes. For example, 
IsEnabled is the attribute name and "True" is the attribute value.

In this example, the x:Name attribute is a special one. It does not refer to a member of the Button 
class, but it refers to the variable holding the instance of the Button class. Without the x:Name 
attribute, an anonymous instance of the Button class will be created. With the x:Name attribute 
declared, we can refer to the instance of the Button class using the loginButton variable in the 
code-behind file.

XML namespaces and XAML namespaces

In XML or XAML, we can declare namespaces just like we do in C#. Namespaces help to group elements 
and attributes to avoid name conflicts when the same name is used in a different scope. Namespaces 
can be defined using the xmlns attribute with the following syntax:

xmlns:prefix="identifier"

The XAML namespace definition has two components: a prefix and an identifier. Both the prefix and 
the identifier can be any string, as allowed by the W3C namespaces in the XML 1.0 specification. If 
the prefix is omitted, the namespace is the default namespace. In Listing 3.1, the following namespace 
is the default one:

xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

This default namespace allows us to refer to .NET MAUI classes without a prefix, such as ContentPage, 
Label, or Button.



XAML syntax 63

For the namespace declaration, use the x prefix, like so:

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

The xmlns:x namespace declaration specifies elements and attributes that are intrinsic to XAML. 
This namespace is one of the most important ones that we will use in the UI design with XAML. To 
understand how to use it, we can create a content page with the same structure using both C# and XAML.

To create a content page in XAML, we can use the dotnet command, as we did previously:

dotnet new maui-page-xaml -n NewPage1

The template ".NET MAUI ContentPage (XAML)" was created 
successfully.

Processing post-creation actions...

The post action 84c0da21-51c8-4541-9940-6ca19af04ee6 is not 
supported.

Description: Opens NewPage1.xaml in the editor.

The preceding command generates a XAML file (NewPage1.xaml) and a C# code-behind file 
(NewPage1.xaml.cs). We can update the XAML file to the following. Since we aren’t adding any 
logic, we can ignore the code-behind file (NewPage1.xaml.cs) in this example:

NewPage1.xaml

<ContentPage

  xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

  xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

  x:Class="MauiApp1.NewPage1"                                ❶

  Title="NewPage1">

  <StackLayout x:Name="layout">                              ➋

    <Label Text="Welcome to .NET MAUI!"

      VerticalOptions="Center"

      HorizontalOptions="Center" />

<BoxView HeightRequest="150" WidthRequest="150"

  HorizontalOptions="Center">

      <BoxView.Color>

        <Color x:FactoryMethod="FromRgba">                   ➌

          <x:Arguments>                                      ➍

            <x:Int32>192</x:Int32>                           ❺

            <x:Int32>75</x:Int32>



User Interface Design with XAML64

            <x:Int32>150</x:Int32>

            <x:Int32>128</x:Int32>

          </x:Arguments>

        </Color>

      </BoxView.Color>

    </BoxView>

  </StackLayout>

</ContentPage>

NewPage1.xaml.cs

namespace MauiApp1;

public partial class NewPage1 : ContentPage {

  public NewPage1() {

    InitializeComponent();

  }

}

We can also generate a content page in C# code only. Let’s create a content page using the 
following command:

dotnet new maui-page-csharp -n NewPage1

The template ".NET MAUI ContentPage (C#)" was created 
successfully.

Processing post-creation actions...

The post action 84c0da21-51c8-4541-9940-6ca19af04ee6 is not 
supported.

Description: Opens NewPage1.cs in the editor.

The preceding command generates a content page in the NewPage1.cs C# file. We can implement 
the same logic in C# like so:

NewPage1.cs

namespace MauiApp1;

public class NewPage1 : ContentPage {                        ➀

  public NewPage1() {

    var layout = new StackLayout                             ➁



XAML syntax 65

    {

      Children = {

        new Label { Text = "Welcome to .NET MAUI!" },

        new BoxView {

          HeightRequest = 150,

          WidthRequest = 150,

          HorizontalOptions = LayoutOptions.Center,

          Color = Color.FromRgba(192, 75, 150, 128)          ➂

        }

      }

    };

    Content = layout;

  }

}

Here, we have created the same content page (NewPage1) twice in both XAML and C#. XAML cannot 
contain programming logic, but it can be used to declare user interface elements and put the logic 
in the C# code-behind file. Inside NewPage1, we created a content page that contains Label and 
BoxView elements. In the XAML version, we used attributes defined in the xmlns:x namespace 
to specify the UI elements:

•  ❶ A content page called NewPage1 is created in XAML. The x:Class attribute specifies 
the class name – that is, NewPage1. In the C# code-behind file, a partial class of NewPage1 
is defined. In the constructor, the InitializeComponent() method is invoked to load 
the UI defined in XAML.

•  ➀ We can create the same content page, NewPage1, using C# directly as a derived class 
of ContentPage.

We defined a StackLayout in the content page and the variable name referring to it is layout 
in both the XAML and C# versions:

•  ➋ In XAML, x:Name specifies the variable name of StackLayout.

•  ➁ In C#, we can declare the variable as layout.

•  ➌ x:FactoryMethod specifies a factory method that can be used to initialize an object.

•  ➂ In C# code, we can call the Color.FromRgba() function directly, but we have to use 
the x:FactoryMethod attribute in XAML to do the same.

•  ➍ x:Arguments is used to specify arguments when we call Color.FromRgba() in XAML.

•  ❺ x:Int is used to specify integer arguments. For other data types, we can use x:Double, 
xChar, or x:Boolean.



User Interface Design with XAML66

For more information about the xmlns:x namespace, please refer to the Microsoft documentation 
at https://learn.microsoft.com/en-us/dotnet/maui/xaml/namespaces/.

Common Language Runtime (CLR) types can be referenced in XAML by declaring a XAML namespace 
with a prefix. As shown in Listing 3.1, we can refer to our C# namespace, PassXYZ.Vault, like so:

xmlns:local="clr-namespace:PassXYZ.Vault"

To declare a CLR namespace, we can use clr-namespace: or using:. If the CLR namespace 
is defined in a different assembly, assembly= is used to specify the assembly that contains the 
referenced CLR namespace. The value is the name of the assembly without the file extension. In our 
case, it has been omitted since the PassXYZ.Vault namespace is within the same assembly as our 
application code.

We will see more uses of namespaces later in this chapter.

XAML markup extensions
Even though we can initialize class instances using XAML elements and set class members using 
XAML attributes, we can only set them as predefined constants in a XAML document.

To enhance the power and flexibility of XAML by allowing element attributes to be set from a variety 
of sources, we can use XAML markup extensions. With XAML markup extensions, we can set an 
attribute to values defined somewhere else, or a result processed by code at runtime.

XAML markup extensions can be specified in curly braces, as shown here:

<Button Margin="0,10,0,0" Text="Learn more"

        Command="{Binding OpenWebCommand}"

        BackgroundColor="{DynamicResource PrimaryColor}"

        TextColor="White" />

In the preceding code, both the BackgroundColor and Command attributes have been set to 
markup extensions. BackgroundColor has been set to DynamicResource and Command has 
been set to the OpenWebCommand method defined in the view model.

We will use markup extensions in the next few chapters to support data binding and ResourceDictionary. 
We will learn more about markup extensions when we use them later. Please refer to the following 
Microsoft documentation to find out more information about it: https://learn.microsoft.
com/en-us/dotnet/maui/xaml/markup-extensions/consume.

Now that we’ve learned the basics about XAML, we can use it to work on our user interface design.

https://learn.microsoft.com/en-us/dotnet/maui/xaml/namespaces/
https://learn.microsoft.com/en-us/dotnet/maui/xaml/markup-extensions/consume
https://learn.microsoft.com/en-us/dotnet/maui/xaml/markup-extensions/consume


Master-detail UI design 67

Master-detail UI design
We have learned basic knowledge about XAML in the previous sections. Now, let’s spend some time 
exploring the application that we are going to develop.

The master-detail pattern is commonly used in user interface design. Many examples can be found 
in frequently used apps. For example, in the Mail app of Windows, a list of emails is displayed in the 
master view, as well as the details of the selected email:

Figure 3.2: Mail in Windows

In Figure 3.2, there are three panels in the design. The left panel looks like a navigation drawer. When 
we select a folder from the left panel, a list of emails is displayed in the middle panel. The currently 
selected email is displayed in the right panel.

Note
Navigation drawers provide access to destinations and app functionality, such as the menu in 
the desktop environment. It typically slides in from the left and is triggered by tapping an icon 
in the top-left corner of the screen. It displays a list of choices to navigate to and is widely used 
in mobile and web user interface design. Xamarin.Forms or .NET MAUI Shell uses navigation 
drawers as their top-level navigation methods.



User Interface Design with XAML68

The original KeePass UI design, shown in Figure 3.3, also uses three panels (left, right, and bottom) on 
the main page. The left panel is a classic tree view that acts like a navigation drawer. The right panel is 
used to display the list of password entries. The bottom panel is used to display the details of an entry:

Figure 3.3: KeePass UI design

The master-detail pattern works well on a wide range of device types and display sizes.

Considering different display sizes, two popular modes can be used:

• Side-by-side

• Stacked



Master-detail UI design 69

Side-by-side

When we have plenty of horizontal space with a large display, the side-by-side approach is usually a 
good choice. The Mail app in Figure 3.2 and the KeePass app in Figure 3.3 are good examples. In this 
mode, we can see both the master view and the detail view at the same time.

Stacked

When we use a mobile device, we usually have a smaller screen size and the vertical space is larger 
than the horizontal one. The stacked approach is a better choice in this case.

In stacked mode, the master view gets the full-screen space. Then, when a selection is made, the detail 
view gets the full-screen space:

Figure 3.4: PassXYZ.Vault

In Figure 3.4, we can see how we can navigate our app from the user’s point of view. We have a list of 
flyout items that we can choose from:

• About

• Browse

• Logout



User Interface Design with XAML70

When we choose Browse, we can see the list of items on the master page (ItemsPage). On this 
page, if we choose an item, we will go to the item’s detail page (ItemDetailPage). If we want to 
choose another item, we must go back to the master page and select another item.

We will discuss flyout items in Chapter 5, Introducing Shell and Navigation. In this section, we will 
review the implementation of ItemsPage and ItemDetailPage. However, before we go into 
the details, let’s study the layout, which is the container of user interface elements.

Controls in .NET MAUI

The user interface of the .NET MAUI app is created using controls. These controls can be categorized 
as pages, layouts, and views.

A page is the top-level user interface element that usually occupies all the screens or windows. We 
introduced how to create pages using the Visual Studio template or dotnet command at the beginning 
of this chapter. Each page typically contains at least one layout element, which is used to organize the 
design of controls on a page.

Views are the UI objects to present, edit, or initiate commands in the user interface design. Please 
refer to the following Microsoft document about the controls in .NET MAUI: https://learn.
microsoft.com/en-us/dotnet/maui/user-interface/controls/.

We will introduce layouts in the next section. In this section, we’ll go through some controls that will 
be frequently used in this book. Please refer to the preceding link for more details.

Label

Label is used to display single-line or multi-line text. It can display text with a certain format, such 
as color, space, text decorations, and even HTML text. To create a Label, we can use the simplest 
format, like so:

<Label Text="Hello world" />

Image

In the user interface design, we usually use icons to decorate other controls or display images as 
backgrounds. The Image control can display an image from a local file, a URI, an embedded 
resource, or a stream. The following code shows an example of how to create an Image control in 
the simplest form:

<Image Source="dotnet_bot.png" />

Editor

In our app, the users need to enter or edit a single line of text or multiple lines of text. We have two 
controls to serve this purpose: Editor and Entry.

https://learn.microsoft.com/en-us/dotnet/maui/user-interface/controls/
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/controls/


Master-detail UI design 71

Editor can be used to enter or edit multiple lines of text. The following is an example of the 
Editor control:

<Editor Placeholder="Enter your description here" />

Entry

Entry can be used to enter or edit a single line of text. To design a login page, we can use Entry 
controls to enter a username and password. When users interact with an Entry, the behavior of the 
keyboard can be customized through the Keyboard property. When users enter their passwords, 
the IsPassword property can be set to reflect the typical behavior on a login page. The following 
is an example of a password entry:

<Entry Placeholder="Enter your password" Keyboard="Text"  
  IsPassword="True" />

ListView

In the user interface design, a common use case is to display a collection of data. In .NET MAUI, a 
few controls can be used to display a collection of data, such as CollectionView, ListView, 
and CarouselView. In our app, we will use ListView to display password entries, groups, and 
the content of an entry. We will introduce the usage of ListView when we introduce ItemsPage.

Layouts in .NET MAUI

To design user interface elements in a view or page, we usually use layout control as a container to 
define the presentation format. There are a few layouts that are core to .NET MAUI.

StackLayout

StackLayout organizes elements in a one-dimensional stack, either horizontally or vertically. It is 
often used as a parent layout, which contains other child layouts. The default orientation is vertical. 
However, we should not use StackLayout to generate a layout similar to a table by using nested 
StackLayout horizontally and vertically. The following code shows an example of bad practice:

<StackLayout>

    <StackLayout Orientation="Horizontal">

        <Label Text="Name:" />

        <Entry Placeholder="Enter your name" />

    </StackLayout>

    <StackLayout Orientation="Horizontal">

        <Label Text="Age:" />

        <Entry Placeholder="Enter your age" />



User Interface Design with XAML72

    </StackLayout>

    <StackLayout Orientation="Horizontal">

        <Label Text="Address:" />

        <Entry Placeholder="Enter your address" />

    </StackLayout>

</StackLayout>

In the preceding code, we used a StackLayout as the parent layout, where the default orientation is 
vertical. Then, we nested multiple StackLayout controls with a horizontal orientation to generate 
a form to fill in. We should use the Grid control to do this.

StackLayout is a frequently used layout control. There are two sub-types of StackLayout that 
help us directly design the layout horizontally or vertically.

HorizontalStackLayout

HorizontalStackLayout is a one-dimensional horizontal stack. For example, we can generate 
a row like so:

    <HorizontalStackLayout>

        <Label Text="Name:" />

        <Entry Placeholder="Enter your name" />

    </HorizontalStackLayout>

VerticalStackLayout

VerticalStackLayout is a one-dimensional vertical stack. For example, we can display an error 
message after a form is submitted with an error like so:

<VerticalStackLayout>

  <Label Text="The Form Is Invalid" />

  <Button Text="OK"/>

</VerticalStackLayout>

Grid

Grid organizes elements in rows and columns. We can specify rows and columns with the 
RowDefinitions and ColumnDefinitions properties. In the previous example, we created 
a form where the user can enter their name, age, and address using a nested StackLayout. We can 
do this in the Grid layout like so:

<Grid>

    <Grid.RowDefinitions>



Master-detail UI design 73

        <RowDefinition Height="50" />

        <RowDefinition Height="50" />

        <RowDefinition Height="50" />

    </Grid.RowDefinitions>

    <Grid.ColumnDefinitions>

        <ColumnDefinition Width="Auto" />

        <ColumnDefinition />

    </Grid.ColumnDefinitions>

    <Label Text="Name:" />

    <Entry Grid.Column="1"

           Placeholder="Enter your name" />

    <Label Grid.Row="1" Text="Age:" />

    <Entry Grid.Row="1" Grid.Column="1"

           Placeholder="Enter your age" />

    <Label Grid.Row="2" Text="Address:" />

    <Entry Grid.Row="2"

           Grid.Column="1"

           Placeholder="Enter your address" />

</Grid>

In the preceding example, we created a Grid layout with two columns and three rows.

FlexLayout

FlexLayout is similar to a StackLayout in that it displays child elements either horizontally 
or vertically in a stack. The difference is a FlexLayout can also wrap its children if there are too 
many to fit in a single row or column. As an example, we can create a FlexLayout with five labels 
in a row. If we specify the Direction property as Row, these labels will be displayed in one row. 
We can also specify the Wrap property, which can cause the items to wrap to the next row if there 
are too many items to fit in a row:

        <FlexLayout Direction="Row" Wrap="Wrap">

            <Label Text="Item 1" Padding="10"/>

            <Label Text="Item 2" Padding="10"/>

            <Label Text="Item 3" Padding="10"/>

            <Label Text="Item 4" Padding="10"/>

            <Label Text="Item 5" Padding="10"/>

        </FlexLayout>



User Interface Design with XAML74

AbsoluteLayout

AbsoluteLayout is a layout type that we can use to position elements using X, Y, width, and height.

The X and Y positions are relative to the top-left corner of the parent element. Width and height are 
concerned with the size of the child element.

In the following example, we are creating a BoxView control in the layout at (0, 0) with both width 
and height equal to 10:

<AbsoluteLayout Margin="20">

    <BoxView Color="Silver"

        AbsoluteLayout.LayoutBounds="0, 0, 10, 10" />

</AbsoluteLayout>

Navigation in the master-detail UI design

As shown in Figure 3.4, we are using a stacked master-detail pattern in our navigation. There is a 
flyout menu to display a list of pages. In the list of pages, a page of the ItemsPage type is used to 
display a list of password entries. When users click an entry, details about the password entry are 
shown in ItemDetailPage.

Let’s review the implementation of ItemsPage and ItemDetailPage.

ItemDetailPage

In our app, ItemDetailPage is the detail page of the master-detail pattern, and it shows the content 
of an item. In ItemDetailPage, we simply present the Item data model. It looks very simple at 
the moment; we will enhance it gradually throughout this book:

Listing 3.3: Item.cs (https://epa.ms/Item3-3)

using System;

namespace PassXYZ.Vault.Models {

    public class Item {

        public string Id { get; set; }

        public string Text { get; set; }

        public string Description { get; set; }

    }

}



Master-detail UI design 75

As shown in Listing 3.3, the Item class includes three properties called ID, Text, and Description. 
The instance of Item is loaded by the LoadItemId() function in ItemDetailViewModel, as 
shown here. We will discuss the MVVM pattern in the next chapter:

        public async void LoadItemId(string itemId) {

            try {

                var item = await DataStore.GetItemAsync

                    (itemId);

                Id = item.Id;

                Text = item.Text;

                Description = item.Description;

            }

            catch (Exception) {

                Debug.WriteLine("Failed to Load Item");

            }

        }

Once the data has been loaded, we can present the data to the user in ItemDetailPage.xaml, 
as shown in Listing 3.4:

Listing 3.4: ItemDetailPage.xaml (https://epa.ms/ItemDetailPage3-4)

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com

    /dotnet/2021/maui"

             xmlns:x="http://schemas.microsoft.com

                 /winfx/2009/xaml"

             x:Class="PassXYZ.Vault.Views.ItemDetailPage"

             Title="{Binding Title}">

    <StackLayout Spacing="20" Padding="15">

        <Label Text="Text:" FontSize="Medium" />

        <Label Text="{Binding Text}" FontSize="Small"/>

        <Label Text="Description:" FontSize="Medium" />

        <Label Text="{Binding Description}"

            FontSize="Small"/>

    </StackLayout>

</ContentPage>



User Interface Design with XAML76

Listing 3.4 is the XAML file of ItemDetailPage. The content page of the item detail includes an 
instance of StackLayout and four instances of Label.

In StackLayout, the default orientation is Vertical, so the Label controls are organized vertically 
on the item detail page (see Figure 3.4). Both Text and Description are connected to the model 
data in the view model through data binding. We will introduce data binding in the next chapter.

ItemsPage

ItemsPage is the master page of the master-detail pattern in our app. It displays a list of items that 
we can explore.

Listing 3.5 is the implementation of ItemsPage. To display a list of items, a ListView control is 
used. ListView is a control used to display a scrollable vertical list of selectable data items:

Listing 3.5: ItemsPage.xaml (https://epa.ms/ItemsPage3-5)

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com

    /dotnet/2021/maui"

             xmlns:x="http://schemas.microsoft.com

                 /winfx/2009/xaml"

             x:Class="PassXYZ.Vault.Views.ItemsPage"       ➊

             Title="{Binding Title}"

             xmlns:local="clr-namespace:

                 PassXYZ.Vault.ViewModels"                 ❺

             xmlns:model="clr-namespace:PassXYZ.

                 Vault.Models"                             ❻

             x:DataType="local:ItemsViewModel"             ➋

             x:Name="BrowseItemsPage">                     ➌

    <ContentPage.ToolbarItems...>

    <StackLayout>

        <ListView x:Name="ItemsListView"                   ➍

                  ItemsSource="{Binding Items}"

                  VerticalOptions="FillAndExpand"

                  HasUnevenRows="False"

                  RowHeight="84"



Master-detail UI design 77

                  RefreshCommand="{Binding LoadItems

                      Command}"

                  IsPullToRefreshEnabled="true"

                  IsRefreshing="{Binding IsBusy,

                      Mode=OneWay}"

                  CachingStrategy="RetainElement"

                  ItemSelected="OnItemSelected">

            <ListView.ItemTemplate>

                <DataTemplate...>

            </ListView.ItemTemplate>

        </ListView>

    </StackLayout>

</ContentPage>

Let’s look at this code in more detail:

➊ x:Class: This is used to define the class name of a partial class between the markup and code-
behind file. PassXYZ.Vault.Views.ItemsPage is the class name defined here.

➌ x:Name: While x:Class defines the class name in XAML, x:Name defines the instance name. 
We can refer to the BrowseItemsPage instance name in the code-behind file.

➋ x:DataType: When we set x:DataType to the appropriate type defined in the view model, 
compiled binding can be turned on, which can improve performance significantly. The view model 
that we refer to here is ItemsViewModel.

Besides the standard namespace, we defined two more namespaces so that we can refer to the objects 
in the view model ❺ and model ❻. We will discuss the view model and model in the next chapter.

➍ We define a ListView control to display the list of items. There are many properties in the 
ListView control. The following properties are the ones we have to define to use the ListView control:

• ItemsSource, of the Ienumerable type, specifies the collection of items to be displayed. 
It binds to Items, which is defined in the view model.

• ItemTemplate, of the DataTemplate type, specifies the template to apply to each item 
in the collection of items to be displayed.

In Listing 3.5, DataTemplate is collapsed. If we expand it, we will see the following code snippet. 
This is the default implementation from the Visual Studio template. The look and feel of this data 
template are not good enough, but we can improve it:

<DataTemplate>

    <ViewCell>



User Interface Design with XAML78

        <StackLayout Padding="10" x:DataType="model:Item">

            <Label Text="{Binding Text}"

              LineBreakMode="NoWrap"

              Style="{DynamicResource ListItemTextStyle}"

              FontSize="16" />

            <Label Text="{Binding Description}"

              LineBreakMode="NoWrap"

              Style="{DynamicResource

                  ListItemDetailTextStyle}"

              FontSize="13" />

        </StackLayout>

    </ViewCell>

</DataTemplate>

This DataTemplate implementation includes a ViewCell consisting of a StackLayout with 
two Label controls. We can see the preview in Figure 3.4.

The DataTemplate implementation must reference a Cell class to display items. There are built-in 
cells that can be used, as follows:

• TextCell, which displays primary and secondary text on separate lines.

• ImageCell, which displays an image with primary and secondary text on separate lines.

• SwitchCell, which displays text and a switch that can be switched on or off.

• EntryCell, which displays a label and text that’s editable.

• ViewCell, which is a custom cell whose appearance is defined by a View. This cell type 
should be used when you want to fully define the appearance of each item in a ListView.

Typically, SwitchCell and EntryCell are only used in a TableView and won’t be used in 
a ListView.

The preview of ViewCell in the preceding code snippet doesn’t look very good. It is not easy to 
differentiate between Text and Description. In KeePass, we usually attach an icon to the password 
entry. We can enhance it using the new data template, like so:

<DataTemplate>

  <ViewCell>

    <Grid Padding="10" x:DataType="model:Item" >             ①

      <Grid.RowDefinitions>                                  ②

        <RowDefinition Height="32" />



Master-detail UI design 79

        <RowDefinition Height="32" />
      </Grid.RowDefinitions>
      <Grid.ColumnDefinitions>
        <ColumnDefinition Width="Auto" />
        <ColumnDefinition Width="Auto" />
      </Grid.ColumnDefinitions>
      <Grid Grid.RowSpan="2" Padding="10">                   ③
        <Grid.ColumnDefinitions>
          <ColumnDefinition Width="32" />
        </Grid.ColumnDefinitions>
        <Image Grid.Column="0" Source="passxyz_logo.png"
          HorizontalOptions="Fill" VerticalOptions="Fill" />
      </Grid>
      <Label Text="{Binding Text}" Grid.Column="1"
        LineBreakMode="NoWrap" MaxLines="1"
        Style="{DynamicResource ListItemTextStyle}"
        FontAttributes="Bold" FontSize="Small" />
      <Label Text="{Binding Description}"
        Grid.Row="1" Grid.Column="1"
        LineBreakMode="TailTruncation" MaxLines="1"
        Style="{DynamicResource ListItemDetailTextStyle}"
        FontSize="Small" />
    </Grid>
  </ViewCell>
</DataTemplate>

Let’s look at this code in more detail:

•  ① To make ViewCell look and feel better, we replaced the layout class from StackLayout 
to Grid. Grid is a layout that organizes its children into rows and columns.

•  ② Since we want to display two rows with an icon at the left, we created a grid with two 
columns and two rows, as shown here:

Figure 3.5: Layout of an entry or a group

We can use different font styles for Text and Description so that users can easily differentiate 
them with visual effects.



User Interface Design with XAML80

•  ③ To display the icon at the center of the first two columns, we merged the two rows into a 
Grid control. We can use the attached Grid.RowSpan property to merge rows.

A Grid can be used as a parent layout that contains other child layouts. To make the icon a specific 
size and at the center of the merged cell, we can use another Grid as the parent of the Image control. 
This child Grid contains only one row and one column with a specific size.

In the Image control, we can use a default image (passxyz_logo.png) from the resource. It can 
be customized after we introduce our model in the next chapter.

We can see the improved preview in Figure 3.6:

Figure 3.6: Improved ItemsPage

With that, we’ve learned the basics of user interface design using XAML. One common issue in the 
user interface design is supporting multiple languages. In the remainder of this chapter, we will learn 
how to support multiple languages in XAML user interface design.



Supporting multiple languages – localization 81

Supporting multiple languages – localization
To support multiple languages, we can use the .NET built-in mechanism for localizing applications. In 
a XAML file, we can use the x:Static markup extension to use the string defined in resource files.

Creating a .resx file

Resource files are XML files with a .resx extension that are compiled into binary resource files during 
the build process. A resource file can be added by right-clicking the project node and selecting Add 
> New Item... > Resources File, as shown in Figure 3.7:

Figure 3.7: Creating a Resources File

We can create the Resources.resx resource file in the Properties folder.

To support different cultures, we can add additional resource files with cultural information as part 
of the resource file’s name:

• Resources.resx:  The resource file for the default culture, which we will set to en-US 
(US English) later

• Resources.zh-Hans.resx: The resource file for the zh-Hans culture, which is 
simplified Chinese

• Resources.zh-Hant.resx: The resource file for the zh-Hant culture, which is 
traditional Chinese



User Interface Design with XAML82

Once the resource file has been created, the following ItemGroup will be added to the project file:

<ItemGroup>

  <Compile Update="Properties\Resources.Designer.cs">

    <DesignTime>True</DesignTime>

      <AutoGen>True</AutoGen>

      <DependentUpon>Resources.resx</DependentUpon>

  </Compile>

</ItemGroup>

<ItemGroup>

  <EmbeddedResource Update="Properties\Resources.resx">

    <Generator>ResXFileCodeGenerator</Generator>

    <LastGenOutput>Resources.Designer.cs</LastGenOutput>

  </EmbeddedResource>

</ItemGroup>

To edit the resource file, we can click a resource file and edit it in the resource editor, as shown in 
Figure 3.8:

Figure 3.8: Resource editor

The resource file includes a list of key-value pairs for different languages:

• The Name field is the string name that we can refer to in either XAML or C# files

• The Value field contains the language-specific string that will be used according to the system 
language settings

• The Comment field is just used as a remark for the key-value pair

To specify the default language, we need to set the value of NeutralLanguage in <PropertyGroup> 
in the project file, as shown here:

<PropertyGroup>

    …



Supporting multiple languages – localization 83

<NeutralLanguage>en-US</NeutralLanguage>

…

</PropertyGroup>

In our project, we will use US English as the default culture, so NeutralLanguage is set to en-US.

Localizing text

Once we have set up the resource files, we can use localized content in our XAML file or C# files. We 
have five content pages in our project now. Let’s modify AboutPage with localization support, as 
shown in Listing 3.6:

Listing 3.6: AboutPage.xaml (https://epa.ms/AboutPage3-6)

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com

    /dotnet/2021/maui"

  xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

  x:Class="PassXYZ.Vault.Views.AboutPage"

  xmlns:res="clr-namespace:PassXYZ.Vault.Properties"        ➊

  Title="{Binding Title}">

  <ContentPage.Resources…>

  <ScrollView>

    <StackLayout Margin="20">

      <Grid Padding="10"...>

      <StackLayout Padding="10" >

        <Label HorizontalOptions="Center"

          Text="{x:Static res:Resources.Appname}"           ➋

          FontAttributes="Bold" FontSize="22" />

        <Label x:Name="AppVersion" HorizontalOptions

            ="Center"

          FontSize="Small" />

        <Grid HorizontalOptions="Center"...>

        <StackLayout...>

      </StackLayout>

    </StackLayout>

  </ScrollView>

</ContentPage>



User Interface Design with XAML84

Text is localized using the generated Resources class. This class is named based on the default resource 
file name. In Listing 3.6 AboutPage.xaml, we added a new namespace ➊ for the Resources class:

xmlns:res ="clr-namespace:PassXYZ.Vault.Properties "

In the Label control ➋, to display our application name, we can refer to the resource string using 
the x:Static XAML markup extension, like so:

        <Label HorizontalOptions="Center"

          Text="{x:Static res:Resources.Appname}"

          FontAttributes="Bold" FontSize="22" />

In Listing 3.6, we collapsed most of the source code to be concise. Please refer to the short URL of this 
book’s GitHub repository to review the full source code.

We can use localized text in both XAML and C#. To use a resource string in C#, we can look at the 
Title property in Listing 3.6. The Title property of AboutPage is connected to the Title 
property in the AboutViewModel class. Let’s see how we can use a resource string in Listing 3.7:

Listing 3.7: AboutViewModel.cs (https://epa.ms/AboutViewModel3-7)

using System;

using System.Windows.Input;

using Microsoft.Maui.Essentials;

using Microsoft.Maui.Controls;

using PassXYZ.Vault.Properties;                       ①

namespace PassXYZ.Vault.ViewModels {

  public class AboutViewModel : BaseViewModel {

    public AboutViewModel() {

      Title = Properties.Resources.About;             ②

      OpenWebCommand = new Command(async () => await

        Browser.OpenAsync(Properties.Resources.about_url));

    }

    public ICommand OpenWebCommand { get; }

    public string GetStoreName()...

    public DateTime GetStoreModifiedTime()...

  }

}



Summary 85

As shown in Listing 3.7, ① we added the PassXYZ.Vault.Properties namespace first. ② We 
refer to the resource string as Properties.Resources.About.

After we update AboutPage with localization support, we can test it in the supported languages, 
as shown in Figure 3.9:

Figure 3.9: AboutPage in different languages

In AboutPage, many resource strings are used for localization. In Listing 3.6 and Listing 3.7, we 
collapsed most of the code; you can refer to the short URL for this book’s GitHub repository to review 
the source code online.

Summary
We learned about XAML syntax in this chapter. We used the knowledge we learned to improve the 
look and feel of ItemsPage. We will continue improving the user interface of other pages throughout 
this book. To support multiple languages, we learned how to support localization in .NET. We created 
.resx resource files for the US-en, zh-Hans, and zh-Hant cultures and used a XAML markup 
extension to enable multi-language support. Finally, we used AboutPage as an example to explain 
how to use localized text in both XAML and C#.

In the next chapter, we will continue improving our app by introducing MVVM and data binding.



User Interface Design with XAML86

Further reading
• .NET Multi-platform App UI documentation

• https://learn.microsoft.com/en-us/dotnet/maui/

• XAML - .NET MAUI

• https://learn.microsoft.com/en-us/dotnet/maui/xaml/

• XAML markup extensions

• https://learn.microsoft.com/en-us/dotnet/maui/xaml/fundamentals/
markup-extensions

• KeePass – An open source password manager

• https://keepass.info/

https://learn.microsoft.com/en-us/dotnet/maui/
https://learn.microsoft.com/en-us/dotnet/maui/xaml/
https://learn.microsoft.com/en-us/dotnet/maui/xaml/fundamentals/markup-extensions
https://learn.microsoft.com/en-us/dotnet/maui/xaml/fundamentals/markup-extensions
https://keepass.info/


4
Exploring MVVM and  

Data Binding

In the last chapter, we learned how to build user interfaces (UIs) using XAML. In this chapter, we will 
learn how to use the Model-View-ViewModel (MVVM) pattern and data binding in .NET MAUI 
app development. MVVM is a UI design pattern for decoupling UI and non-UI code. data binding is 
the key technology that MVVM relies on. We will improve the design of our app using MVVM and 
data binding. We will also replace the data model using open source libraries.

The following topics will be covered in this chapter:

• Understanding MVVM and MVC

• Data binding

• Improving the data model and service

Technical requirements
To test and debug the source code in this chapter, you need to have Visual Studio 2022 installed on 
your PC or Mac. Please refer to the Development environment setup section in Chapter 1, Getting 
Started with .NET MAUI, for the details.

The source code of this chapter is available in the following branch at GitHub: https://github.
com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/
tree/main/Chapter04.

The source code can be downloaded using the following Git command:

git clone -b chapter04 https://github.com/PacktPublishing/.
NET-MAUI-Cross-Platform-Application-Development

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter04
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter04
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter04


Exploring MVVM and Data Binding88

Understanding MVVM and MVC
In software design, we usually follow and reuse good practices and design patterns. The Model-View-
Controller (MVC) pattern is an approach to decoupling the responsibilities of a system. It can help 
to separate the implementation of the UI and the business logic into different parts.

Figure 4.1: The MVC pattern

The MVC pattern, as shown in Figure 4.1, divides the responsibilities of the system into three distinct parts.

Model stores the application data and processes business logic. Model classes usually can be implemented 
as Plain Old CLR Objects (POCOs) or Data Transfer Objects (DTOs). POCO is a class that doesn’t 
depend on any framework-specific classes, so POCO classes can be used with LINQ or Entity Framework 
well. DTO is a subset of a POCO class that only contains data without logic or behavior. DTO classes 
can be used to pass data between layers. The model has no dependency on the view or the controller 
so it can be implemented and tested separately.

View presents the model information to the user and interacts with the user.

Controller updates the model and view in response to the user’s action. Our understanding of the 
model and the view hasn’t changed too much over time, but there have been different understandings 
and implementations of the controller since the MVC pattern was introduced.

Model-View-Presenter (MVP) is one of them. Later, Microsoft used MVVM and XAML in WPF, 
which is a variation of MVP. In Xamarin.Forms and .NET MAUI, XAML and the MVVM pattern 
are also used.



Understanding MVVM and MVC 89

Figure 4.2: The MVVM pattern

As we can see in Figure 4.2, in MVVM, the view model is used to replace the controller. The differences 
between MVVM and MVC are as follows:

• Decoupling of view and model. The viewmodel is used to handle the communication between 
the view and the model. The view accesses the data and logic in the model via the viewmodel.

• Data binding between the view and viewmodel. Using data binding, changes to the view or 
viewmodel can automatically be updated in the other one. This can help to reduce the complexity 
of implementation.

• In both MVC and MVVM, the model can be tested separately. In MVVM, it is possible to 
design unit tests for the viewmodel as well.

When the view changes, the changes will be reflected in the viewmodel via data binding. The viewmodel 
will process the data changes in the model. Similarly, when the data changes in the model, the viewmodel 
is notified to update the view. The common solution for notifications is to install event handlers to 
notify the changes. With data binding, the implementation is simplified significantly.

MVVM in PassXYZ.Vault

In our app, PassXYZ.Vault, we use MVVM to handle the data exchange between the view and 
the viewmodel. As we can see in Figure 4.3, we have five XAML content pages and the same number 
of viewmodels defined. In our data model, we have an Item class, which is our model class, and it 
can be accessed through the IDataStore interface.



Exploring MVVM and Data Binding90

Figure 4.3: MVVM in PassXYZ.Vault

Data binding is used as the communication channel between views and viewmodels. The viewmodel 
will update the Item model via the IDataStore service interface. We will learn how to use data 
binding in the next section by analyzing the item detail page and viewmodel.

Data binding
Let’s explore how MVVM and data binding works in our app. We can analyze ItemDetailPage 
and ItemDetailViewModel at the beginning of our journey. The following list includes the view, 
viewmodel, and model that we are going to explore:

• View – ItemDetailPage, see Listing 3.4 in the previous chapter

• Viewmodel – ItemDetailViewModel, see Listing 4.1

• Model – Item (access through interface IDataStore), see Listing 3.3 in the previous chapter

ItemDetailPage is a view used to display the content of an instance of Item. This instance 
is stored in the viewmodel. The UI elements presenting the content of Item are connected to the 
instance through data binding.

Data binding is used to link the properties of target and source objects. Here is a list of involved 
properties of target and source objects:

• Target – This is the UI element involved and this UI element has to be a child of 
BindableObject. The UI element used in ItemDetailPage is Label.

.



Data binding 91

• Target property – This is the property of the target object. It is a BindableProperty. If the 
target is Label, as we mentioned here, the target property can be the Text property of Label.

• Source – This is the source object referenced by data binding. It is ItemDetailViewModel here.

• Source object value path – This is the path to the value in the source object. Here, the path is 
a viewmodel property, such as Text or Description.

Let’s look at the following code in ItemDetailPage:

<StackLayout Spacing="20" Padding="15">

        <Label Text="Name:" FontSize="Medium" />

        <Label Text="{Binding Name}" FontSize="Small"/>   ❶

        <Label Text="Description:" FontSize="Medium" />

        <Label Text="{Binding Description}"

            FontSize="Small"/>                            ❷

</StackLayout>

In the XAML here, there are two data binding source paths, which are Name, ❶, and Description, 
❷. The binding target is Label and the target property is the Text property of Label. If we review 
the inheritance hierarchy of Label, it looks like so:

Object -> BindableObject -> Element -> NavigableElement -> VisualElement 
-> View -> Label

We can see that Element, VisualElement, and View are the derivatives of BindableObject. 
The data binding target has to be a child of BindableObject.

The binding source is the ItemDetailViewModel viewmodel. Name, ①, and Description, 
②, are properties of the viewmodel as shown in Listing 4.1 here:

Listing 4.1: ItemDetailViewModel.cs (https://epa.ms/ItemDetailViewMod-
el4-1)

using PassXYZ.Vault.Models;

namespace PassXYZ.Vault.ViewModels {

[QueryProperty(nameof(ItemId), nameof(ItemId))]

public class ItemDetailViewModel : BaseViewModel {

        private string itemId;

        private string name;

        private string description;



Exploring MVVM and Data Binding92

        public string Id { get; set; }

        public string Name {                              ①

            get => name;

            set => SetProperty(ref name, value);

        }

        public string Description…                        ②

        public string ItemId...

        public async void LoadItemId(string itemId) {     ③

            try {

                var item = await DataStore.GetItemAsync

                    (itemId);

                Id = item.Id;

                Name = item.Name;

                Description = item.Description;

            }

            catch (Exception) {

                Debug.WriteLine("Failed to Load Item");

            }

        }

}

The values of Name, ①, and Description, ②, are loaded from the model in the LoadItemId() 
method, ③. You may notice that the class is decorated by a QueryPropertyAttribute attribute. 
This is used to pass parameters during page navigation, and it will be introduced in the next chapter.

Let’s use the following, Table 4.1, to summarize the data binding components in the code.

Data binding elements Example

Target Label

Target property Text

Source object ItemDetailViewModel

Source object value path Name or Description

Table 4.1: Data binding settings



Data binding 93

Having analyzed the preceding code, let us have a look at the syntax of the binding expression:

<object property="{Binding bindProp1=value1[,

  bindPropN=valueN]*}" ... />

Binding properties can be set as a series of name-value pairs in the form of bindProp=value. For 
example, see the following:

<Label Text="{Binding Path=Description}" FontSize="Small"/>

The Path property is the default property, and it can be omitted if it is the first one in the property 
list as shown here:

<Label Text="{Binding Description}" FontSize="Small"/>

The Source property can be set to override BindingContext, which we will discuss shortly. 
There are many binding properties, and you can find the details by referring to Microsoft document 
about the Binding class here:

https://learn.microsoft.com/en-us/dotnet/api/system.windows.data.
binding?view=windowsdesktop-6.0

When we set data binding to the target, we can use the following two members of the target class:

• The BindingContext property gives us the source object

• The SetBinding method specifies the target property and source property

In our case, we set the BindingContext property to an instance of ItemDetailViewModel, 
❶, in the C# code-behind file of ItemDetailPage as shown in Listing 4.2 here. It is set at the page 
level, and it applies to all binding targets for this page:

Listing 4.2: ItemDetailPage.xaml.cs (https://epa.ms/ItemDetailPage4-2)

using PassXYZ.Vault.ViewModels;

using System.ComponentModel;

using Microsoft.Maui;

using Microsoft.Maui.Controls;

namespace PassXYZ.Vault.Views

{

    public partial class ItemDetailPage : ContentPage

    {

https://learn.microsoft.com/en-us/dotnet/api/system.windows.data.binding?view=windowsdesktop-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.data.binding?view=windowsdesktop-6.0


Exploring MVVM and Data Binding94

        public ItemDetailPage()

        {

            InitializeComponent();

            BindingContext = new ItemDetailViewModel();   ❶

        }

    }

    void OnFieldSelected ...

}

Instead of using the Binding markup extension, we can also create the binding using the SetBinding 
method directly as done here:

    <StackLayout Spacing="20" Padding="15">

        <Label Text="Text:" FontSize="Medium" />

        <Label x:Name="labelText" FontSize="Small"/>      ❷

        <Label Text="Description:" FontSize="Medium" />

        <Label Text="{Binding Description}"

            FontSize="Small"/>

    </StackLayout>

❷ In the XAML code, we removed the Binding markup extension and specified the instance name 
as labelText. In the C# code-behind file, we can call the SetBinding() method, ❸, in the 
constructor of ItemDetailPage to create the data binding for the Text property:

    public ItemDetailPage()

    {

        InitializeComponent();

        BindingContext = new ItemDetailViewModel();

        labelText.SetBinding(Label.TextProperty, "Text"); ❸

    }

Binding mode

In this discussion, all the UI elements are Label objects, which are not editable for the user. This is 
one-way binding from the source to the target. In this kind of binding setup, we do not change target 
objects. The changes in the source object will cause updates in the target object.



Data binding 95

There are four binding modes supported in .NET MAUI. Let’s review them by referring to Figure 4.4.

Figure 4.4: Binding mode

These binding modes are supported in .NET MAUI:

• OneWay binding is usually used in the case of presenting data to the user. In our app, we will 
retrieve a list of password entries and display this list on ItemsPage. When the user clicks 
an item in the list, the password details will show on ItemDetailPage. OneWay is used 
in both cases.

• TwoWay binding causes changes to either the source property or the target property to 
automatically update the other. In our app, when the user edits the fields of a password entry 
or when the user enters a username and password on LoginPage, the target UI Entry 
component and the source view model object are set with TwoWay.

• OneWayToSource is the reverse of the OneWay binding mode. When the target property 
is changed, the source property will be updated. When we add a new password entry on 
NewItemPage, we can use OneWayToSource instead of the TwoWay binding mode to 
improve performance.

• OneTime binding is a binding mode that is not shown in Figure 4.4. The target properties 
are initialized from the source properties, but any further changes to the source properties 
won’t update the target properties. It is a simpler form of the OneWay binding mode with 
better performance.

If we don’t specify the binding mode in data binding, the default binding mode is used. We can 
overwrite the default binding mode if it is needed.

In our ItemsPage code, we use the ListView control to display the list of password groups and 
entries, so we should set the IsRefreshing attribute to the OneWay binding mode:

IsRefreshing="{Binding IsBusy, Mode=OneWay}"



Exploring MVVM and Data Binding96

When we add a new item in NewItemPage, we use the Entry and Editor controls to edit the 
properties. We can use the OneWayToSource or TwoWay binding modes:

<Label Text="Text" FontSize="Medium" />

<Entry Text="{Binding Text, Mode=TwoWay}" FontSize="Medium"

   />

<Label Text="Description" FontSize="Medium" />

<Editor Text="{Binding Description, Mode=OneWayToSource}"

  AutoSize="TextChanges" FontSize="Medium" Margin="0" />

Changing notifications in viewmodels

In Figure 4.4, we can see the data binding target is a derived class of BindableObject. Besides 
this requirement, in the data binding setup, both the data binding target and source also need to 
implement the INotifyPropertyChanged interface so that when the property changes, a 
PropertyChanged event is raised to notify the change.

In an MVVM pattern, the viewmodel is usually the data binding source and we need to implement 
the INotifyPropertyChanged interface in our viewmodels. If we do this for each viewmodel, 
there will be a lot of duplicated code. In a Visual Studio template, a BaseViewModel class, as we 
can see in Listing 4.3, is included in the boilerplate code and we use it in our app. Other viewmodels 
inherit this class:

Listing 4.3 BaseViewModel.cs (https://epa.ms/BaseViewModel4-3)

namespace PassXYZ.Vault.ViewModels;

public class BaseViewModel : InotifyPropertyChanged       ❶

{

  public IDataStore<Item> DataStore =>

    DependencyService.Get<IDataStore<Item>>();

  bool isBusy = false;

  public bool IsBusy {

    get { return isBusy; }

    set { SetProperty(ref isBusy, value); }               ❷

  }

  string title = string.Empty;

  public string Title {



Data binding 97

    get { return title; }

    set { SetProperty(ref title, value); }

  }

  protected bool SetProperty<T>(ref T backingStore,

      T value,

      [CallerMemberName] string propertyName = "",

      Action onChanged = null) {

    if (EqualityComparer<T>.Default.Equals

        (backingStore, value))

        return false;

    backingStore = value;

    onChanged?.Invoke();

    OnPropertyChanged(propertyName);

    return true;

  }

  #region INotifyPropertyChanged

 public event PropertyChangedEventHandler PropertyChanged;❹

  protected void OnPropertyChanged([CallerMemberName]

    string propertyName = "") {                           ❸

    var changed = PropertyChanged;

    if (changed == null)

        return;

changed.Invoke(this,

  new PropertyChangedEventArgs(propertyName));

  }

  #endregion

}

In the BaseViewModel class (Listing 4.3), we can see the following:

•  ❶ BaseViewModel implements the INotifyPropertyChanged interface and this 
interface defines a single event, PropertyChanged, ❹.



Exploring MVVM and Data Binding98

•  ❸ When a property is changed in the setter, the OnPropertyChanged method is 
called. In OnPropertyChanged, the PropertyChanged event is fired. A copy of 
the PropertyChanged event handler is stored in the changed local variable, so this 
implementation is safe in a multi-thread environment. When the PropertyChanged event is 
fired, it needs to pass the property name as a parameter to indicate which property is changed. 
The CallerMemberName attribute can be used to find the method name or property name 
of the caller, so we don’t need to hardcode the property name.

•  ❷ When we define a property in the viewmodel, the OnPropertyChanged method is 
called in the setter – but as you can see, in our code, we call SetProperty<T> instead 
of OnPropertyChanged directly. SetProperty<T> will do additional work before it 
calls OnPropertyChanged. It checks whether the value is changed. If there is no change, 
it will return and do nothing. If the value is changed, it will update the backing field and call 
OnPropertyChanged to fire the change event.

If we recall ItemDetailViewModel in Listing 4.1, it inherits from the BaseViewModel class. 
In the setter of the Name and Description properties, we call SetProperty<T> to set the 
values and fire the PropertyChanged event:

        public string Name {

            get => name;

            set => SetProperty(ref name, value);

        }

        public string Description {

            get => description;

            set => SetProperty(ref description, value);

        }

In this section, we learned about data binding and the INotifyPropertyChanged interface. 
We need to create boilerplate code to define a property with change notification support. To simplify 
the code and autogenerate boilerplate code behind the scenes, we can use the MVVM Toolkit. Please 
find more information about the MVVM Toolkit in the Further reading section.

Having introduced some basic knowledge of XAML UI design, the MVVM pattern, and data binding, 
we can improve our app using the knowledge we just learned.

Improving the data model and service
To improve our app, let us review the use cases again. We are developing a cross-platform password 
manager app that is compatible with the popular KeePass database format. We have the following 
use cases:

• Use case 1: LoginPage – As a password manager user, I want to log in to the password 
manager app so that I can access my password data



Improving the data model and service 99

• Use case 2: AboutPage – As a password manager user, I want to have an overview of my 
database and the app that I am using

• Use case 3: ItemsPage – As a password manager user, I want to see a list of groups and 
entries so that I can explore and examine my password data

• Use case 4: ItemDetailPage – As a password manager user, I want to see the details of a 
password entry after I select it in the list of password entries

• Use case 5: NewItemPage – As a password manager user, I want to add a password entry or 
create a new group in my database

These five use cases are inherited from the Visual Studio template, and they are sufficient for the 
user stories of our password manager app for the moment. We will improve our app using these user 
stories in this chapter.

We have explored the model, view, and viewmodel, but the model given here is too simple and is not 
sufficient for use in a password manager app:

public class Item

{

  public string Id { get; set; }

  public string Name { get; set; }

  public string Description { get; set; }

}

The major functionalities of our password manager app are encapsulated in the model layer. We will 
build our model using two .NET packages, KPCLib and PassXYZLib. These two packages include 
all the password management features we need.

KPCLib

The model that we will use is a library from KeePass called KeePassLib. Both KeePass and 
KeePassLib are built for .NET Framework, so they can only be used on Windows. I ported 
KeePassLib and rebuilt it as a .NET Standard 2.0 library packaged as KPCLib. KPCLib can be 
found at NuGet and GitHub here:

• NuGet: https://www.nuget.org/packages/KPCLib/

• GitHub: https://github.com/passxyz/KPCLib

KPCLib is used both as a package name and a namespace. The package of KPCLib includes two 
namespaces, KeePassLib and KPCLib. The KeePassLib namespace is the original one from 
KeePass with the following changes:

https://www.nuget.org/packages/KPCLib/
https://github.com/passxyz/KPCLib


Exploring MVVM and Data Binding100

• Updated and built for .NET Standard 2.0

• Updated PwEntry and PwGroup to be classes derived from the Item abstract class

In the KPCLib namespace, an Item abstract class is defined. The reason I created a new class and 
made it the parent class of PwEntry and PwGroup is due to the navigation design difference between 
KeePass and PassXYZ.Vault.

If we look at the UI of KeePass in Figure 4.5, we can see that it is a classic Windows desktop UI. The 
navigation is designed around a tree view like Windows Explorer.

Figure 4.5: KeePass UI

Two classes, PwGroup and PwEntry, behave like directories and files. A PwGroup instance is just 
like a directory, and it includes a list of children – PwGroup and PwEntry. All PwGroup instances 
display in a tree view on the right-hand panel. When a PwGroup instance is selected, the list of 
PwEntry in this group is shown on the right-hand panel. PwEntry includes the content of a password 
entry, such as a username and password. The content of PwEntry is displayed on the bottom panel.

In the PassXYZ.Vault UI design, we use a .NET MAUI Shell template. It is an implementation of 
a stacked Master-Detail pattern. In the stacked Master-Detail pattern, a single list is used to display 
items. In this case, the instances of both PwGroup and PwEntry can be displayed in the same list. 
After an item is selected, we will take an action according to the type of the item.



Improving the data model and service 101

Abstraction of PwGroup and PwEntry

To work with the PassXYZ.Vault UI design better, we can abstract PwGroup and PwEntry as Item  
abstract class, as shown in Figure 4.6.

Figure 4.6: Class diagram of Item

Referring to this UML class diagram in Figure 4.6 and the source code of Item.cs in Listing 4.4, 
we can see the following properties are defined in the Item abstract class. These properties are 
implemented in both PwEntry and PwGroup:

•  ① Name – the Item name

•  ② Description – the Item description

•  ③ Notes – Item comments defined by the user

•  ④ IsGroup –true if the instance is PwGroup or false if it is PwEntry

•  ⑤ Id – ID of the instance (a unique value that is like the primary key in a database)

•  ⑥ ImgSource – image source of the icon (both PwGroup and PwEntry can have an 
associated icon)

•  ⑦ LastModificationTime – the last modification time of the item



Exploring MVVM and Data Binding102

•  ⑧ Item implements the INotifyPropertyChanged interface, and it can work well in 
the MVVM model for data binding:

Listing 4.4: Item.cs (https://epa.ms/Item4-4)

using System.Text;

namespace KPCLib

{

  public abstract class Item : INotifyPropertyChanged     ⑧

  {

    public abstract DateTime LastModificationTime {get;

        set;};}                                           ⑦

    public abstract string Name { get; set; }             ①

    public abstract string Description { get;}            ②

    public abstract string Notes { get; set; }            ③

    public abstract bool IsGroup { get; }                 ④

    public abstract string Id { get; }                    ⑤

    virtual public Object ImgSource { get; set; }         ⑥

#region INotifyPropertyChanged ...

  }

}

PassXYZLib

To use KeePassLib in PassXYZ.Vault, we need to use some .NET MAUI APIs to extend the 
functionalities required of our app. To separate the business logic from the UI and extend the 
functionalities of KeePassLib for .NET MAUI, a .NET MAUI class library, PassXYZLib, is 
created to encapsulate the extended model in a separate library. PassXYZLib is both a package 
name and a namespace.

To add PassXYZLib to our project, we can add it to a PassXYZ.Vault.csproj project file, 
as seen here:

  <ItemGroup>

    <PackageReference Include="PassXYZLib"

              Version="2.0.2" />

  </ItemGroup>



Improving the data model and service 103

We can also add a PassXYZLib package from the command line here. From the command line, go to 
the project folder and execute this command to add the package:

dotnet add package PassXYZLib

Updating the model

After we add a PassXYZLib package to the project, we can access the KPCLib, KeePassLib, and 
PassXYZLib namespaces. To replace the current model, we need to remove the Models/Item.
cs file from the project.

After that, we need to replace the PassXYZ.Vault.Models namespace with KPCLib.

Figure 4.7: Updating the model from PassXYZ.Vault.Models to KPCLib (https://bit.ly/3uXVl7H)

In the commit history, Figure 4.7, we can see that there are four view models, and three views are 
changed. All changes are namespace changes so we don’t need to explain more about them.

Updating the service

The major changes can be found in MockDataStore.cs. In the MockDataStore class, we 
changed the namespace and the mock data initialization.

https://bit.ly/3uXVl7H


Exploring MVVM and Data Binding104

To decouple the model from the rest of the system, we use an IDataStore interface to encapsulate 
the actual implementation. At this stage, we use mock data to implement the service for testing, so 
the MockDataStore class is used. We will replace it with the actual implementation in Chapter 6, 
Introducing Dependency Injection and Platform-Specific Services, using dependency injection.

Dependency inversion and dependency injection
We will learn about the Dependency Inversion Principle (DIP), which is one of the SOLID 
design principles, in Chapter 6, Introducing Dependency Injection and Platform-Specific Services. 
We will learn how to use dependency injection to manage the mapping of IdataStore 
interface to the actual implementation.

In the original code, we created new instances of PassXYZ.Vault.Models.Item to initialize 
mock data. After we replace the model, we cannot create KPCLib.Item directly, since it is an abstract 
class. Instead, we can create new instances of PxEntry using JSON data and assign PxEntry 
instances to the Item list:

    Static string[] jsonData =…;

    readonly List<Item> items;

    public MockDataStore() {

        items = new List<Item>() {

            new PxEntry(jsonData[0]),

            new PxEntry(jsonData[1]),

            new PxEntry(jsonData[2]),

            new PxEntry(jsonData[3]),

            new PxEntry(jsonData[4])

        };

    }

To create the instances of an abstract class, the factory pattern can be used. To make the testing code 
simple, we did not use it here. The factory pattern is used in the actual implementation later in this book.

We have replaced the model in the sample code with our own model now. With this change, we can 
improve ItemsPage and ItemDetailPage to reflect the updated model.

We will update the view and viewmodel using data binding to collections in the next section.

Binding to collections
In the previous section, we introduced some basic knowledge of data binding, and we also replaced 
the model using PassXYZLib. When we introduced data binding, we used ItemDetailPage and 
ItemDetailViewModel to explain how to bind the source property to the target property. For 



Binding to collections 105

the item detail page, we created data binding from one source to one target. However, there are many 
cases in which we need to bind a data collection to the UI, such as ListView or CollectionView, 
to display a group of data.

Figure 4.8: Binding to collections

As we can see in Figure 4.8, when we create a data binding from a collection object to a collection view, 
the ItemsSource property is the one to use. In .NET MAUI, collection views such as ListView 
and CollectionView can be used and both have an ItemsSource property.

For the collection object, we can use any collection that implements the IEnumerable interface. However, 
the changes to the collection object may not be able to update the UI automatically. In order to update UI 
automatically, the source object needs to implement the INotifyCollectionChanged interface.

We can implement our collection object with the INotifyCollectionChanged interface, but the 
simplest approach is to use the ObservableCollection<T> class. If any item in the observable 
collection is changed, the bound UI view is notified automatically.

With this in mind, let’s review the class diagram of our models, viewmodels, and views as shown in 
Figure 4.9:

• Model: Item, PwEntry, PwGroup, Field

• View Model: ItemsViewModel, ItemDetailViewModel

• View: ItemsPage, ItemDetailPage

When we display a list of items to the user, the user may take action on the selected item. If the item 
is a group, we will show the groups and entries in an instance of ItemsPage. If the item is an entry, 
we will show the content of the entry on a content page, which is an instance of ItemDetailPage. 
On ItemDetailPage, we display a list of fields to the user. Each field is a key value pair and is 
implemented as an instance of Field class.



Exploring MVVM and Data Binding106

In summary, we display two kinds of lists to the user – a list of items or a list of fields. The list of items 
is shown in ItemsPage and the list of fields is shown in ItemDetailPage.

Figure 4.9: Class diagram of the model, view, and viewmodel

In this class diagram, we can see both PwEntry and PwGroup are derived from Item. There is a 
list of items in ItemsViewModel and there is a list of fields in ItemDetailViewModel. In the 
views, ItemsPage contains a reference to ItemsViewModel, and ItemDetailPage contains 
a reference to ItemDetailViewModel.

After we refine our design, we can look at the implementation. We will review the implementation of 
ItemDetailViewModel and ItemDetailPage to verify the design change:

[QueryProperty(nameof(ItemId), nameof(ItemId))]

public class ItemDetailViewModel : BaseViewModel {

  private string itemId;

  private string description;

  public string Id { get; set; }

  public ObservableCollection<Field> Fields { get; set; } ❶

  public string Description ...

  public string ItemId ...



Binding to collections 107

  public ItemDetailViewModel() {

    Fields = new ObservableCollection<Field>();           ❷

  }

  public async void LoadItemId(string itemId) {

    try {

      var item = await DataStore.GetItemAsync(itemId);

      Id = item.Id;

      Title = item.Name;

      Description = item.Description;

      if (!item.IsGroup) {

        PwEntry dataEntry = (PwEntry)item;                ❸

        Fields.Clear();

        List<Field> fields = dataEntry.GetFields(GetImage:

          FieldIcons.GetImage);                           ❹

        foreach (Field field in fields) {

          Fields.Add(field);

        }

      }

    }

    catch (Exception) {

        Debug.WriteLi"e("Failed to Load I"em");

    }

  }

}

As shown in the code here, we can see the difference in ItemDetailViewModel compared to 
Listing 4.1 at the beginning of this chapter:

•  ❶ A Fields property is defined as the ObservableCollection<Field> type to 
hold the Field list

•  ❷ The Fields variable is initialized in the constructor of ItemDetailViewModel

•  ❸ The item type of variable is PwEntry here and we can cast it to a PwEntry instance

•  ❹ We can get the list of fields by calling an extension method, GetFields(), which is 
defined in the PassXYZLib library



Exploring MVVM and Data Binding108

Having reviewed the changes in ItemDetailViewModel, let’s review the changes in 
ItemDetailPage in Listing 4.5:

Listing 4.5: ItemDetailPage.xaml (https://epa.ms/ItemDetailPage4-5)

<?xml versi"n="".0" encodi"g="ut"-8" ?>

<ContentPage xml"s="http://schemas.microsoft.com

    /dotnet/2021/maui"

             xmlns:x="http://schemas.microsoft.com/

                 winfx/2009/xaml"

             x:Class="PassXYZ.Vault.Views.ItemDetailPage"

             xmlns:local="clr-namespace:PassXYZ.

                 Vault.ViewModels"

             xmlns:model="clr-namespace:KPCLib;

                 assembly=KPCLib"                         ①

             x:DataType="local:ItemDetailViewModel"

             Title="{Binding Title}">

    <StackLayout>

        <ListView x:Name="FieldsListView"

                  ItemsSource="{Binding Fields}"          ②

                  VerticalOptions="FillAndExpand"

                  HasUnevenRows="False"

                  RowHeight="84"

                  IsPullToRefreshEnabled="true"

                  IsRefreshing="{Binding IsBusy, Mode=

                      OneWay}"

                  CachingStrategy="RetainElement"

                  ItemSelected="OnFieldSelected">

            <ListView.ItemTemplate...>                    ③

            <ListView.Footer>

                <StackLayout Padding="5" Orientation=

                    "Horizontal">

                    <Label Text="{Binding Description}

                         ".../>

                </StackLayout>



Binding to collections 109

            </ListView.Footer>

        </ListView>

    </StackLayout>

</ContentPage>

In ItemDetailPage, we can see there are many changes compared to Listing 3.4 in Chapter 3, User 
Interface Design with XAML. ListView is used to display the fields in an entry:

•  ① To use Field in DataTemplate, a xmlns:model namespace is added. Since the 
Field class is in a different assembly, we need to specify the assembly’s name as follows:

         xmlns:model="clr-
namespace:KPCLib;assembly=KPCLib"

•  ② We bind the Fields property to the ItemsSource property of ListView.

•  ③ DataTemplate is used to define the appearance of each item in ListView. It is collapsed 
in Listing 4.5.

Let’s expand it and review the implementation of DataTemplate in this code block:

<DataTemplate>

  <ViewCell>

    <Grid Padding="10" x:DataType="model:Field" >         ➊

      <Grid.RowDefinitions...>

      <Grid.ColumnDefinitions...>

      <Grid Grid.RowSpan="2" Padding="10">

        <Grid.ColumnDefinitions...>

        <Image Grid.Column="0" Source="{Binding ImgSource}"

          HorizontalOptions="Fill"

        VerticalOptions="Fill" />                         ➋

      </Grid>

      <Label Text="{Binding Key}"  Grid.Column="1".../>   ➌

      <Label Text="{Binding Value}" Grid.Row="1"

        Grid.Column="1".../>                              ➍

    </Grid>

  </ViewCell>

</DataTemplate>



Exploring MVVM and Data Binding110

In DataTemplate, the layout of each field is defined in a ViewCell element. In the ViewCell 
element, we defined a 2x2 Grid layout. The first column is used to display the field icon. The key and 
value in the field are displayed in the second column with two rows:

•  ➊ The x:DataType attribute in the Grid layout is set to Field and the following data 
binding in Grid will refer to the property of Field. The Field class is defined in our model, 
which is in the KPCLib package.

•  ➋ To display the field icon, the Source property of the Image control is set to the ImgSource 
property of Field.

•  ➌,➍ Both the Key property and the Value property of Field are assigned to the Text 
property of the Label control.

With this analysis, we learned how to create data binding for a collection. The data binding used in 
ItemsPage and ItemsViewModel is similar to this implementation. The difference is we use a 
collection of Field here and a collection of Item  classes is used in ItemsPage. Having completed 
the changes, we can see the improvement of the UI in Figure 4.10.

Figure 4.10: Improved ItemsPage and ItemDetailPage



Summary 111

In the improved UI, we display a list of items on ItemsPage (on the left). The items in the list can be 
entries (such as on Facebook, Twitter, or Amazon), or groups, which we will see in the next chapter.

When the user clicks on an item, such as GitHub, we will display it on ItemDetailPage (on the 
right). On the item detail page, the information about this account (GitHub) is shown.

Having introduced the new data model, the design hasn’t changed much. We improved the UI to 
make it more meaningful, but most of the complexity is hidden in our model libraries – KPCLib and 
PassXYZLib. This is the benefit that we can see by using the MVVM pattern to separate the model 
(business logic) from the UI design.

Summary
In this chapter, we learned about the MVVM pattern and applied it to our app development. One key 
feature of the MVVM pattern is data binding between the view and viewmodel. We learned about 
data binding and used it in the implementation of our app.

We also improved the model in this chapter. We improved it by introducing two packages – KPCLib 
and PassXYZLib. We replaced the model in the sample code with the model in these two packages. 
We updated the UIs of ItemsPage and ItemDetailPage to reflect the changes to the model.

In the next chapter, we will refine our user stories and continue improving the UI using our knowledge 
of Shell and navigation.

Further reading
• Introduction to the MVVM Toolkit: https://learn.microsoft.com/en-us/dotnet/

communitytoolkit/mvvm/

• KeePass is a free open source password manager: https://keepass.info/

https://learn.microsoft.com/en-us/dotnet/communitytoolkit/mvvm/
https://learn.microsoft.com/en-us/dotnet/communitytoolkit/mvvm/
https://keepass.info/




5
Navigation using .NET MAUI 

Shell and NavigationPage

In the previous chapter, we introduced the MVVM pattern and data binding. We improved the user 
interface design and introduced our data model. In our app, we can select a page from the flyout 
menu, and we can switch to the item detail when an item is selected. This is part of the navigation 
mechanism in .NET MAUI. In this chapter, we will dive deeper into the navigation design, and we 
will learn how navigation works in .NET MAUI.

The following topics will be covered in this chapter:

• Implementing navigation

• Using Shell

• Improving design and navigation

Technical requirements
To test and debug the source code in this chapter, you need to have Visual Studio 2022 installed on 
your PC or Mac. Please refer to the Development environment setup section in Chapter 1, Getting 
Started with .NET MAUI, for the details.

The source code for this chapter is available in the following branch on GitHub: https://github.
com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/
tree/main/Chapter05.

The source code can be downloaded using the following git command:

git clone -b chapter05 https://github.com/PacktPublishing/.
NET-MAUI-Cross-Platform-Application-Development

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter05
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter05
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter05


Navigation using .NET MAUI Shell and NavigationPage114

Implementing navigation
In this chapter, we are going to implement the navigation logic of our password manager app. It will 
include the following functionalities:

• Logging in and connecting to the database

• Exploring data in the password database

Navigation design has a significant impact on the user experience. In .NET MAUI, there is a built-in 
mechanism to help developers implement the navigation efficiently. As we saw in the previous 
chapters, we can use Shell in our app. In this chapter, we will learn about Shell and improve our 
app with features provided by Shell. Before we dive into Shell, we will learn the basic navigation 
mechanism in .NET MAUI.

There are two most common ways to implement navigation – hierarchical and modal:

• Hierarchical navigation provides a navigation experience where the user can navigate through 
pages, both forward and backward. This pattern typically uses a toolbar or navigation bar at the 
top of the screen to display an Up or Back button in the top-left corner. It usually maintains a 
LIFO stack of pages to handle the navigation. LIFO stands for last in, first out, which means 
the last page to enter is the first one to pop out.

• Modal navigation is different from hierarchical navigation in terms of how users can respond 
to it. If a modal page is displayed on the screen, the users must complete or cancel the required 
task on the page before they can take other actions. The users cannot navigate away from modal 
pages before the required task is completed or canceled.

INavigation interface and NavigationPage

In .NET MAUI, both hierarchical navigation and model navigation are supported through the 
INavigation interface. The INavigation interface is supported by a special page called 
NavigationPage. NavigationPage is used to manage the navigation of a stack of other pages. 
The inheritance hierarchy of NavigationPage looks like this:

Object > BindableObject > Element > NavigableElement > VisualElement > 
Page > NavigationPage

NavigableElement defines a property called Navigation that implements the INavigation 
interface. This inherited property can be called from any VisualElement or Page for navigation 
purposes, as shown here:

public Microsoft.Maui.Controls.INavigation Navigation { get; }



Implementing navigation 115

To use NavigationPage, we must add the first page to a navigation stack as the root page of the 
application. We can see an example of this in the following code snippet:

public partial class App : Application

{

  ...

  public App ()

  {

    InitializeComponent();

    MainPage = new NavigationPage (new TheFirstPage());

  }

  ...

}

We build the navigation stack in the constructor of the App class, which is a derived class of 
Application. TheFirstPage, which is a derived class of ContentPage, is pushed onto the 
navigation stack.

Using the navigation stack

There are two ways to navigate to or from a page. When we want to browse a new page, we can add 
the new page to the navigation stack. This action is called a push. If we want to go back to the previous 
page, we can pop the previous page from the stack:

Figure 5.1: Push and pop



Navigation using .NET MAUI Shell and NavigationPage116

As shown in Figure 5.1, we can use the PushAsync() or PopAsync() method in the INavigation 
interface to change to a new page or go back to the previous page, respectively.

If we are on Page1, we can change to Page2 with the GotoPage2() event handler. In this function, 
we are pushing the new page, Page2, to the stack:

async void GotoPage2 (object sender, EventArgs e) {

         await Navigation.PushAsync(new Page2());

}

Once we are on Page2, we can go back with the BackToPage1() event handler. In this function, 
we are popping the previous page from the stack:

async void BackToPage1 (object sender, EventArgs e) {

        await Navigation.PopAsync();

}

In the preceding example, we navigated to a new page using the hierarchical navigation method. To 
display a modal page, we can use the modal stack. For example, in our app, if we want to create a new 
item in ItemsPage, we can call PushModalAsync() in ItemsViewModel:

await Shell.Current.Navigation.
PushModalAsync(NewItemPage(type));

After the new item has been created, we can call PopModalAsync() in NewItemViewModel:

_ = await Shell.Current.Navigation.PopModalAsync();

On the model page’s NewItemPage, we cannot navigate to other pages before we complete or 
cancel the task. Both PopAsync() and PopModalAsync() return an awaitable task of the 
Task<Page> type.

Manipulating the navigation stack

In hierarchical navigation, we can not only push or pop pages from the stack, but we can also manipulate 
the navigation stack.

Inserting a page

We can insert a page into the stack using the InsertPageBefore() method:

public void InsertPageBefore (Page page, Page before);



Using Shell 117

The following are two parameters of InsertPageBefore():

• page: This is the page to be added

• before: This is the page before which the page is inserted

In Figure 5.1, when we are at Page2, we can insert another page, Page1, before it:

Navigation.InsertPageBefore(new Page1(), this);

Removing a page

We can also remove a specific page from the stack using the RemovePage() method:

public void RemovePage (Page page);

In Figure 5.1, given we have a reference of Page2 when we are at Page3, we can remove Page2 
from the stack. After PopAsync() is called, we will be back at Page1:

// the reference page2 is an instance of Page2

Navigation.RemovePage(page2);

await Navigation.PopAsync();

With that, we have learned how to build a navigation stack using NavigationPage. Once we 
have a navigation stack, we can use the INavigation interface to perform navigation actions. For 
a simple application, this may be good enough. However, there will be a lot of work involved for a 
complex application. We have a better choice in .NET MAUI known as Shell. With Shell, we can 
provide a better navigation experience to the users with less work.

Using Shell
The INavigation interface and NavigationPage provide basic navigation functionalities. If we 
rely on them only, we have to create complicated navigation mechanisms by ourselves. In .NET MAUI, 
there are built-in page templates to choose from, and they can provide different navigation experiences.

As shown in the class diagram in Figure 5.2, there are built-in pages available for different use cases. 
All these pages – TabbedPage, ContentPage, FlyoutPage, NavigationPage, and Shell 
– are derived classes of Page:



Navigation using .NET MAUI Shell and NavigationPage118

Figure 5.2: Class diagram of the built-in pages in .NET MAUI

ContentPage, TabbedPage, and FlyoutPage can be used to create various user interfaces 
per your requirements.

• ContentPage is the most used page and can include any layout and view elements. It is 
suitable in the case of a single-page design.

• TabbedPage can be used to host multiple pages. Each child page can be selected by a series 
of tabs at the top or bottom of the page.

• Flyoutpage can display a list of items, which is similar to the menu items in a desktop 
application. The user can navigate to individual pages through the items in the menu.

Even though Shell is also a derived class of Page, it includes a common navigation user experience, 
which can make developers’ lives easier. It helps the developers by reducing the complexity of application 
development with highly customizable and rich features in one place.

Shell provides the following features:

• A single place to describe the visual hierarchy of an app

• A highly customizable common navigation user experience



Using Shell 119

• A URI-based navigation scheme that is very similar to what we have in a web browser

• An integrated search handler

The top-level building blocks of Shell are flyouts and tabs. We can use flyouts and tabs to create the 
navigation structure of our app.

Flyout

A flyout can be used as the top-level menu of a Shell app. In our app, we must use both flyouts 
and tabs to create the top-level navigation design. We will explore flyouts in this section; in the next 
section, we will discuss how to use tabs in our app.

In Figure 5.3, we can see what the flyout looks like in our app. From the flyout menu, we can switch 
to AboutPage, ItemsPage, or LoginPage. To access the flyout menu, we can either swipe from 
the left of the screen or click the flyout icon, which is the hamburger icon ①. When we click Root 
Group ② in the flyout menu, we will see a list of password entries or groups:

Figure 5.3: Flyout

The flyout menu consists of flyout items or menu items. In Figure 5.3, About and Root Group are 
flyout items, while Logout is a menu item.



Navigation using .NET MAUI Shell and NavigationPage120

Flyout items

Each flyout item is a FlyoutItem object that contains a ShellContent object. We can define 
flyout items like so in the AppShell.xaml file. We assign a string resource to the Title ① 

attribute and an ImageSource to the Icon ② attribute. These correspond to the properties of the 
FlyoutItem class:

<FlyoutItem ① Title="{x:Static resources:Resources.About}" ② 
Icon="tab_info.png" >

  <Tab>

    <ShellContent Route="AboutPage" ContentTemplate=

        "{DataTemplate local:AboutPage}" />

  </Tab>

</FlyoutItem>

<FlyoutItem x:Name="RootItem" Title="Browse"

    Icon="tab_home.png">

  <Tab>

    <ShellContent Route="RootPage" ContentTemplate=

        "{DataTemplate local:ItemsPage}" />

  </Tab>

</FlyoutItem>

Shell has implicit conversion operators that can be used to remove the FlyoutItem and Tab 
objects so that the preceding XAML code can also be simplified, like so:

<ShellContent Title="{x:Static resources:Resources.
About}" Icon="tab_info.png" Route="AboutPage" 
ContentTemplate="{DataTemplate local:AboutPage}" />

<ShellContent x:Name="RootItem" Title="Browse" Icon="tab_
home.png" Route="RootPage" ContentTemplate="{DataTemplate 
local:ItemsPage}" />

Menu items

Flyout items can be used to navigate to a content page, but sometimes, we may want to take an action 
instead of navigating to a content page. In this case, we can use menu items. In our case, we have 
defined Logout as a menu item:

<MenuItem Text="Logout" IconImageSource="tab_login.png"

    Clicked="OnMenuItemClicked">

</MenuItem>



Using Shell 121

As we can see from the preceding XAML code, each menu item is a MenuItem object. The MenuItem 
class has a Clicked event and a Command property. When MenuItem is tapped, we can execute 
an action. In the preceding menu item, we assigned OnMenuItemClicked() as the event handler.

Let’s review AppShell.xaml in our app in Listing 5.1. Here, we defined two flyout items and one 
menu item. We can select AboutPage ➊ and ItemsPage ➋ with flyout items and log out ➌ 

through the menu item:

Listing 5.1: AppShell.xaml in PassXYZ.Vault (https://epa.ms/AppShell5-1)

<Shell xmlns="http://schemas.microsoft.com

    /dotnet/2021/maui"

       xmlns:x="http://schemas.microsoft.com

           /winfx/2009/xaml"

       xmlns:local="clr-namespace:PassXYZ.Vault.Views"

       xmlns:style="clr-namespace:PassXYZ.

           Vault.Resources.Styles"

       xmlns:resources="clr-namespace:PassXYZ.

           Vault.Properties"

       xmlns:app="clr-namespace:PassXYZ.Vault"

       Title="PassXYZ.Vault"

       x:Class="PassXYZ.Vault.AppShell">

  <Shell.Resources...>

  <TabBar>                                              ➍

    <Tab Title="{x:Static resources:Resources.

        action_id_login}" Icon="tab_login.png">

      <ShellContent Route="LoginPage" ContentTemplate=

          "{DataTemplate local:LoginPage}" />

    </Tab>

    <Tab Title="{x:Static resources:Resources.menu

        _id_users}" Icon="tab_users.png">

      <ShellContent Route="SignUpPage" ContentTemplate=

          "{DataTemplate local:SignUpPage}" />

    </Tab>

  </TabBar>



Navigation using .NET MAUI Shell and NavigationPage122

  <FlyoutItem Title="{x:Static resources:Resources.About}"

      Icon="tab_info.png" >

    <ShellContent Route="AboutPage" ContentTemplate=

        "{DataTemplate local:AboutPage}" />             ➊

  </FlyoutItem>

  <FlyoutItem x:Name="RootItem" Title="Browse"

      Icon="tab_home.png">

    <ShellContent Route="RootPage" ContentTemplate=

        "{DataTemplate local:ItemsPage}" />             ➋

  </FlyoutItem>

  <MenuItem Text="Logout" IconImageSource="tab_login.png"

       Clicked="OnMenuItemClicked">                     ➌

  </MenuItem>

</Shell>

There is also a TabBar ➍ defined for LoginPage and SignUpPage. Let’s review tabs now.

Tabs

When we use tabs, Shell can create a navigation experience similar to TabbedPage. As shown 
in Figure 5.4, there are two tabs at the bottom tab bar on the Android and iOS platforms, but it looks 
different on the Windows platform:



Using Shell 123

Figure 5.4: TabBar and tabs on Android

As we can see in Figure 5.5, on Windows, the tab bar is at the top:

Figure 5.5: TabBar and tabs on Windows



Navigation using .NET MAUI Shell and NavigationPage124

To create tabs in our app, we must define a TabBar object. A TabBar object can contain one or 
more Tab objects and each Tab object represents a tab on the tab bar. Each Tab object can contain 
one or more ShellContent objects. The following XAML code shows that it is very similar to the 
one we get when we define a flyout:

<TabBar>

  <Tab Title="{x:Static resources:Resources.

      action_id_login}" Icon="tab_login.png">

    <ShellContent Route="LoginPage" ContentTemplate=

        "{DataTemplate local:LoginPage}" />

  </Tab>

  <Tab Title="{x:Static resources:Resources.menu_id_users}"

      Icon="tab_users.png">

    <ShellContent Route="SignUpPage" ContentTemplate=

        "{DataTemplate local:SignUpPage}" />

  </Tab>

</TabBar>

Just like what we did in the flyout XAML code, we can make the preceding code a little simpler by 
removing Tab tags. We can use the implicit conversion operators of Shell to remove Tab objects. As 
we can see, we can remove Tab tags and define Title and Icon attributes in ShellContent tags:

<TabBar>

  <ShellContent Title="{x:Static resources:Resources.

      action_id_login}" Icon="tab_login.png"

          Route="LoginPage" ContentTemplate="{DataTemplate

              local:LoginPage}" />

  <ShellContent Title="{x:Static resources:Resources.

      menu_id_users}" Icon="tab_users.png"

          Route="SignUpPage" ContentTemplate="{DataTemplate  
            local:SignUpPage}" />

</TabBar>

If we define both TabBar objects and FlyoutItem objects in AppShell.xaml, TabBar disables 
the flyout items. That’s the reason why, when we start our app, we can see a screen of tabs showing 
login or signup pages. After the user logs in successfully, we can bring the user to RootPage, which 
is the registered route in Listing 5.1. We’ll learn how to register routes and navigate using registered 
routes in the next section.



Using Shell 125

Shell navigation

In Shell, we can navigate to pages through registered routes. There are two ways to register routes. 
The first way is to register routes in Shell’s visual hierarchy. The second way is to register them explicitly 
using the RegisterRoute() static method of the Routing class.

Registering absolute routes

We can register routes in Shell’s visual hierarchy as we did in Listing 5.1. We can specify a route through 
the Route property of FlyoutItem, TabBar, Tab, or ShellContent. In AppShell.xaml, 
we registered the following routes:

Table 5.1: Registered routes in the visual hierarchy

To navigate to a route in Shell’s visual hierarchy, we can use an absolute route URI, such as //
LoginPage.

Registering relative routes

We can also navigate to a page without pre-defining it in the visual hierarchy. For example, we can 
navigate to the password detail page, ItemDetailPage, at any hierarchy level of the password 
groups. In our app, we can register the following routes explicitly using RegisterRoute() in App.
xaml.cs:

public App()

{

    InitializeComponent();

    Routing.RegisterRoute(nameof(ItemsPage),

        typeof(ItemsPage));

    Routing.RegisterRoute(nameof(ItemDetailPage),

        typeof(ItemDetailPage));

    Routing.RegisterRoute(nameof(NewItemPage),

        typeof(NewItemPage));

Route Page Description

LoginPage LoginPage This route displays a page for user login

SignUpPage SignUpPage This route displays a page for user signup

AboutPage AboutPage This route displays a page about our app

RootPage ItemsPage This route displays a page for navigating the password database



Navigation using .NET MAUI Shell and NavigationPage126

DependencyService.Register<MockDataStore>();

DependencyService.Register<UserService>();

    MainPage = new AppShell();

}

In the preceding code, we defined the following routes:

Table 5.2: Registered detail page routes

To demonstrate how to use relative routes, we will add a new item. When we want to add a new item, 
we can navigate to NewItemPage using a relative route, like so:

await Shell.Current.GoToAsync(nameof(NewItemPage));

In this case, the NewItemPage route is searched and if the route is found, the page will be displayed 
and pushed to the navigation stack. The navigation stack here is the same as the one when we explained 
basic navigation using the INavigation interface. When we define a relative route and navigate 
to it, we pass a string as the name of the route. To avoid typos, we can use the class name as the route 
name by using the nameof expression.

After we have filled in the information for the new item in NewItemPage, we may click the Save 
or Cancel button. In the event handler of the Save or Cancel button, we can navigate back to the 
previous page using the following code:

await Shell.Current.Navigation.PopModalAsync();

Alternatively, we can use the following code:

await Shell.Current.GoToAsync("..");

As you can see from the preceding code, there are two ways we can navigate back. The first one uses 
the PopModalAsync() method of the INavigation interface. Since Shell itself is a derived 
class of Page, it implements the INavigation interface through the inherited Navigation 
property. We can call the modal PopModalAsync() navigation method to navigate back. Here, 
NewItemPage is a modal page.

Route Page Description

ItemDetailPage ItemDetailPage This is the route to display details about a password entry

NewItemPage NewItemPage This is the route to add a new item (entry or group)

ItemsPage ItemsPage This is the route to display a page for navigating the 
password database



Using Shell 127

The second approach is that we can use the GoToAsync() method to navigate back. Since 
NewItemPage is a modal page, you may be wondering how we can differentiate whether a page 
is a modal page or not when we call GoToAsync(). In Shell navigation, this is defined through 
page presentation mode. The content page of NewItemPage is defined like so:

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://schemas.microsoft.com

    /dotnet/2021/maui"

             xmlns:x="http://schemas.microsoft.com

                 /winfx/2009/xaml"

             x:Class="PassXYZ.Vault.Views.NewItemPage"

             Shell.PresentationMode="ModalAnimated" ➊

             Title="New Item">

    <ContentPage.Content...>

</ContentPage >

As we can see, the Shell.PresentationMode ➊ property is defined on the content page. 
Depending on whether we want to use animation, we can set a different value for this property. For a 
normal content page, we can set it to NotAnimated or Animated. For a modal page, we can set it to 
Modal, ModalAnimated, or ModalNotAnimated. If we use the default value, Animated is set.

To navigate back, the GoToAsync() method is used with the route set to ... This is a similar 
mechanism to filesystem navigation or browser URL navigation. The relative route, .., means navigating 
back to the parent route. It can be combined with a route to navigate a page at the parent level, like so:

await Shell.Current.GoToAsync("../AboutPage");

In Table 5.1 and Table 5.2, you will see that ItemsPage is registered as both the absolute route 
RootPage and relative route ItemsPage. ItemsPage may contain password groups at different 
levels. At the top level, it is an absolute route, but it is a relative route at all other navigation hierarchy levels.

Passing data to pages

To further explain why we register ItemsPage as both absolute and relative routes, let’s review the 
navigation hierarchy of our app, as shown in Figure 5.6:



Navigation using .NET MAUI Shell and NavigationPage128

Figure 5.6: Navigation hierarchy

In our app, after successfully logging in, the main page displays a list of entries and groups at the top 
level of the password database called Root Group. This is similar to the navigation of the filesystem. 
At the root of the filesystem, the top level of files and folders are displayed.

The first instance of ItemsPage uses the RootPage route, which we can access through the 
flyout item. Let’s say there are sub-groups called Group1 and Group2 in the Root Group, as shown in 
Figure 5.6. We can navigate to these sub-groups, which are instances of ItemsPage. These instances of 
ItemsPage cannot be pre-defined as they are relative routes and are pushed to the navigation stacks 
on demand. These navigation stacks can be as deep as the actual data stored in the password database.

These two different routes of ItemsPage are defined in AppShell.xaml and App.xaml.cs 
like so:

1. The RootPage route (absolute route):

<FlyoutItem x:Name="RootItem" Title="Browse" Icon="tab_
home.png">

  <ShellContent Route="RootPage" ContentTemplate=

      "{DataTemplate local:ItemsPage}" />

</FlyoutItem>



Using Shell 129

2. The ItemsPage route (relative route):

Routing.RegisterRoute(nameof(ItemsPage),

    typeof(ItemsPage));

Here, you may be wondering how we can navigate to Group1 or Group2 from Root Group. If ItemsPage 
can be used to display the content of either Group1 or Group2, how can we tell ItemsPage which 
group to display?

In Shell navigation, data can be passed to a content page through query parameters. The syntax 
is similar to what we pass to a URL in the web browser. For example, we can use the following URL 
to search for .net in Google search: https://www.google.com.hk/search?q=.net.

This is achieved by appending ? after a route with a pair of query parameter IDs and the value. In the 
preceding example, the key is q and the value is .net.

When an item in the list of Root Groups is selected, it can be an entry or a group. The click event 
triggers the OnItemSelection() method in ItemsViewModel, as shown in Listing 5.2:

Listing 5.2: ItemsViewModel.cs (https://epa.ms/ItemsViewModel5-2)

using PassXYZ.Vault.Views;

using System.Collections.ObjectModel;

using System.Diagnostics;

using KPCLib;

using PassXYZLib;

namespace PassXYZ.Vault.ViewModels;

[QueryProperty(nameof(ItemId), nameof(ItemId))]           ➊

public class ItemsViewModel : BaseViewModel {

  private Item? _selectedItem = default;

  public ObservableCollection<Item> Items { get; }

  public Command LoadItemsCommand { get; }

  public Command AddItemCommand { get; }

  public Command<Item> ItemTapped { get; }

  public string ItemId {                                  ➋

    get {

      return _selectedItem == null ? string.Empty :

         _selectedItem.Id;

https://www.google.com.hk/search?q=.net


Navigation using .NET MAUI Shell and NavigationPage130

    }

    set {

      if (!string.IsNullOrEmpty(value)) {

        var item = DataStore.GetItem(value, true);

        if (item != null) {

          _selectedItem = DataStore.CurrentGroup =

              DataStore.GetItem(value, true);

        }

        else {

          throw new ArgumentNullException("ItemId");

        }

      }

      else {

        _selectedItem = null;

        DataStore.CurrentGroup = DataStore.RootGroup;

      }

      ExecuteLoadItemsCommand();

    }

  }

  public ItemsViewModel()...

  ~ItemsViewModel()...

  public async Task ExecuteLoadItemsCommand()...

  async public void OnAppearing()...

  public Item? SelectedItem...

  private async void OnAddItem(object obj)...

  public async void OnItemSelected(Item item) {

    if (item == null) return;

    if (item.IsGroup) {

      await Shell.Current.GoToAsync

         ($"{nameof(ItemsPage)}?

             {nameof(ItemsViewModel.ItemId)}={item.Id}"); ➌

    }

    else {

      await Shell.Current.GoToAsync

         ($"{nameof(ItemDetailPage)}?



Using Shell 131

         {nameof(ItemDetailViewModel.ItemId)}={item.Id}");➍

    }

  }

}

According to the type of item, we may navigate to ItemsPage ➌ or ItemDetailPage ➍.In both 
cases, we pass the Id item to the ItemId query parameter, which is defined in both ItemsViewModel 
and ItemDetailViewModel.

In Listing 5.2, ➊ ItemId is defined in ItemsViewModel as the QueryPropertyAttribute 
attribute. The first argument of QueryPropertyAttribute is the name of the property that will 
receive the data. It is ItemId ➋ in this case.

The second argument is the id parameter. When we select a group from the list, the view model’s 
OnItemSelected() method is invoked ➌ and the item Id of the selected group is passed as the 
value of the ItemId query parameter.

When ItemsPage is loaded with the ItemId query parameter, the ItemId ➋ property is set. 
In the setter of the ItemId property, we check whether the query parameter value is empty. If it 
is empty, it could be the first time we navigate to the RootPage route without a query parameter.

In this case, we set CurrentGroup of the data service to RootGroup. If it is not empty, we will 
find the item and set it to CurrentGroup. The content of CurrentGroup is loaded using the 
ExecuteLoadItemsCommand() method.

➍ If we select an entry from the list, we can navigate to ItemDetailPage with the item Id as 
the value of the query parameter. We can change ItemDetailViewModel like so to handle this 
query parameter:

public string? ItemId {                                   ①

  get {

      return itemId;

  }

  set {

    if (value == null) throw new ArgumentNullException

        (nameof(value));

    itemId = value;

    LoadItemId(value);                                    ②

  }

}

public ItemDetailViewModel() {



Navigation using .NET MAUI Shell and NavigationPage132

  Fields = new ObservableCollection<Field>();

  Id = default;

}

public async void LoadItemId(string itemId) {

  try {

      var item = await DataStore.GetItemAsync(itemId);    ③

      if (item == null) {

          throw new ArgumentNullException(nameof(itemId));

      }

      Id = item.Id;

      Title = item.Name;

      Description = item.Description;

      PwEntry dataEntry = (PwEntry)item;                  ④

      Fields.Clear();

      List<Field> fields = dataEntry.GetFields(GetImage:

          FieldIcons.GetImage);                           ⑤

      foreach (Field field in fields) {

          Fields.Add(field);

      }

  }

  catch (Exception) {

      Debug.WriteLine("Failed to Load Item");

  }

}

In the ItemDetailViewModel class, we have the following:

• ItemId ① is the property that receives the query parameter.

• In the setter of ItemId, we call the LoadItemId() method ② to load the item.

• In LoadItemId(), we can call the data service GetItemAsync() method ③ to get the 
item using the item Id.

• Here, the item is an instance of PwEntry ④, so we can cast it as a PwEntry.

• We have an extension method called GetFields()⑤ in PassXYZLib. We use this method 
to update the list of fields.



Improving our model 133

We learned about basic navigation and Shell navigation in the last two sections. We also improved 
our navigation design using Shell. Now, it’s time to review the MVVM pattern and refine our data 
model again to make our password manager app better.

Improving our model
We studied use cases and created some in Chapter 4, Exploring MVVM and Data Binding In this 
section, we will enhance existing use cases and implement new use cases using the knowledge that 
we’ve learned.

We will work on the following use cases.

Use Case 1: As a password manager user, I want to log in to the password manager app so that I can 
access my password data.

For this use case, we haven’t fully implemented the user login yet; we will complete this in the next 
chapter. In this chapter, we will implement some pseudo logic that includes everything except the 
data layer.

In Chapter 4, Exploring MVVM and Data Binding, we have the following use case, which can support 
one level of navigation.

Use case 3: As a password manager user, I want to see a list of groups and entries so that I can explore 
my password data.

To support multiple levels of navigation, we will implement the following use case in this section.

Use case 6: As a password manager user, when I click a group in the current list, I want to see the 
groups and entries belonging to this group.

Use case 7: As a password manager user, when I navigate my password data, I want to navigate back 
to the previous group or parent group.

In use cases 6 and 7, we want to navigate forward or backward using the relative routes.

In the MVVM pattern, we access our model through services. These services are usually abstracted 
as interfaces so that they’re separate from the actual implementation. The IDataStore interface is 
one of them. To support use case 6 and improve use case 1, we need to create a new interface called 
IUserService to support user login.



Navigation using .NET MAUI Shell and NavigationPage134

Understanding the data model and its services

To understand the services and the enhanced model, let’s review the enhanced design in Figure 5.7:

Figure 5.7: Model and service in MVVM

Figure 5.7 is a class diagram that depicts most of our design in the MVVM pattern. We can read this 
class diagram together with the following table to understand the MVVM pattern in our app. For 
simplicity, I have not included everything. For example, you can add NewItemPage or SignUpPage 
to Figure 5.7 and Table 5.3 by yourself:

Table 5.3: Classes and interfaces in the MVVM pattern

Model
View View Model

Data Model Service

User IUserService LoginPage LoginViewModel

Item
IDataStore

ItemsPage ItemsViewModel

Field ItemDetailPage ItemDetailViewModel



Improving our model 135

To store application data, we usually store data in a database, which can be a relational database or 
NoSQL database. In our case, our password database is not a relational database. However, when we 
work on our design, we can still use the similar logic of relational databases to design our business 
logic. We have three classes to represent our model – User, Item, and Field.

Item and Field are used to represent a password entry and the content of an entry. We can imagine 
that an entry looks like a row in a table and that a Field is similar to a cell. We use PwEntry in 
KeePassLib to model a password entry. A list of entries is a group and we use PwGroup to model 
a group. Here, a group is similar to a table in a database. Fields with the same key values in a group 
are similar to a column. To design the interface of our data services, we can use a similar strategy to 
process data in our database.

How do we handle data in a database? You may have heard about CRUD operations. In our case, we 
can use the enhanced Create, Read, Update, Delete, and List (CRUDL) operations to define the 
interface of our service.

To process password entries and groups, we can use the IDataStore interface:

public interface IDataStore<T>

{

    T? GetItem(string id, bool SearchRecursive = false);

    Task<T?> GetItemAsync(string id, bool SearchRecursive =

        false);

    Task AddItemAsync(T item);

    Task UpdateItemAsync(T item);

    Task<bool> DeleteItemAsync(string id);

    Task<IEnumerable<T>> GetItemsAsync(bool forceRefresh =

        false);

}

In the IDataStore interface, we define the following CRUDL operations:

• Create: We use AddItemAsync() to add an entry or a group

• Read: We use GetItem() or GetItemAsync() to read an entry or a group

• Update: We use UpdateItemAsync() to update an entry or a group

• Delete: We use DeleteItemAsync() to delete an entry or a group

• List: We use GetItemsAsync() to get a list of entries and groups in the current group



Navigation using .NET MAUI Shell and NavigationPage136

To process users, we can use the IUserService interface:

public interface IUserService<T>

{

    T GetUser(string username);

    Task AddUserAsync(T user);

    Task UpdateUserAsync(T user);

    Task DeleteUserAsync(T user);

    List<string> GetUsersList();

    Task<bool> LoginAsync(T user);

    void Logout();

}

We can define a set of CRUDL operations to handle users as well:

• Create: We can create a new user using AddUserAsync()

• Read: We can get the user information using GetUser()

• Update: We can update a user using UpdateUserAsync()

• Delete: We can delete a user using DeleteUserAsync()

• List: We can get a list of users using GetUsersList()

• Login and Logout: We can log in or log out using an instance of User

To further separate the dependency of model and service, we can use generic types in the interface 
definition instead of concrete types. We use these services in our view models to manage our models. To 
improve the efficiency of our code, we will initialize the IDataStore service in BaseViewModel 
so that they are available in all derived view models automatically:

public class BaseViewModel : INotifyPropertyChanged {

  public static IDataStore<Item> DataStore =>

    DependencyService.Get<IDataStore<Item>>();

  bool isBusy = false;

  public bool IsBusy...

  string title = string.Empty;

  public string Title...

  ...

}



Improving our model 137

In the BaseViewModel class, we initialize the IDataStore service through a dependency service. 
We will explain dependency services and dependency injection in the next chapter.

Improving the login process

For user management, we may add new users or delete obsolete users in the system. We only have 
one user who can log in to our app at a time, so we must define a singleton class called LoginUser 
to model this case:

Listing 5.3: LoginUser.cs (https://epa.ms/LoginUser5-3)

using System.Diagnostics;

using PassXYZLib;

namespace PassXYZ.Vault.Services;

public class LoginUser : PxUser

{

    private const string PrivacyNotice = "Privacy Notice";

    public static bool IsPrivacyNoticeAccepted...

    private bool _isFingerprintEnabled = false;

    public bool IsFingerprintEnabled =>

        _isFingerprintEnabled;

    public static IUserService<User> UserService =>

        DependencyService.Get<IUserService<User>>();      ➊

    public override void Logout() {

        UserService.Logout();

    }

    public async Task<string> GetSecurityAsync()...

    public async Task SetSecurityAsync(string passwd)...

    public async Task<bool> DisableSecurityAsync()...

    private LoginUser() { }                               ➋

    private static LoginUser? instance = null;

    public static LoginUser Instance {                    ➌

        get {

            if (instance == null) { instance = new



Navigation using .NET MAUI Shell and NavigationPage138

                LoginUser(); }

            return instance;

        }

    }    }    }

}

LoginUser is inherited from the User class through a sub-class called PxUser.

➊ In LoginUser, we initialize the IUserService interface through a dependency service.

➋ To implement a singleton class, we make the default constructor private to disable the creation of 
this class using a new operator.

➌ To get an instance of LoginUser, we must define a static property Instance. Please be aware 
that I chose to use a no-thread-safe implementation here to keep the code simple. In production 
implementation, we should use a lock to make it thread-safe.

Once we have implemented the IUserService interface and the LoginUser class, we can improve 
the login process. So far, we only have one Button on the login page. Let’s add a username field and 
a password field to LoginPage.xam, as shown in Listing 5.4:

Listing 5.4: LoginPage.xaml (https://epa.ms/LoginPage5-4)

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage...>

  <ContentPage.Content>

    <StackLayout Padding="30" Spacing="10">

      <Image HorizontalOptions="Center"

          HeightRequest="96"...>

      <Label FontSize="Small".../>

      <Frame Margin="10">

      <Grid x:DataType="viewmodels:LoginViewModel"...>    ➊

        <Grid.RowDefinitions...>

        <Grid.ColumnDefinitions...>

        <!-- Row 1 (Username) -->

        <Image Grid.Row="0" Grid.Column="0"...>

        <Entry x:Name="usernameEntry" Placeholder="{x:Static 
resources:Resources.

    field_id_username}" ReturnType="Next" Text="{Binding

        CurrentUser.Username}" HorizontalOptions="Fill"

            Grid.Row="0" Grid.Column="1" />               ➋



Improving our model 139

        <ImageButton x:Name="switchUsersButton"...>

        <!-- Row 2 (Password) -->

        <Image Grid.Row="1" Grid.Column="0"...>

        <Entry x:Name="passwordEntry" Placeholder="{x:Static  
          resources:Resources.

    field_id_password}" IsPassword="true" Text="{Binding

        CurrentUser.Password}" HorizontalOptions="Fill"

            Grid.Row="1" Grid.Column="1" />               ➌

        <!-- Row 3 (ActivityIndicator ) -->

        <ActivityIndicator IsRunning="{Binding IsBusy}"

        Grid.Row="2" Grid.Column="1" IsVisible="{Binding

            IsBusy}" />                                   ➍

        <!-- Row 4 (Login Button) -->

        <Button Text="{x:Static resources:Resources.

          LoginPageTitle}" HorizontalOptions=

          "CenterAndExpand" Command="{Binding

          LoginCommand}" Grid.Row="3" Grid.Column="1" />  ❺

        </Grid>

      </Frame>

      <Label x:Name="messageLabel" />

    </StackLayout>

  </ContentPage.Content>

</ContentPage>

In this new user interface design, we did the following:

•  ➊ We created a 4x3 grid layout in a frame.

• In the first two rows, we used two instances of Entry to hold the username ➋ and password 
➌. We created a data binding between the Text fields of Entry and the properties of 
CurrentUser, which is defined in the view model. It is an object of LoginUser.

•  ➍ In the third row, we used an ActivityIndicator control to show the login status, 
which is bound to the IsBusy property of the view model.

•  ➎ In the last row, we defined a Button control for the login activity. There is a Command 
property defined in Button that implements the ICommand interface. We used data binding 
to link this Command property to the method in the view model to perform the login activity.

We can see the improved login user interface in Figure 5.8:



Navigation using .NET MAUI Shell and NavigationPage140

Figure 5.8: LoginPage

The Command interface

Without Command property support, we must create an event handler of the Clicked event in the 
code-behind file of LoginPage. In the event handler, we call a method defined in the view model 
that invokes LoginAsync() in IUserService to process login activity. Using the Command 
property, we can bind to the LoginCommand property in the view model directly, so we don’t need to 
create the event handler in the code-behind file of LoginPage. The code looks cleaner and simpler.



Improving our model 141

Let’s review the improved LoginViewModel.cs file to find out more details:

Listing 5.5: LoginViewModel.cs (https://epa.ms/LoginViewModel5-5)

public class LoginViewModel : BaseViewModel

{

  readonly IUserService<User> userService = LoginUser.
UserService;

  private Action<string> _signUpAction;

  public Command LoginCommand { get; }

  public Command SignUpCommand { get; }

  public Command CancelCommand { get; }

  public LoginUser CurrentUser => LoginUser.Instance;

  public ObservableCollection<User>? Users ...

  public LoginViewModel() {

    LoginCommand = new Command(OnLoginClicked,

        ValidateLogin);                                   ➊

    SignUpCommand = new Command(OnSignUpClicked,

        ValidateSignUp);

    CancelCommand = new Command(OnCancelClicked);

    CurrentUser.PropertyChanged +=

            (_, __) => LoginCommand.ChangeCanExecute();   ➋

    CurrentUser.PropertyChanged +=

            (_, __) => SignUpCommand.ChangeCanExecute();

  }

  public LoginViewModel(Action<string> signUpAction) ...

  private bool ValidateLogin() {                          ➌

    return !string.IsNullOrWhiteSpace(CurrentUser.Username)

       && !string.IsNullOrWhiteSpace(CurrentUser.Password);

  }

  private bool ValidateSignUp() ...

  public void OnAppearing() ...

  public async void OnLoginClicked() {

    try {

      IsBusy = true;

      if (string.IsNullOrWhiteSpace



Navigation using .NET MAUI Shell and NavigationPage142

          (CurrentUser.Password))...

      bool status = await userService.LoginAsync

          (CurrentUser);                                  ➍

      if (status) {

        if (AppShell.CurrentAppShell != null) {

            AppShell.CurrentAppShell.SetRootPageTitle

               (DataStore.RootGroup.Name);

          string path = Path.Combine

              (PxDataFile.TmpFilePath,

                  CurrentUser.FileName);

          if (File.Exists(path))...

          await Shell.Current.GoToAsync($"//RootPage");

        }

        else {

          throw (new NullReferenceException

              ("CurrentAppShell is null"));

        }

      }

      IsBusy = false;

    }

    catch (Exception ex) {

      IsBusy = false;

      string msg = ex.Message;

      if (ex is System.IO.IOException ioException) {

        msg = Properties.Resources.message_

            id_recover_datafile;

      }

      Await Shell.Current.DisplayAlert

          (Properties.Resources.LoginErrorMessage, msg,

              Properties.Resources.alert_id_ok);

    }

  }

}

In LoginViewModel (Listing 5.5), we defined a few Command properties. Let’s look at LoginCommand 
to understand how to use the ICommand interface.



Summary 143

In .NET MAUI, the Command class is defined like so:

public class Command : System.Windows.Input.ICommand

➊ We use the following constructor to initialize LoginCommand:

public Command (Action execute, Func<bool> canExecute);

The execute parameter, which is of the Action type, is the action to be invoked. Here, the 
OnLoginClicked() method is assigned. When the user clicks the button, it will be executed.

We also assigned another method called ValidateLogin()➌ to the canExecute parameter. This 
parameter is used to indicate whether this Command can be executed. In the ValidateLogin() 
method, we check whether the username or password in CurrentUser is empty. If either of them 
is empty, this Command cannot be executed, and the button should be grayed out.

To detect a change in the username or password, we can register ChangeCanExecute() to the 
PropertyChanged handler ➋.

After the user clicks the button, the OnLoginClicked() method is called. In this method, we pass 
CurrentUser to the IUserService method’s LoginAsync()➍ to handle the login process.

So far, we have improved our model and service to enhance the login process. If we recall the 
class diagram in Figure 5.7, we have changed the source code at the view, view model, and service 
layers to enhance our app. The actual model is encapsulated in two libraries called KPCLib and 
PassXYZLib. We exposed the functionalities of these two libraries through the IdataStore and 
IuserService interfaces. We enhanced our model by building the actual implementation classes 
of these two interfaces. In the next chapter, we will continue improving these two service interfaces 
and build a fully functional app.

Summary
In this chapter, we learned about basic navigation and Shell. We used Shell as the navigation 
framework in our app design. We explored the features of Shell and explained how to use it in our 
app design.

After we completed most of the user interface design, we enhanced our model by making changes to 
two service interfaces: IDataStore and IUserService. We improved the login process after 
making changes in the view, view model, and service layers. In the service layer, we are still using the 
MockDataStore class. However, we haven’t finalized the implementation in the IDataStore 
service to perform the actual login activities yet. We will leave this to the next chapter.



Navigation using .NET MAUI Shell and NavigationPage144

In the next chapter, we will explain dependency injection in .NET MAUI, which is a major difference 
compared to Xamarin.Forms. We will learn how to register our services via dependency injection and 
how to initialize our service through constructor injection or property injection. We will also create 
the actual service to replace MockDataStore.



6
Introducing Dependency 

Injection and Platform-Specific 
Services

In the last chapter, we introduced navigation and Shell in .NET Multi-platform App UI (.NET MAUI), 
and we completed the navigation design of our app. We improved two interfaces, IDataStore 
and IUserService, to separate the model from the view and view model. In the current code, we 
used the DependencyService class to decouple the interface implementations. In this chapter, 
we will refine our design using dependency injection (DI) to replace the DependencyService 
class. There is a built-in service to support DI in .NET MAUI. With the help of DI, we can refine our 
design and decouple the dependencies in a more elegant way.

We will cover the following topics in this chapter:

• A quick review of design principles

• Using DI

• Connecting to the database

DI is a technique to realize the design principle of dependency inversion or Dependency Inversion 
Principle (DIP). DIP is one of the SOLID design principles, and we will learn how to use SOLID 
design principles in our design. We will have a quick overview of SOLID design principles at the 
beginning of this chapter before we dive into DI.

Technical requirements
To test and debug the source code in this chapter, you need to have Visual Studio 2022 installed on 
your PC. Please refer to the Development environment setup section in Chapter 1, Getting Started with 
.NET MAUI, for further details.



Introducing Dependency Injection and Platform-Specific Services146

The source code for this chapter is available in the following GitHub repository:

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-
Application-Development/tree/main/Chapter06

The source code can be downloaded using the following Git command:

git clone -b chapter06 https://github.com/PacktPublishing/.
NET-MAUI-Cross-Platform-Application-Development PassXYZ.Vault2

A quick review of design principles
Design principles are high-level guidelines about design considerations. They can give fundamental 
pieces of advice for you to make a better design decision. There are general design principles that can 
be used not only for software design but are also applicable to other design works.

Let’s review some general design principles before we move to commonly used design principles 
(SOLID) in software development.

Exploring types of design principles

Design principles can be a huge topic. So, instead of a detailed description, here, I will share my 
experience of applying design principles in development by giving you a quick review of the design 
principles used in this book. We will start with high-level principles such as DRY, KISS, YAGNI, and 
so on first, and then we move to the ones that are mostly used in software development. The most 
commonly used ones in object-oriented programming (OOP) are SOLID design principles.

Don’t Repeat Yourself (DRY)

As people often say, don’t reinvent the wheel; we should try to reuse existing components rather than 
redevelop something that already exists.

Keep It Simple, Stupid (KISS)

We should choose a simple and straightforward approach rather than involve unnecessary complexity 
in a design.

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter06
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter06


A quick review of design principles 147

You Aren’t Gonna Need It (YAGNI)

We should implement functionality when it is required. In software development, there is a tendency 
to futureproof a design. This may create something that is actually not needed and increase the 
complexity of the solution.

SOLID design principles

SOLID design principles are the ones used in software development. They are high-level guidelines 
for many design patterns. SOLID is an acronym for the following five principles:

• Single Responsibility Principle (SRP)—A class should only have one responsibility. As a developer, 
you have one and only one reason to change a class. With this design principle in mind, the 
implementation is easier to understand and more efficient to deal with as requirements change.

• Open/Closed Principle (OCP)—Classes should be open for extension but closed for modification. 
The main idea of this principle is to keep the existing code from breaking when you implement 
new features.

• Liskov Substitution Principle (LSP)—If the object of the parent type can be used in a context, 
the object of the child type should be able to be used the same way without anything breaking.

• Interface Segregation Principle (ISP)—A design should not implement an interface that 
it doesn’t use, and a class should not be forced to depend on methods it doesn’t intend to 
implement. We should design concise and simple interfaces rather than large and complex ones.

• Dependency Inversion Principle (DIP)—This principle emphasizes the decoupling of software 
modules. High-level modules should not depend on low-level modules directly. Both should 
depend on abstractions. Abstractions should not depend on details. Details should depend 
on abstractions.

Design principles are guidelines to help us to make better design decisions. However, it is up to us to 
decide what to do in the actual implementation, not the design principles.

Using design principles

Now that we’ve talked about the different design principles, let me share my lessons learned when 
using design principles.

In the model of our app, I reused KeePassLib from Dominik Reichl. When I ported it to .NET 
Standard, I changed the inheritance hierarchy, as shown in Figure 6.1:



Introducing Dependency Injection and Platform-Specific Services148

Figure 6.1: Class diagram of Item, PwEntry, and PwGroup

I created an abstract parent class, Item, for the group (PwGroup) and entry (PwEntry). It looks 
like this change breaks OCP in SOLID. The reason that I did it this way is influenced by a lesson I 
learned in the previous implementation.

So, previously I did not implement KPCLib this way before version 1.2.3. At that time, I used PwGroup 
and PwEntry directly, so I had to handle groups and entries separately. You can imagine the increased 
complexity in ItemsPage and ItemsViewModel. The most important side effect is that I couldn’t 
separate the model and view model clearly. In the view model, I had to handle a lot of details using 
KeePassLib directly. After the Item abstract parent class is introduced, I can hide most of the 
detailed implementation in services (IDataStore and IUserService) and PassXYZLib. No 
code that is dependent on KeePassLib is present in the view and view model anymore. The thought 
behind this change is influenced more by KISS rather than just sticking to OCP. The result is that the 
overall architecture looks much better if we consider other SOLID principles, such as LSP and SRP. 
The point that I want to share here is that we may find conflicts among various design principles in 
the actual work. It’s up to us to make decisions rather than just sticking to design principles. The best 
design decision usually comes from the lessons learned in previous failure cases.

Now, coming back to our primary topic, we’ll talk about refining design using one of the SOLID 
principles—dependency inversion. In SOLID design principles, dependency inversion emphasizes the 
decoupling of software modules, and it also gives guidelines about how to do it. The key idea behind 
it is we should try to depend on abstractions whenever possible. In the actual implementation, DI is 
the technique that we use frequently to apply the idea of dependency inversion.



Using DI 149

Using DI
DI is one of the tools that we can use in .NET MAUI. It is actually not something new, and it has been 
used heavily in backend frameworks such as ASP.NET Core or the Java Spring Framework. DI is a 
technique for achieving dependency inversion (DIP). It can help to decouple the usage of an object 
from its creation so that we don’t have to depend on the object we use directly. In our app, after we 
decouple the implementation of the IDataStore interface, we can start with a mock implementation 
first and replace it with the actual implementation later.

In .NET MAUI, Microsoft.Extensions.DependencyInjection—or MS.DI, as we shorten 
the name in this chapter—is a built-in service that we can use directly.

In the .NET world, there are many DI containers available other than MS.DI. They may be more powerful 
and flexible than MS.DI, such as the Autofac DI container or the Simple Injector DI container, and 
so on. Then, why do we choose MS.DI instead of other powerful and flexible DI containers? Here, we 
may want to think about KISS and YAGNI principles again. We should not choose a more powerful 
solution by assuming that we may use some features in the future. The simplest and easiest solution is 
to use what we already have without any extra effect. With MS.DI, we don’t have to involve any extra 
dependencies. Irrespective of whether we want to use it or not, it is already there in the configuration 
of .NET MAUI. We can just add a few lines of code to make our design better. For other DI containers, 
it may be better at imagining the future, but we have to introduce additional dependencies and do the 
necessary configuration in our code before we can really use them. If you are working on a complex 
system design, you may want to evaluate the available DI containers and choose the right one for 
your system. For our case, PassXYZ.Vault is a relatively simple app, and we won’t benefit directly 
from the advanced DI features provided by Autofac or Simple Injector. The functionalities provided 
by MS.DI are sufficient for our implementation.

Before we move to the topic of DI, let’s look at our current implementation first. Instead of using DI, 
we are using DependencyService from Xamarin.Forms in our app to decouple the interface and its 
implementation. We will refine our code to replace DependencyService with DI in this chapter.

Dependency Service

In Chapter 2, Building Our First .NET MAUI App, we created our app from a Xamarin.Forms template 
and migrated it to .NET MAUI. Whatever works in Xamarin.Forms can still work in .NET MAUI, 
including Dependency Service.

DependencyService is a service locator that enables Xamarin.Forms applications to invoke native 
functionality from shared code, but it can also be used to play a DI container role for simple use cases.

The module that we want to decouple in our app is the model layer, which is a third-party library 
from KeePass. As we can see in the package diagram in Figure 6.2, our system includes three separate 
assemblies: KPCLib, PassXYZLib, and PassXYZ.Vault:



Introducing Dependency Injection and Platform-Specific Services150

Figure 6.2: Package diagram

The KPCLib package includes two namespaces, KeePassLib and KPCLib. PassXYZLib is a 
package to extend the functionality of the KPCLib package with .NET MAUI-specific implementation. 
PassXYZ.Vault is our app that depends on the PassXYZLib package directly and depends 
on the KPCLib package indirectly. According to the DI principle, we want to create dependencies 
on abstractions rather than actual implementations. We created two interfaces, IDataStore and 
IUserService, which we can use to decouple from the actual implementations.

Using DependencyService includes two steps—registration and resolution. Let’s look at this in 
more detail:

1. Registering a service

We need to register the IDataStore and IUserService interfaces first before can we use 
them. In the current code, they are registered in the constructor of the App class, as shown here:

DependencyService.Register<MockDataStore>();

DependencyService.Register<UserService>();

We can use the Register() method of Dependency Service to register the implementation 
of services. The MockDataStore and UserService classes implement IDataStore and 
IUserService interfaces. MockDataStore is not the actual implementation, and it is used 
for testing purposes only. We will replace it with the actual implementation later in this chapter. 
This is one of the benefits that we can see after we decouple from the actual implementation.

2. Resolving a service

To resolve the dependency in our code, we defined a DataStore public property of type 
IDataStore in the BaseViewModel class, as shown here:

public static IDataStore<Item> DataStore =>

    DependencyService.Get<IDataStore<Item>>();



Using DI 151

We can use the Get() method of DependencyService to resolve the dependency. Since 
BaseViewModel is the parent class of all other view models, we can access the IDataStore 
interface in all view models with this setup.

For the IUserService interface, we created a LoginUser singleton class and defined a 
UserService public property in the LoginUser class, as shown here:

public static IUserService<User> UserService =>

    DependencyService.Get<IUserService<User>>();

This is the current implementation of DependencyService in our app. Let’s replace it with DI 
supported in MS.DI.

Using built-in MS.DI DI service

To use MS.DI as a DI service, the usage is similar to DependencyService, which includes two 
steps—registration and resolution. We can use the ServiceCollection class for the registration 
and the ServiceProvider class for the resolution, as shown in Figure 6.3:

Figure 6.3: Usage of MS.DI



Introducing Dependency Injection and Platform-Specific Services152

If we want to use DI to resolve the IDataStore service, we can use the steps in the following 
code block:

// Registration

var services = new ServiceCollection();                   ❶

services.AddSingleton <IDataStore<Item>, MockDataStore>();❷

// Resolution

ServiceProvider provider =

    services.BuildServiceProvider(validateScopes: true);  ❸

IDataStore<Item> dataStore =

    provider.GetRequiredService<IDataStore<Item>>();      ❹

❶We need to create an instance of the ServiceCollection class first.  ServiceCollection 
implements the IServiceCollection interface.

❷ The IServiceCollection interface itself does not define any method directly. There are a set of 
extension methods defined in MS.DI. We can use the AddSingleton() extension method to register 
the concrete MockDataStore class for the IDataStore abstraction. The AddSingleton() 
method can use a generic type to define the interface and the implementation. There are multiple 
overloaded versions of the AddSingleton() extension method available.

❸  To resolve objects, we can get an instance of ServiceProvider  by calling the 
BuildServiceProvider() extension method of IServiceCollection. The 
ServiceProvider class implements the IServiceProvider interface. The IServiceProvider 
interface is defined in the System namespace and it defines only one method, GetService(). 
The rest of the methods are extension methods defined in the Microsoft.Extensions.
DependencyInjection namespace, as we can see in Figure 6.3.

❹ Once we have an instance of ServiceProvider, we can resolve the IDataStore interface 
using the GetRequiredService() extension method.

Even though MS.DI is a lightweight DI service, it provides enough features for .NET MAUI applications, 
as set out here:

• Lifetime management of instances

• Constructor, method, and property injections

Let’s explore these features in the next sections.



Using DI 153

Lifetime management

We can manage the lifetime of instances by configuring ServiceCollection.

To configure ServiceCollection, we can use the following three extension methods:

• AddSingleton—This method creates a single instance throughout the life of the application. 
It creates an instance for the first time and reuses it in the following calls.

• AddTransient—This method creates an instance for each call. The lifetime of the instance 
depends on the scope of the programming logic.

• AddScoped—The lifetime of the instance resolved by this method is within the scope defined 
by the design. It creates one instance and reuses the same instance within the defined scope. 
In ASP.NET, we can define the scope as the session of each HTTP request.

To explain the lifetime management of MS.DI, we can review the following code snippet, together 
with Figure 6.4:

var services = new ServiceCollection();

services.AddSingleton< IUserService<User>, UserService>();❶

services.AddScoped<IDataStore<Item>, DataStore>();        ❶

services.AddTransient<ItemsViewModel>();                  ❶

ServiceProvider rootContainer =

    services.BuildServiceProvider(validateScopes: true);  ❷

var userService =

    rootContainer.GetRequiredService<IUserService<User>>();

IServiceScope scope1 = rootContainer.CreateScope();       ❸

  IDataStore<Item> dataStore1 =

    scope1.ServiceProvider.GetRequiredService<IDataStore<Item>>

    ();

IServiceScope scope2 = rootContainer.CreateScope();       ❸

IDataStore<Item> dataStore2 =    Scope2.ServiceProvider. 
  GetRequiredService<IDataStore<Item>>

    ();

In the preceding code, ❶ we registered IUserService as a Singleton object, IDataStore 
as a Scoped object, and ItemsViewModel as a Transient object.



Introducing Dependency Injection and Platform-Specific Services154

After the registration, ❷ we created a ServiceProvider instance and stored it in a rootContainer 
variable. ❸ We created two scopes, scope1 and scope2, using the rootContainer. We can 
review the lifetime management of the created objects in Figure 6.4:

Figure 6.4: Lifetime management in MS.DI

userService is created as a Singleton object, so there is only one instance, and the instance has 
the same lifetime as the application itself. The two scopes that are scope1 and scope2 have their 
own lifetimes that are decided by our design. The Scoped objects, dataStore1 and dataStore2, 
have the same lifetime as the scope to which they belong. The instances of ItemViewModel are 
Transient objects.

For each of these three methods, AddSingleton(), AddScoped(), and AddTransient(), multiple 
overloaded versions are defined to meet various requirements in the ServiceCollection configuration.

In our application, we have two versions of the IDataStore interface implementation:

1. DataStore—This is the actual implementation

2. MockDataStore—This is the one used for testing purposes



Using DI 155

Using MS.DI, we can use MockDataStore in the Debug build and use DataStore in the 
Release build. This configuration can be implemented as shown in the following code snippet:

bool isDebug = false;

var services = new ServiceCollection();

services.AddSingleton<DataStore, DataStore>();

services.AddSingleton<MockDataStore, MockDataStore>();

services.AddSingleton<IDataStore<Item>>(c => {

    if (isDebug)

    {

        return c.GetRequiredService<MockDataStore>();

    }

    else

    {

        return c.GetRequiredService<DataStore>();

    }

});

In the preceding code snippet, we can configure concrete classes and DataStore, MockDataStore, 
and IDataStore interfaces for different build configurations. In the configuration of IDataStore, 
we can use a delegate to resolve the object. The isDebug variable can be set using the build configuration 
so that it can be set to true/false according to whether it is a debug or release build.

Configuring DI in .NET MAUI

MS.DI is implemented as part of the .NET release, so it is available for all kinds of applications in .NET 
5 or later releases. We can implement DI using ServiceCollection and ServiceProvider, 
as we introduced in the previous section. However, there is a much simpler way to use MS.DI in .NET 
MAUI. DI is integrated as part of the .NET Generic Host configuration, so we don’t need to create an 
instance of ServiceCollection by ourselves. We can use the preconfigured DI service directly 
without any extra work.

To understand the preconfigured DI service in .NET MAUI, we can review the .NET MAUI application 
startup process again using Figure 6.5. Figure 6.5 includes both a class diagram and a sequence diagram 
of the involved classes:



Introducing Dependency Injection and Platform-Specific Services156

Figure 6.5: .NET MAUI DI configuration

At the top of Figure 6.5, we can see that there are four classes involved in the .NET MAUI application startup:

1. Platform entry point—The entry point of the .NET MAUI application is in platform-specific code. 
For the .NET MAUI project, it is in the Platforms folder. There are different classes defined 
for different platforms, as we can see in Table 6.1. In Figure 6.5, we use the MauiApplication 
Android version as an example:

Platform Entry point class
Android MauiApplication

iOS/macOS MauiUIApplicationDelegate

Windows MauiWinUIApplication

Table 6.1: Entry points in different platforms



Using DI 157

All entry-point classes implement the IPlatformApplication interface, as we can see 
in the following code snippet:

public interface IPlatformApplication

{

    static IPlatformApplication? Current { get; set; }

    IServiceProvider Services { get; }

    IApplication Application { get; }

}

IServiceProvider is defined as part of this interface, so we can use it directly to resolve 
DI objects once the application is initialized.

2. MauiProgram ❶—As we can see in the code of the MauiProgram implementation 
shown next, each .NET MAUI app needs to define a static MauiProgram class and create 
a CreateMauiApp() method. The CreateMauiApp() method is invoked by the 
following override function, which is defined in all platform entry points. The return value is 
a MauiApp instance:

protected override MauiApp

    CreateMauiApp() => MauiProgram.CreateMauiApp();

3. MauiApp ❷—Inside CreateMauiApp(), it creates a MauiAppBuilder instance by 
calling MauiApp.CreateBuilder().

4. MauiAppBuilder ❸—MauiAppBuilder includes a Services attribute of the 
IServiceCollection interface type. We can use it to configure DI for the .NET MAUI app.

From the previous analysis of the .NET MAUI app startup process, we can see that both 
IServiceCollection and IServiceProvider have been initialized during the startup 
process, so we can use them directly without further configuration.

We can refer to the following code snippet when we analyze the startup process. We registered two 
abstractions, IDataStore and IUserService, and a LoginUser class. They are all singleton objects:

public static class MauiProgram {                         ❶

  public static MauiApp CreateMauiApp() {                 ❷

    var builder = MauiApp.CreateBuilder();                ❸

    builder

      .UseMauiApp<App>()

      .ConfigureFonts(fonts => {

        fonts.AddFont("fa-regular-400.ttf",

            "FontAwesomeRegular");



Introducing Dependency Injection and Platform-Specific Services158

        fonts.AddFont("fa-solid-900.ttf",

            "FontAwesomeSolid");

        fonts.AddFont("fa-brands-400.ttf",

            "FontAwesomeBrands");

        fonts.AddFont("OpenSans-Regular.ttf",

            "OpenSansRegular");

        fonts.AddFont("OpenSans-SemiBold.ttf",

            "OpenSansSemiBold");

      });

    builder.Services.AddSingleton<IDataStore<Item>,

        DataStore>();

builder.Services.AddSingleton<IUserService<User>,

  UserService>();

    builder.Services.AddSingleton<LoginUser, LoginUser>();

    return builder.Build();

  }

}

Once we have configured the interfaces and class, we can use them in our implementation. We can use 
the IServiceProvider interface to resolve objects. When we implement DI, there are three ways 
of injecting dependencies. We can use constructor injection, method injection, or property injection. 
Let’s see how we can do it using the most common methods in the next two sections.

Constructor injection

In constructor injection, the dependencies required for the class are provided as arguments to 
the constructor. We can resolve dependencies using the constructor. This requires the registered 
dependency to have a parameterless constructor. In our code, the LoginUser class depends on the 
IuserService interface. The concrete class implementing IUserService is UserService, 
which defines a parameterless constructor. We can define the constructor of LoginUser as follows:

private IUserService<User> _userService;

public LoginUser(IUserService<User> userService)

{

_userService = userService ?? throw new

  ArgumentNullException(nameof(userService));

    _userService.CurrentUser = this;

}



Using DI 159

In the constructor of LoginUser, we list the dependency as a userService parameter. In this 
case, MS.DI will resolve IUserService as the configured UserService concrete class for us.

Property injection

There are many cases in which we won’t be able to use constructor injection. In these cases, we can 
resolve the dependencies through IServiceProvider.

In the .NET MAUI application, the hosting environment creates an IServiceProvider interface 
for us, as we can see in Figure 6.5. We can use the IPlatformApplication interface defined in 
the platform-specific entry points to get the IServiceProvider interface, as shown in Listing 6.1:

Listing 6.1: ServiceHelper.cs (https://epa.ms/ServiceHelper6-1)

namespace PassXYZ.Vault.Services;

public static class ServiceHelper

{

    public static TService GetService<TService>()

        => Current.GetService<TService>();                ❷

    public static IServiceProvider Current =>             ❶

#if WINDOWS10_0_17763_0_OR_GREATER

        MauiWinUIApplication.Current.Services;

#elif ANDROID

        MauiApplication.Current.Services;

#elif IOS || MACCATALYST

        MauiUIApplicationDelegate.Current.Services;

#else

        null;

#endif

}

❶ In the ServiceHelper class, we define a Current static variable to keep the reference of 
IServiceProvider, which is from the IPlatformApplication interface in platform 
entry points.

❷ A GetService() static method is defined that calls the GetService() method 
of IServiceProvider.



Introducing Dependency Injection and Platform-Specific Services160

ServiceHelper
For the ServiceHelper implementation, I referred to the MauiApp-DI GitHub project. 
Thanks for James Montemagno’s sample code in GitHub!

https://github.com/jamesmontemagno/MauiApp-DI

We can update our source code to replace Dependency Service with DI with the help of 
ServiceHelper. In BaseViewModel.cs, we replaced DependencyService with DI, as 
shown next.

So, we replaced the following code:

public static IDataStore<Item> DataStore =>

      DependencyService.Get<IDataStore<Item>>();

This is what we replaced it with:

public static IDataStore<Item> DataStore =>

           ServiceHelper.GetService<IDataStore<Item>>();

You may feel that the preceding code of property injection doesn’t look elegant compared to constructor 
injection. I haven’t figured out a better way to do this in .NET MAUI. However, in the next part of 
this book, when we introduce the Blazor Hybrid app, we can resolve property injection using the C# 
attribute. To resolve the IDataStore interface in Blazor, we can do it in a much simpler way, as 
shown here:

[Inject]

public IDataStore<Item> DataStore { get; set; } = default!;

We can use the [Inject] C# attribute to resolve the dependency implicitly without calling the 
GetService() method of ServiceHelper explicitly.

When we move from Dependency Service to DI, we will create another concrete class for the 
IDataStore interface. This class will handle the CRUD operations of the password database.

Connecting to the database
The password database is a local database in KeePass 2.x format. Inside the database, password data 
is stored as groups and entries. In the KeePassLib namespace, a PwDatabase class is defined 
to manage database operations. We can refer to the class diagram in Figure 6.6 to understand the 
relationship between PwDatabase, PwGroup, and PwEntry:

https://github.com/jamesmontemagno/MauiApp-DI


Connecting to the database 161

Figure 6.6: Class diagram of KeePass database

In PwDatabase, a RootGroup property of type PwGroup is defined. It contains all groups and entries 
stored in the database. We can navigate the data structure of the KeePass database from RootGroup 
to a particular entry. In PwEntry, a set of standard fields is defined, as shown in Figure 6.7:

Figure 6.7: Group, entry, and field



Introducing Dependency Injection and Platform-Specific Services162

If we have a list of entries that include only standard fields, this list looks like a table. In Figure 6.7, the 
current group includes five entries (GitHub, Google, Facebook, Instagram, and Chase Bank) and a 
sub-group (Cloud). On the left, there is a screenshot of ItemsPage, which shows the items in the 
current group. If the Google item was selected, it would be displayed as an entry in the screenshot 
on the right-hand side. Users may add additional fields to the entry, so the KeePass database is not 
a relational database—it is more like a key-value database. Each key-value pair is a field, such as a 
URL field.

To use PwDatabase in our app, a derived class, PxDatabase, is defined. PxDatabase added 
additional properties and methods such as CurrentGroup, DeleteGroup(), DeleteEntry(), 
and so on.

To access a database, we can open the database file and perform CRUD operations on it. Since we 
are building a cross-platform app, it is not convenient to handle the database file directly for the end 
users. In PassXYZ.Vault, the user concept is used instead of a data file. In PassXYZLib, a User 
class is defined to encapsulate the underlying file operations.

To access the database, we defined database initialization and CRUDL operations in the IDataStore 
and IUserService interfaces. The DataStore and UserService concrete classes are used 
to implement these two interfaces.

Initializing the database

The initialization of the database is part of the login process, so the following login method is defined 
in the IUserService interface:

Task<bool> LoginAsync(T user);

In the UserService class, LoginAsync() is defined as an async method, as we can see here:

public async Task<bool> LoginAsync(User user) {

  if (user == null) {

Debug.Assert(false); throw new ArgumentNullException("user");

  }

  return await Task.Run(() => {                           ❶

    if (string.IsNullOrEmpty(user.Password)) { return false; }

    db.Open(user);                                        ❷

    if (db.IsOpen) {

      db.CurrentGroup = db.RootGroup;

    }

    return db.IsOpen;

  });

}



Connecting to the database 163

In LoginAsync(), ❶ a separate task is used to handle the open operation of the database. The 
Open() ❷ method of PxDatabase is called, and an instance of the User class is passed to the 
Open() method as an argument.

Performing CRUD operations

The data operation of the KeePass database is similar to the CRUD operations in a relational database. 
Once we log in and connect to a database, we can access our password data. The first step is to retrieve 
a list of items. After login, the first list is retrieved from the root group. There is a read-only property, 
RootGroup ①, which is defined in the IDataStore interface, as we can see in the following code 
snippet. Later, when the user navigates to a different group, the CurrentGroup ② property is used 
to keep the current location in the navigation:

Listing 6.2: IDataStore.cs (https://epa.ms/IDataStore6-2)

public interface IDataStore<T> {

    #region DS_misc

    T CurrentGroup { get; set; }                         ②

    string CurrentPath { get; }

    T RootGroup { get; }                                 ①

    bool IsOpen { get; }

    string GetStoreName();

    DateTime GetStoreModifiedTime();

    Task<bool> MergeAsync(string path);

    ObservableCollection<PxIcon> GetCustomIcons(...);

    Task<bool> DeleteCustomIconAsync(PxIcon icon);

    ImageSource GetBuiltInImage(PxIcon icon);

    #endregion

    DS_Item ...

}

Adding an item

The first operation in CRUD is a create or add operation. We can add an item that can be an entry or a 
group to the current group. The user interface for an add operation is a toolbar item in ItemsPage, 
as shown here:

<ContentPage.ToolbarItems>

  <ToolbarItem Text="{x:Static resources:Resources.



Introducing Dependency Injection and Platform-Specific Services164

      action_id_add}" Command="{Binding AddItemCommand}">

    <ToolbarItem.IconImageSource>

      <FontImageSource FontFamily="FontAwesomeSolid"

        Glyph="{x:Static styles:FontAwesomeSolid.Plus}"

        Color="{DynamicResource SecondaryColor}"

        Size="16" />

    </ToolbarItem.IconImageSource>

  </ToolbarItem>

</ContentPage.ToolbarItems>

We can see a toolbar item icon is shown in the top-right corner of ItemsPage in Figure 6.8:

Figure 6.8: Adding an item



Connecting to the database 165

When the Add button is clicked, it invokes the AddItemCommand command defined in 
ItemsViewModel through data binding.

The AddItemCommand command invokes the following OnAddItem() method in the view model:

Listing 6.3: ItemsViewModel.cs (https://epa.ms/ItemsViewModel6-3)

private async void OnAddItem(object obj) {

  string[] templates = {

Properties.Resources.item_subtype_group,

Properties.Resources.item_subtype_entry,

Properties.Resources.item_subtype_notes,

Properties.Resources.item_subtype_pxentry

  };

  var template = await Shell.Current.DisplayActionSheet(

Properties.Resources.pt_id_choosetemplate,

Properties.Resources.action_id_cancel, null,

     templates);                                      ❶

  ItemSubType type = ItemSubType.None;

  if (template == Properties.Resources.item_subtype_entry) {

type = ItemSubType.Entry;

  } else if (template == Properties.Resources.item

       _subtype_pxentry){

type = ItemSubType.PxEntry;

  } else if (template == Properties.Resources.

      item_subtype_group) {

type = ItemSubType.Group;

  } else if (template == Properties.Resources.item

      _subtype_notes) {

type = ItemSubType.Notes;

  } else if (template == Properties.Resources.action

      _id_cancel) {

type = ItemSubType.None;

  } else {

type = ItemSubType.None;

  }



Introducing Dependency Injection and Platform-Specific Services166

  if (type != ItemSubType.None) {

var itemType = new Dictionary<string, object>         ❷

{

      { "Type", type }

};

await Shell.Current.GoToAsync(nameof(NewItemPage),

    itemType);                                        ❸

  }

}

❶ In this OnAddItem() function, ActionSheet is displayed to let the user choose an item type. 
The item type can be a group or an entry.

❷ Once we get the item type, we can build a dictionary with the item type and the name of the query 
parameter. We store this object of the dictionary in an itemType variable.

❸ This itemType variable can be passed to NewItemPage as a query parameter. In Chapter 5, 
Introducing Shell and Navigation, we learned how to pass a string value as a query parameter to a 
page in Shell navigation. Here, we can pass an object as a query parameter to a page after we wrap it 
in a dictionary.

To add a new item, the user interface is defined in NewItemPage, and the logic is processed in 
NewItemViewModel. Let’s review the implementation of NewItemViewModel in Listing 6.4:

Listing 6.4: NewItemViewModel.cs  (https://epa.ms/NewItemViewMod-
el6-4)

using KPCLib;

using PassXYZLib;

namespace PassXYZ.Vault.ViewModels;

[QueryProperty(nameof(Type), nameof(Type))]               ①

public class NewItemViewModel : BaseViewModel {

private string text;

private string description;

private ItemSubType _type = ItemSubType.Group;

public NewItemViewModel() {

        SaveCommand = new Command(OnSave, ValidateSave);



Connecting to the database 167

        CancelCommand = new Command(OnCancel);

        this.PropertyChanged +=

            (_, __) => SaveCommand.ChangeCanExecute();

        Title = "New Item";

}

private void SetTitle(ItemSubType type)...

private bool ValidateSave()...

public ItemSubType Type {                                 ②

        get => _type;

        set {

            _ = SetProperty(ref _type, value);

            SetTitle(_type);

        }

    }

public string Text...

public string Description...

public Command SaveCommand { get; }

public Command CancelCommand { get; }

private async void OnCancel() {

        await Shell.Current.GoToAsyc(".."); }

private async void OnSave() {

        Item? newItem = DataStore.CreateNewItem(_type);   ③

        if (newItem != null) {

            newItem.Name = Text;

            newItem.Notes = Description;

            await DataStore.AddItemAsync(newItem);        ④

        }

    await Shell.Current.GoToAsyc("..");

}

}



Introducing Dependency Injection and Platform-Specific Services168

The design of NewItemPage is very simple. It includes two controls, Entry and Editor (used to 
edit the name and notes of an item). Entry is used to enter or edit a single line of text, and Editor 
is used to edit multiple lines of text. In the view model NewItemViewModel view model, we can 
see how to add a new item, as follows:

① The query parameter is defined with QueryPropertyAttribute. ② The Type property 
declared as ItemSubType is used to receive the query parameter. The received item type is stored 
in the _type backing variable. In NewItemPage, two toolbar items are defined, and the actions 
are bound to the OnSave and OnCancel methods in the view model.

Once the user enters a name and notes in the user interface and clicks the Save button, ③ a new 
item instance is created using the CreateNewItem() factory method, which is defined in the 
IDataStore interface. ④ After filling in the new item instance from the user input, we can add 
this new item to the database by invoking the AddItemAsync() method.

Now we’ve implemented the add operation, let’s implement the rest of the data operations in the 
next section.

Editing or deleting an item

In CRUD operations, we don’t need an existing item to perform a create operation, but we need to 
have an instance of the existing item to perform update and delete operations.

For a read operation, if the item is a group, we implement it by sending an ItemId query parameter 
to ItemsPage and finding the group in the setter of ItemId in the ItemsViewModel view 
model. If the item is an entry, we send an ItemId query parameter to ItemDetailPage and find 
the entry in the setter of ItemId in ItemDetailViewModel.

For update/edit and delete operations, we can use context actions to do it. With context actions, we 
can act on an item in ListView. The context actions look quite different on iOS, Android, and 
Windows, as we can see in Figure 6.9:



Connecting to the database 169

Figure 6.9: Context actions

On the iOS platform, you can take action on an item by sliding it to the left. On an Android system, 
you can long-press an item and the context actions menu is shown in the top-right corner of the 
screen. On Windows, you may be familiar with the right mouse click to see the context actions menu.

In our app, we implement a context actions menu in ItemsPage. In ItemsPage, we define context 
actions in ViewCell, as follows:

<ListView.ItemTemplate>

  <DataTemplate>

    <ViewCell>

      <ViewCell.ContextActions>

        <MenuItem Clicked="OnMenuEdit"                    ❶

          CommandParameter="{Binding .}"

          Text="{x:Static resources:Resources.

              action_id_edit}" />

        <MenuItem Clicked="OnMenuDeleteAsync"             ❷



Introducing Dependency Injection and Platform-Specific Services170

          CommandParameter="{Binding .}"

          Text="{x:Static resources:Resources.

              action_id_delete}"

          IsDestructive="True" />

      </ViewCell.ContextActions>

      <Grid Padding="10" x:DataType="model:Item" ...>

    </ViewCell>

  </DataTemplate>

</ListView.ItemTemplate>

We define two menu items for edit and delete context actions. Two event handlers, ❶ OnMenuEdit 
and ❷ OnMenuDeleteAsync, are assigned to the Clicked event. We can review the source code 
of the event handlers here:

private void OnMenuEdit(object sender, EventArgs e) {

  var mi = (MenuItem)sender;

  if (mi.CommandParameter is Item item) {

    _viewModel.Update(item);                              ❶

  }

}

private async void OnMenuDeleteAsync(object sender,

     EventArgs e) {

  var mi = (MenuItem)sender;

  if (mi.CommandParameter is Item item) {

    await _viewModel.DeletedAsync(item);                  ❷

  }

}

The OnMenuEdit and OnMenuDeleteAsync event handlers call the ❶ Update() and ❷ 

DeleteAsync() methods in the view model. Let’s review the source code of these functions in 
the ItemsViewModel view model, as follows:

public async void Update(Item item) {

    if (item == null) { return; }

    await Shell.Current.Navigation.PushAsync(new

        FieldEditPage(async (string k, string v, bool

            isProtected) => {                             ❶



Connecting to the database 171

        item.Name = k;

        item.Notes = v;

        await DataStore.UpdateItemAsync(item);            ❷

    }, item.Name, item.Notes, true));

}

public async Task DeletedAsync(Item item) {

    if (item == null) { return; }

    if (Items.Remove(item)) {

        _ = await DataStore.DeleteItemAsync(item.Id);     ❸

    }

    else { return; }

}

In ItemsViewModel, to edit or update an item, ❶ we use a FieldEditPage content page to 
perform the editing. When we invoke the constructor of FieldEditPage, an anonymous function 
is passed as a parameter. When the user completes the editing in FieldEditPage, this function will 
be invoked. In this function, ❷ we call the UpdateItemAsync() method of the IDataStore 
interface to update the item.

The delete operation is quite simple. We can just call the ❸ DeleteItemAsync() method of the 
IDataStore interface to remove the item.

After we implement CRUD operations, our app has most of the desired features of a password manager 
app. We can create a new database by signing up a new user. After we have a new database, we can log 
in to access our data. After we create entries and groups, we can also edit or delete them.

For a password manager app, there are more desired features, such as fingerprint scanning, one-time 
password, and so on. Most of these desired features are already included in the PassXYZ.Vault 
1.x.x releases. I will continue migrating features from 1.x.x to the .NET MAUI (2.x.x) releases when 
the dependencies are available for .NET MAUI.

Device features
We can access device features using the class in the Microsoft.Maui.Devices namespace. 
The device features implementation originated from Xamarin.Essentials and then changed 
to Maui.Essentials in .NET MAUI preview versions. It finally became Microsoft.
Maui.Devices in GA releases. Not all device features can be found in Microsoft.Maui.
Devices, such as fingerprint scanning. To support fingerprint scanning in .NET MAUI, I 
need to wait for a library such as Plugin.Fingerprint, available in .NET MAUI, to enable 
it in PassXYZ.Vault.



Introducing Dependency Injection and Platform-Specific Services172

Summary
In this chapter, we started with the introduction of design principles. After that, we introduced SOLID 
design principles and I shared lessons learned in the design of our app. One of the most important SOLID 
principles is Dependency Inversion Principle (DIP). Dependency Injection (DI) is the technique 
to apply DIP in the actual implementation. In our app, we use the .NET MAUI built-in DI service to 
decouple dependencies so that we can separate the implementation of the service from the interface.

With all the knowledge that we gathered about .NET MAUI, we completed our app implementation 
by replacing MockDataStore with the actual implementation. We implemented CRUD operations 
on top of this new IDataStore service. We have a fully functional password manager app now.

With the current version of the password manager app, we conclude Part 1 of this book.

In Part 2 of the book, we will explore the Blazor Hybrid app in .NET MAUI. This is a new capability 
that does not exist in Xamarin.Forms. With Blazor support, we can bring some modern frontend 
development techniques to .NET MAUI development.

Further reading
• Autofac is an inversion of control (IoC) container for .NET Core, ASP.NET Core, .NET 

4.5.1+, and more:

https://autofac.org/

• Simple Injector is a DI container that can support .NET 4.5 and .NET Standard:

https://simpleinjector.org/

https://autofac.org/
https://simpleinjector.org/


Part 2:  
Implementing .NET  

MAUI Blazor

In the second part of this book, we will learn how to build a .NET MAUI Blazor Hybrid app. Blazor 
is a single-page app (SPA) framework that uses Razor components as building blocks. You might 
have heard of other SPA frameworks, such as React, Angular, Vue, and so on. Most SPA frameworks 
use JavaScript, but Blazor uses C# instead of JavaScript. Blazor can also be used to build the so-called 
Blazor Hybrid application. In a Blazor Hybrid app, Razor components run natively on the device 
using an embedded Web View control so that the Blazor Hybrid app can access device features in 
the same way as a native app. We will re-build our app as a Blazor Hybrid app in Part 2. There are 
four chapters in Part 2.

This section comprises the following chapters:

• Chapter 7, Introducing Blazor Hybrid App Development

• Chapter 8, Understanding the Blazor Layout and Routing

• Chapter 9, Implementing Blazor Components

• Chapter 10, Advanced Topics in Creating Razor Components





7
Introducing Blazor Hybrid  

App Development
In .NET MAUI, there is another way to build the user interface, which is using Blazor. Blazor can be 
used as a single-page application (SPA) framework to develop web applications. It can also be used 
to develop .NET MAUI apps in the form of a Blazor Hybrid app. The building block of Blazor is the 
Razor component. Using Blazor and Blazor Hybrid, we can reuse Razor components between native 
apps and web apps. Compared to the XAML UI, the Blazor UI can achieve higher reusability, which 
includes both native apps and web apps. In this chapter, we will introduce what Blazor is and explain 
its usage in different scenarios. We will also introduce the Razor component and how to develop a 
Blazor Hybrid app using Razor components.

We will cover the following topics in this chapter:

• What is Blazor?

• How to create a .NET MAUI Blazor project

• How to create a new Razor component

Technical requirements
To test and debug the source code in this chapter, you need to have Visual Studio 2022 installed on 
your PC or Mac. Please refer to the Development environment setup section in Chapter 1, Getting 
Started with .NET MAUI, for the details.

The source code for this chapter is available in the following GitHub repository: https://github.
com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/
tree/main/Chapter07.

The source code can be downloaded using the following git command:

git clone -b chapter07 https://github.com/PacktPublishing/.
NET-MAUI-Cross-Platform-Application-Development PassXYZ.Vault2

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter07
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter07
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter07


Introducing Blazor Hybrid App Development176

What is Blazor?
Blazor is a framework for building web applications using HTML, CSS, and C#. To build web 
applications using Blazor in ASP.NET Core, there are two options to choose from, which are Blazor 
Server and Blazor WebAssembly (Wasm). With .NET MAUI, Blazor can also be used to build native 
applications, and this is the third form – a Blazor Hybrid app.

In web application development, the tasks usually include creating a frontend user interface and 
backend service. Backend services are accessed through the RESTful API or remote procedure calls 
(RPCs). The components of user interfaces consist of HTML, CSS, and JavaScript. They are loaded 
in a browser and displayed as web pages. We can render components related to the user interaction 
on the server in the ASP.NET Core architecture. This hosting model is Blazor Server. We can also 
choose to execute most of the user interface components in the browser; this hosting model is called 
Blazor Wasm. In some applications, we have requirements for the application to access device-specific 
features, such as sensors or cameras. In that case, we usually need to develop native applications to 
meet such requirements. With Blazor, we have another choice, which is the Blazor Hybrid app. First, 
let’s talk about Blazor Server.

Learning about Blazor Server

In traditional web application development, user interaction logic is performed on the server side. 
In the MVC design pattern, processing user interaction is part of the application architecture. If 
there is a user interaction in the browser, it is sent back to the server to be processed. In response to 
the user’s request, the entire page may be reloaded. To improve the performance, Blazor Server uses 
a design similar to an SPA framework. To respond to the user request, Blazor Server processes the 
request, and it only sends the Document Object Model (DOM) changes related to the user action to 
the browser. In Blazor Server, as we can see in Figure 7.1, the processing logic is the same as an SPA, 
with the difference being that Razor components are rendered on the server instead of the browser. 
SignalR, an open source library that can be used for real-time communication between the web client 
and the server, is used as the connection between the server and the browser:

Figure 7.1: Blazor Server



What is Blazor? 177

Razor components versus Blazor components
People may get confused between Blazor and Razor. Razor was introduced as a template engine 
of ASP.NET in 2010. Razor syntax is a markup syntax in which developers can embed C# code 
into an HTML page. Blazor is an SPA framework that uses Razor syntax as the programming 
language. It was introduced around 2018. Blazor is a component-based framework, and a 
Blazor app consists of Razor components. In other words, Blazor is a hosting model for Razor 
components. Blazor components and Razor components are widely used interchangeably, but 
the correct terminology is Razor component.

A Razor component resides in a file with the .razor extension, and it is compiled as a .NET class at 
runtime. This .razor file can also be split into two files with .razor and .razor.cs extensions. 
The idea is quite similar to XAML and code-behind, which we learned about in Part 1 of this book. 
We will learn how to build Razor components using Razor syntax in this chapter. Next, we will talk 
about Blazor Wasm.

Understanding Blazor Wasm

Blazor Wasm is a hosting model that renders Razor components in a web browser. Razor components 
loaded in the browser are compiled in Wasm using the .NET runtime, as we can see in Figure 7.2:

Figure 7.2: Blazor Wasm

In the browser, the startup page will load the .NET environment and Razor components. Razor 
components are compiled to Wasm using a .NET Intermediate Language (IL) interpreter at runtime 
to handle DOM changes. This is so-called just-in-time (JIT) compilation. Using JIT, the compilation 
happens at runtime, so the performance is slower than ahead-of-time (AOT) compilation. Using AOT, 
the compilation is done at development time, so the runtime performance can be improved. Blazor Wasm 
supports mixed-mode AOT compilation in .NET 7, which means part of .NET code can be compiled 
in Wasm at the development stage to gain a significant runtime performance improvement. Mixed-
mode AOT means that only part of the IL code can be compiled into Wasm due to technical reasons.



Introducing Blazor Hybrid App Development178

Wasm
Wasm is a binary instruction format for a stack-based virtual machine. Wasm is supported by 
most modern web browsers. With Wasm, we can use many programming languages to develop 
client-side components.

As an SPA framework, we can compare Blazor to other JavaScript-based SPA frameworks. There are 
many JavaScript SPA frameworks, such as React, Angular, and Vue. In Table 7.1, we have compared 
Blazor with React. Of course, we can use other JavaScript frameworks for the comparison as well. The 
reason that I chose React is that React Native can be used to develop Hybrid apps, which has some 
similarities to .NET MAUI Blazor, which we will discuss in the next section:

Feature React Blazor Wasm Blazor Server
Language JavaScript/JSX/TypeScript C# C#
Runtime JavaScript engine Wasm ASP.NET Core
Progressive 
Web App 
(PWA) Support

Yes Yes No

Hosting Flexible to choose Flexible to choose ASP.NET Core
Static Site Hosting Yes Yes No
Offloads Processing 
to Clients

Yes Yes No

Performance Lightweight with 
great performance

There is a heavier 
first-time load 
due to the extra 
download time of 
.NET runtimes

Similar 
performance to the 
JavaScript framework

Table 7.1: Comparison of Blazor and React

Both JavaScript and Wasm are built-in features of modern browsers. The SPA frameworks using either 
JavaScript or Wasm do not have any extra dependencies to run in a browser.

Blazor Wasm supports JavaScript Interop, so JavaScript components can be used by Blazor as well. 
Many JavaScript libraries have been ported to Blazor.

Both Blazor and React support PWA development, which makes SPAs accessible in offline mode. 
The first-time loading performance of Blazor is slightly heavier than React due to the extra download 
time of .NET runtimes.



What is Blazor? 179

Exploring Blazor Hybrid

We can use Blazor as the user interface layer in desktop or mobile native frameworks, known as Blazor 
Hybrid apps. In a Blazor Hybrid app, Razor components are rendered natively on the device using an 
embedded WebView control. Wasm isn’t involved, so the app has the same capability as a native app.

As we can see in Figure 7.3, in a Hybrid app, we can use the BlazorWebView control to build and 
run Razor components inside an embedded WebView. The BlazorWebView control is available in 
.NET MAUI and Windows desktop environments. We can build Blazor Hybrid applications in .NET 
MAUI, WPF, or Windows Forms:

Figure 7.3: BlazorWebView

Blazor Server, Blazor Wasm, and Blazor Hybrid run in different runtime environments, so they have 
different capabilities. We can create different project types using either the command line or Visual Studio.

To list the installed project templates, we can use the following command:

dotnet new --list

These templates matched your input:

Template Name                Short Name           Language

---------------------------  -------------------  ----------

Blazor Server App            blazorserver         [C#]

Blazor WebAssembly App       blazorwasm           [C#]

Razor Class Library          razorclasslib        [C#]

.NET MAUI App                maui                 [C#]

.NET MAUI Blazor App         maui-blazor          [C#]

.NET MAUI Class Library      mauilib              [C#]

Class Library                classlib             [C#],F#,VB



Introducing Blazor Hybrid App Development180

In the preceding list, we filtered out irrelevant project types. To understand the different project types 
better, we can review the summary depicted in Table 7.2:

Template 
Name/Short Name

SDK Target Framework

Blazor Wasm 
App (blazorwasm)

Microsoft.NET.Sdk.BlazorWasm net6.0

Blazor Server 
App (blazorserver)

Microsoft.NET.Sdk.Web net6.0

.NET MAUI 
App (maui)

Microsoft.NET.Sdk net6.0-android

net6.0-ios

net6.0-maccatalyst

net6.0-windows10.0.19041.0
.NET MAUI Blazor 
App (maui-blazor)

Microsoft.NET.Sdk.Razor net6.0-android

net6.0-ios

net6.0-maccatalyst

net6.0-windows10.0.19041.0
.NET MAUI Class 
Library (mauilib)

Microsoft.NET.Sdk net6.0-android

net6.0-ios

net6.0-maccatalyst

net6.0-windows10.0.19041.0
Razor Class 
Library (razorclasslib)

Microsoft.NET.Sdk.Razor net6.0

Class Library (classlib) Microsoft.NET.Sdk net6.0

Table 7.2: .NET MAUI and Blazor-related project types

There are seven project types listed in Table 7.2. They can be divided into two groups – Blazor app 
and .NET MAUI app. Let’s take a look at them.



What is Blazor? 181

Blazor apps

For both Blazor Server and Blazor Wasm, the target framework is net6.0, but they use different SDKs. 
A Blazor Server app can take full advantage of the server’s capability with Microsoft.NET.Sdk.Web, 
while Blazor Wasm can only access a limited set of .NET API using Microsoft.NET.Sdk.BlazorWasm.

To share Razor components between Blazor Server and Blazor Wasm, we can use a Razor Class Library, 
which uses Microsoft.NET.Sdk.Razor. The standard .NET class library, which can be shared by all 
.NET 6.0 apps, uses Microsoft.NET.Sdk.

.NET MAUI apps

For  a .NET MAUI App, we can build XAML-based .NET MAUI apps using Microsoft.NET.Sdk; 
.NET MAUI Blazor apps use Microsoft.NET.Sdk.Razor. Both project types target the same set of 
target frameworks.

To share components, the standard .NET class library can be used. If .NET MAUI features have to be 
used in the shared components, the .NET MAUI class library can be used. For example, PassXYZLib 
is a .NET MAUI class library. Both the .NET class library and the .NET MAUI class library use the 
same Microsoft.NET.Sdk, but they target different frameworks.

The Razor components in the .NET MAUI Blazor app have full access to the native capabilities of the 
device through the underlying platform SDK. The relationship between Blazor and Blazor Hybrid is 
similar to React and React Native. In a .NET MAUI Blazor app and React Native, both may have to 
implement some platform-specific code. We can use Table 7.3 to compare how to access platform-
specific APIs in these two frameworks.

Platform-specific implementation in .NET MAUI Blazor and React Native

In .NET MAUI, a full .NET implementation is available on the target operating system. For example, 
we have all .NET 6.0 APIs and almost a full .NET version of the Android APIs in net6.0-android. 
To implement a platform-specific feature in Android, we don’t have to use Android Studio and Java/
Kotlin. We can implement it in the .NET environment entirely. The recommended solution is to 
combine multi-targeting with partial classes and partial methods to invoke platform code from cross-
platform code. This approach can improve the reusability of code and limit the platform-specific code 
to the minimum scope.



Introducing Blazor Hybrid App Development182

In React Native, native modules are used to implement platform-specific code. To implement native 
modules, platform-specific tools have to be used. For example, Android Studio is used to implement 
Android native modules and Xcode is used for iOS ones:

Platforms .NET MAUI Blazor React Native
Android net6.0-android31.0/C# Android Studio/Java or Kotlin
iOS net6.0-ios15.2/C# Xcode/Object-C or Swift
macOS net6.0-maccatalyst15.2/C# N/A
Windows net6.0-windows10.0.19041/C# N/A

Table 7.3: Comparison between .NET MAUI Blazor and React Native

There are pros and cons to both approaches. In the .NET MAUI implementation, both .NET- and 
platform-specific APIs are provided as .NET APIs in C#. We can maximize the reuse of the code to 
expose platform-specific implementations as a cross-platform API. However, the effort to maintain 
the target frameworks is huge.

In React Native, there is no standard platform-specific implementation available. The developers need 
to develop them on their own when they need to access platform-specific features. It looks flexible, 
but it is difficult to reuse code in the framework. Different developers may invent different libraries 
to access the same set of platform features. Native module developers must acquire different skills to 
develop cross-platform apps.

If we create a cross-platform solution using Blazor, it is possible to develop a solution that includes 
web, mobile, desktop, and backend services using one architecture and programming language. The 
shared components can be reused in all target applications.

The paradigm of React Native is to learn once, write anywhere. React and React Native both use the 
JavaScript language and similar frameworks, but they cannot reuse components as we can do in Blazor. 
React Native uses a native user interface, which is similar to the XAML-based .NET MAUI app, while 
Blazor Hybrid apps use HTML-based web user interfaces.

To summarize, Blazor Hybrid and React Native have quite different design goals, so their features and 
capabilities are different. You must understand your requirements first before choosing a framework.

Creating a new .NET MAUI Blazor project
To learn how to develop a Blazor Hybrid app, we must upgrade our PassXYZ.Vault project to 
support the Blazor-based UI. We don’t have to do this from scratch – we can convert our current 
project so that it supports the Blazor UI. In this way, we can build both a XAML-based app and a 
Hybrid app using the same project. Before we add the Blazor UI to our app, we can create a new .NET 
MAUI Blazor project with the same app name first so that we can refer to this new project to convert 
our project into a .NET MAUI Blazor project.



Creating a new .NET MAUI Blazor project 183

We can create a new .NET MAUI Blazor project from the command line or Visual Studio. We will 
demonstrate both in this section.

Generating a .NET MAUI Blazor project with the dotnet command 
line

Let’s create a new project using the .NET command line first. This can be done on either Windows 
or macOS.

We can create a new project using the shortname maui-blazor listed in Table 7.2:

dotnet new maui-blazor -o PassXYZ.Vault

Welcome to .NET 6.0!

---------------------

SDK Version: 6.0.402

Telemetry

---------

The .NET tools collect usage data in order to help us improve 
your experience. It is collected by Microsoft and shared with 
the community. You can opt-out of telemetry by setting the 
DOTNET_CLI_TELEMETRY_OPTOUT environment variable to '1' or 
'true' using your favorite shell.

Read more about .NET CLI Tools telemetry: https://aka.ms/
dotnet-cli-telemetry

----------------

Installed an ASP.NET Core HTTPS development certificate.

To trust the certificate run 'dotnet dev-certs https --trust' 
(Windows and macOS only).

Learn about HTTPS: https://aka.ms/dotnet-https

----------------

Write your first app: https://aka.ms/dotnet-hello-world

Find out what's new: https://aka.ms/dotnet-whats-new

Explore documentation: https://aka.ms/dotnet-docs

Report issues and find source on GitHub: https://github.com/
dotnet/core



Introducing Blazor Hybrid App Development184

Use 'dotnet --help' to see available commands or visit: 
https://aka.ms/dotnet-cli

--------------------------------------------------------------
------

The template ".NET MAUI Blazor App" was created successfully.

In the preceding command, we specified the short name of maui-blazor to choose the project 
template and we used PassXYZ.Vault as the project name. Once we have created the project, we 
can build and run it:

C:\ > dotnet build -t:Run -f net6.0-android

MSBuild version 17.3.2+561848881 for .NET

  Determining projects to restore...

  All projects are up-to-date for restore.

  PassXYZ.Vault -> C:\PassXYZ.Vault\Hybrid\bin\Debug\net6.0-
android\PassXYZ.Vault.dll

Build succeeded.

    0 Warning(s)

    0 Error(s)

Time Elapsed 00:01:43.79

If you are using a later version of Visual Studio, you may specify a different framework, such 
as net7.0-android.

In the build command, we specify net6.0-android as the target framework to test our new 
app. We can refer to Figure 7.5 to see a screenshot of this new app and project structure. With that, we 
have created the new project using a command line. Now, let’s learn how to do the same using Visual 
Studio on Windows. If you are using Visual Studio on a Mac, the process is very similar.

Creating a .NET MAUI Blazor project using Visual Studio on 
Windows

To create a.NET MAUI Blazor project using Visual Studio, we can start Visual Studio and select Create 
a new project, and then type MAUI in the search box. As we can see in Figure 7.4, we can select .NET 
MAUI Blazor App from the list of project templates:



Creating a new .NET MAUI Blazor project 185

Figure 7.4: Creating a new .NET MAUI Blazor project

After following the wizard to create the project, we can select net6.0-android as the target 
framework to build and run it. To save space, we will use the Android platform as an example here; 
you can select other target frameworks to try and test if you like.

Running the new project

To run the project, we can press F5 or Ctrl + F5 in Visual Studio, or we can execute the dotnet 
command from the command line. We can see screenshots of this and the project structure in Figure 7.5:



Introducing Blazor Hybrid App Development186

Figure 7.5: Screenshots and project structure

The user interface of the app created from the template looks like an SPA with a navigation menu at 
the top on Android. If we run it on Windows with a bigger screen, the navigation menu will be shown 
side by side on the left of the screen. The project structure is similar to a standard .NET MAUI app 
with the following differences:

• wwwroot/: This folder is the root of static files for web pages

• Pages/: This folder contains Razor pages in the app

• Shared/: This folder contains Razor components that can be shared

• Main.razor: This is the main page of the Blazor app

• _Imports.razor: This is a helper to import Razor components at the folder or project level

To understand the difference between the .NET MAUI app and the .NET MAUI Blazor app, we must 
review the startup code.



Creating a new .NET MAUI Blazor project 187

The startup code of the .NET MAUI Blazor app

All .NET MAUI apps include a file called MauiProgram.cs for their startup and configuration. 
Let’s review the startup code of the .NET MAUI Blazor app:

namespace PassXYZ.Vault;

public static class MauiProgram {

  public static MauiApp CreateMauiApp() {

    var builder = MauiApp.CreateBuilder();

    builder.UseMauiApp<App>()

      .ConfigureFonts(fonts => {

        fonts.AddFont("OpenSans-Regular.ttf",

            "OpenSansRegular");

      });

    builder.Services.AddMauiBlazorWebView();              ❶

#if DEBUG

    builder.Services.AddBlazorWebViewDeveloperTools();    ❷

#endif

    builder.Services.AddSingleton<WeatherForecastService>();

    return builder.Build();

  }

}

In the .NET MAUI Blazor version, we can see that the following Blazor configurations are added:

❶ BlazorWebView is added by calling AddMauiBlazorWebView()

❷ Developer tools are added by calling AddBlazorWebViewDeveloperTools() for debugging

The rest of the startup process is the same as that for a XAML-based .NET MAUI app. In App.xaml.
cs, the inherited MainPage property of the App class is set to MainPage.xaml:

namespace PassXYZ.Vault;

public partial class App : Application {

  public App() {

    InitializeComponent();

    MainPage = new MainPage();

  }

}



Introducing Blazor Hybrid App Development188

The major difference between XAML-based apps and Blazor Hybrid apps is in MainPage.xaml. 
Let’s review MainPage.xaml:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com

    /dotnet/2021/maui"

  xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

  xmlns:local="clr-namespace:PassXYZ.Vault"

  x:Class="PassXYZ.Vault.MainPage"

  BackgroundColor="{DynamicResource PageBackgroundColor}">

  <BlazorWebView HostPage="wwwroot/index.html">          ①

    <BlazorWebView.RootComponents>                       ②

      <RootComponent Selector③="#app" ComponentType④=

          "{x:Type local:Main}" />

    </BlazorWebView.RootComponents>

  </BlazorWebView>

</ContentPage>

There is only one UI element, called BlazorWebView, defined in MainPage.xaml. In 
BlazorWebView, we can use the HostPage property and the RootComponent nested component 
to customize BlazorWebView.

We can treat BlazorWebView as a browser. The user interface of a browser is loaded from an HTML 
file. The HostPage property ① is used to specify the static HTML page to be loaded in the web view 
control. In our case, it is wwwroot/index.html; we will review it in Listing 7.1.

In this static HTML file, we need to specify where the Razor component should be placed, and which 
Razor component should be the root component. We can specify both using the RootComponent 
nested component ②.

In the previous chapter, we learned that a tag of XAML maps to a C# class eventually. Here, both 
BlazorWebView and RootComponent are C# classes as well.

In RootComponent, we use the Selector property ③ to define a CSS selector that specifies 
where the root Razor component in our app should be placed. In our case, it is the #app CSS selector 
defined in index.html. The ComponentType property ④ defines the type of the root component. 
In our case, it is Main.



Creating a new .NET MAUI Blazor project 189

Finally, let’s review the HTML file (index.html) that we mentioned previously:

Listing 7.1: index.html (https://epa.ms/index7-1)

<!DOCTYPE html>

<html lang="en">

<head>

  <meta charset="utf-8" />

  <meta name="viewport" content="width=device-width,

      initial-scale=1.0, maximum-scale=1.0, user-

          scalable=no, viewport-fit=cover" />

  <title>PassXYZ.Vault</title>

  <base href="/" />

  <link rel="stylesheet" href="css/bootstrap/

      bootstrap.min.css" />                              ❶

  <link href="css/app.css" rel="stylesheet" />

  <link href="PassXYZ.Vault.styles.css" rel="stylesheet" />

</head>

<body>

  <div class="status-bar-safe-area"></div>

  <div id="app">Loading...</div>                         ❷

  <div id="blazor-error-ui">

    An unhandled error has occurred.

    <a href="" class="reload">Reload</a>

    <a class="dismiss">✕</a>

  </div>

  <script src="_framework/blazor.webview.js"

      autostart="false">                                 ❸

  </script>

</body>

</html>

We can see that index.html is a simple HTML file:

❶ It uses the CSS stylesheet from the Bootstrap framework.

❷ The id selector is defined as "app", which we pass to the Selector attribute of RootComponent 
in MainPage.xaml.



Introducing Blazor Hybrid App Development190

❸  A JavaScript file called blazor.webview.js is loaded at the end of index.html. It initializes 
the runtime environment of BlazorWebView.

With that, we have an overview of the .NET MAUI Blazor app. In the next section, we will replace 
the XAML-based user interface with a Blazor user interface.

Migrating to a .NET MAUI Blazor app
Instead of doing everything from scratch, we can use both the XAML and Blazor UIs in our app by 
changing the project configuration referring to the project that we created in the previous section. 
We will use a mixed XAML and Blazor user interface in one app for a while until we move everything 
to Blazor.

To convert our app into a .NET MAUI Blazor app, we need to make the following changes:

1. Change the SDK from Microsoft.NET.Sdk to Microsoft.NET.Sdk.Razor in the 
project file since the .NET MAUI Blazor app uses a different SDK.

In the PassXYZ.Vault.csproj project file, we have the following line:

<Project Sdk="Microsoft.NET.Sdk">

We need to replace it with the following line:

<Project Sdk="Microsoft.NET.Sdk.Razor">

2. Copy the following folders from the new project that we just created into our app:

 � wwwroot

 � Shared

3. Copy the following files from the new project into our app:

 � _Imports.razor

 � MainPage.xaml

 � MainPage.xaml.cs

 � Main.razor

4. Change MauiProgram.cs by adding the following code:

    Builder.Services.AddMauiBlazorWebView();

#if DEBUG

    builder.Services.AddBlazorWebViewDeveloperTools();

#endif



Understanding Razor syntax 191

To review the commit history of these changes, go to https://epa.ms/Blazor7-1.

With these changes, we have made all the modifications we need to the configuration and are ready 
to move on to the next step. However, before we start to work on these changes, let’s get familiar with 
the basic Razor syntax.

Understanding Razor syntax
Blazor apps consist of Razor components. As we learned in Chapter 3, User Interface Design with 
XAML, XAML is a type of language derived from the XML language. XAML-based UI elements 
consist of XAML pages and code-behind C# files. Razor components look very similar to this pattern. 
The difference is that Razor uses HTML as its markup language and C# code can be embedded into 
HTML directly. Optionally, we can also choose to separate C# code in a code-behind file to separate 
the UI and logic.

Code blocks in Razor

If we add a new Razor component to the project, it will look like this:

<h3>Hello World!</h3>

@code {

  // Put your C# code here

}

In the preceding example, we can design our page just like an HTML page and put programming logic 
into a code block. Razor pages or Razor components will be generated as C# classes. The filename is 
used as the class name. They can be used as HTML tags on another Razor page.

Implicit Razor expressions

In Razor syntax, we can transit from HTML to C# using the @ symbol. These are called implicit Razor 
expressions. For example, we can use the following implicit expression to set the text of the label 
tag with the currentUser.Username C# variable:

<label>@currentUser.Username</label>

There must not be any spaces between implicit expressions. We cannot use C# generics in implicit 
expressions since the characters inside the brackets (<>) are interpreted as an HTML tag.

https://epa.ms/Blazor7-1


Introducing Blazor Hybrid App Development192

Explicit Razor expressions

To resolve the issues of implicit expressions (such as white space or using generics), we can use explicit 
Razor expressions. Explicit Razor expressions consist of an @ symbol with parentheses. We can call 
a generic method like so:

<p>@(GenericMethod<int>())</p>

When we want to concatenate text with an expression, we also need to use explicit expressions, like so:

<p>@(currentUser.FirstName)_@(currentUser.LastName)</p>

We can use explicit Razor expressions in more complicated cases, such as passing a lambda expression 
to an event handler. Let’s review another case of using an explicit Razor expression when we embed 
HTML inside C# code.

Expression encoding

Sometimes, we may want to embed HTML as a string inside C# code, but the result may not be what 
we expect.

Let’s say we write the following C# expression:

@("<span>Hello World!</span>")

The result will look like this after rendering:

&lt;span&gt;Hello World&lt;/span&gt;

To preserve the HTML string, we need to use the MarkupString keyword, like this:

@((MarkupString)"<span>Hello World</span>")

The result of the preceding C# expression is as follows:

<span>Hello World!</span>

This is the output that we want. We will learn more about explicit Razor expressions when we create 
Razor components.



Understanding Razor syntax 193

Directives

Besides HTML code and C# code blocks, there are a set of reserved keywords to be used as Razor 
directives. Razor directives are represented by implicit expressions with reserved keywords after the 
@ symbol. We saw the code block as @code in the previous section. Here, @code is a directive with 
a reserved keyword of code. The following are the directives that we can use in this book:

• @attribute: This is used to add the given attribute to the class

• @code: This is used to define a code block

• @implements: This is used to implement an interface for the generated class

• @inherits: This is used to specify the parent class for the generated class

• @inject: This is used to inject a service using dependency injection

• @layout: This is used to specify a layout for routable Razor components

• @namespace: This is used to define the namespace for the generated class

• @page: This is used to define a route for the page

• @using: This is similar to the using keyword in C#, which imports a namespace

Directive attributes

In a Razor page, HTML tags can be classes and attributes can be members of the class. Let’s review 
the following example:

<input type="text" @bind="currentUser.Username">

Here, input is an HTML tag, which is a class. The type attribute is the property of the input tag, 
which is assigned to the "text" string. You may have noticed that another attribute called @bind 
looks a little different from the normal attribute. It looks like a Razor implicit expression. Yes, it is an 
implicit expression and bind is a reserved keyword. It is a directive attribute. The difference between 
a Razor directive and a Razor directive attribute is that the latter is used as the attribute of an HTML 
tag. The following are the directive attributes that we will use in this book:

• @bind: This is used in data binding

• @on{EVENT}: This is used in event handling

• @on{EVENT}:preventDefault: This is used to prevent the default action for the event

• @on{EVENT}:stopPropagation: This is used to stop event propagation

• @ref: This is used to provide a way to reference a component instance

• @typeparam: This is used to declare a generic type parameter



Introducing Blazor Hybrid App Development194

Now that we’ve learned about the basic syntax of the Razor markup language, let’s move on to the 
real work.

Creating a Razor component
To develop a .NET MAUI Blazor app, we can choose to build all user interfaces using Blazor or a mix 
of Razor components with XAML components. We will start with the second option first since we 
already have a completed password manager app from Chapter 6, Introducing Dependency Injection 
and Platform-Specific Services.

Redesigning the login page using a Razor component

The user interface that we want to replace first is the login page. We can use a Razor page to replace 
the XAML page to perform the same function.

In the Blazor Hybrid app, BlazorWebView is the control that hosts Razor components. We can 
change LoginPage.xaml to the following:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com

/dotnet/2021/maui"

  xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

  xmlns:b="clr-namespace:Microsoft.AspNetCore.Components.

      WebView.Maui;

    assembly=Microsoft.AspNetCore.Components.WebView.Maui"

  xmlns:local="clr-namespace:PassXYZ.Vault.Pages"

  x:Class="PassXYZ.Vault.Views.LoginPage"

  Shell.NavBarIsVisible="False">

  <b:BlazorWebView HostPage="wwwroot/login.html">           ❶

    <b:BlazorWebView.RootComponents>

      <b:RootComponent Selector="#login-app"                ❸

         ComponentType="{x:Type local:Login}" />            ❷

    </b:BlazorWebView.RootComponents>

  </b:BlazorWebView>

</ContentPage>



Creating a Razor component 195

The preceding page only contains a BlazorWebView control. Here, we can pay attention to the 
following items:

❶ The HostPage attribute is used to specify the HTML page to load in BlazorWebView. It is 
login.html (Listing 7.2) in this case.

The attributes of RootComponent define the Razor component and CSS selector to be used:

❷ The ComponentType attribute specifies the Razor Login component; we will work on it soon.

❸ The Selector attribute specifies the CSS selector on which our web UI will be loaded. We defined 
the CSS #login-app ID in login.html. The login.html HTML page is created and stored 
in the wwwroot folder. Let’s review it in Listing 7.2:

Listing 7.2: login.html (https://epa.ms/Login7-2)

<!DOCTYPE html>

<html lang="en">

<head>

  <meta charset="utf-8" />

  <meta name="viewport" content="width=device-width,

    initial-scale=1.0, maximum-scale=1.0, user-scalable=no,

      viewport-fit=cover" />

  <title>PassXYZ.Vault Login</title>

  <base href="/" />

  <link rel="stylesheet" href="css/bootstrap/

     bootstrap.min.css" />

  <link href="css/app.css" rel="stylesheet" />

  <link href="PassXYZ.Vault.styles.css" rel="stylesheet" />

</head>

<body class="text-center">

  <div id="login-app">Loading...</div>                   ①

  <div id="blazor-error-ui">

    An unhandled error has occurred.

    <a href="" class="reload">Reload</a>

    <a class="dismiss">✕</a>

  </div>



Introducing Blazor Hybrid App Development196

  <script src="_framework/blazor.webview.js"

      autostart="false">

  </script>

</body>

</html>

As we can see in Listing 7.2, it is very similar to index.html, which we discussed earlier. It defines 
the following CSS "login-app" ID ①, which is used to load our Razor component:

    <div id="login-app">Loading…</div>

In the .NET MAUI Blazor template, the CSS framework, Bootstrap (bootstrap.min.css), is 
loaded by default. The embedded Bootstrap version was 5.1 at the time of writing. You may find a 
newer version in your project.

Bootstrap is a well-known framework for web development. It comes with many examples of how to 
use it. For the login page, there is a sign-in example on the Bootstrap website, as shown in Figure 7.6. 
We will use it to build our Login component:

Figure 7.6: Bootstrap sign-in example

You can find this sign-in example at https://getbootstrap.com/docs/5.1/examples/
sign-in/.

https://getbootstrap.com/docs/5.1/examples/sign-in/
https://getbootstrap.com/docs/5.1/examples/sign-in/


Creating a Razor component 197

This sign-in example includes two files:

• index.html (Listing 7.3) is the user interface of the sign-in page. It defines the following:

 � Two <input> tags for the username ❶ and password ❷

 � An <input> tag ❸ for a checkbox to remember the username

 � A <button> tag ❹ to process the login activity

 � It uses Bootstrap CSS styles and its own styles defined in signin.css

• signin.css (Listing 7.4) defines the CSS styles specific to the sign-in page:

Listing 7.3: index.html (Bootstrap sign-in example)

<!doctype html>

<html lang="en">

  <head> ... </head>

  <body class="text-center">

<main class="form-signin">                                �

  <form>

<img class="mb-4" src=".../bootstrap-logo.svg"

  alt="" width="72" height="57">

    <h1 class="h3 mb-3 fw-normal">Please sign in</h1>

    <div class="form-floating">

      <input type="email" class="form-control"

        id="floatingInput" placeholder="name@example.com">❶

      <label for="floatingInput">Email address</label>

    </div>

    <div class="form-floating">

      <input type="password" class="form-control"

        id="floatingPassword" placeholder="Password">     ❷

      <label for="floatingPassword">Password</label>

    </div>

    <div class="checkbox mb-3">

      <label>

        <input type="checkbox" value="remember-me">       ❸



Introducing Blazor Hybrid App Development198

        Remember me

      </label>

    </div>

<button class="w-100 btn btn-lg btn-primary"

  type="submit">Sign in</button>                      ❹

    <p class="mt-5 mb-3 text-muted">&copy; 2017–2021</p>

  </form>

</main>

  </body>

</html>

In signin.css (Listing 7.4), we customize the form-signin CSS class �, which is used in the 
sign-in page of index.html:

Listing 7.4: signin.css (Bootstrap sign-in example)

html,

body {

  height: 100%;

}

body {

  display: flex;

  align-items: center;

  padding-top: 40px;

  padding-bottom: 40px;

  background-color: #f5f5f5;

}

.form-signin {

  width: 100%;

  max-width: 330px;

  padding: 15px;

  margin: auto;

}

.form-signin .checkbox {

  font-weight: 400;

}



Creating a Razor component 199

.form-signin .form-floating:focus-within {

  z-index: 2;

}

.form-signin input[type="email"] {

  margin-bottom: -1px;

  border-bottom-right-radius: 0;

  border-bottom-left-radius: 0;

}

.form-signin input[type="password"] {

  margin-bottom: 10px;

  border-top-left-radius: 0;

  border-top-right-radius: 0;

}

To create a new Razor component, we must create a folder called Pages in the project. After that, 
we can right-click on the Pages folder that we just created in Visual Studio and select Add -> Razor 
Component…. We can name this component Login.razor and create it. After creating the file, we 
can copy the portion between the <main> tag from Listing 7.3 into the Razor page inside a <div> 
tag, as shown in Listing 7.5:

Listing 7.5: Login.razor (https://epa.ms/Login7-5)

@using System.Diagnostics

@using PassXYZ.Vault.Services

@using PassXYZ.Vault.ViewModels

@inject LoginViewModel viewModel                          ❶

<div>

  <main class="form-signin">

    <form>

      <img class="mb-4"...>

      <h1 class="h3 mb-3 fw-normal">Please sign in</h1>

      <div class="form-floating">

        <label for="floatingInput">Username</label>

        <input type="text" @bind="@currentUser.Username"  ❹

          class="form-control" id="floatingInput"

             placeholder="Username">



Introducing Blazor Hybrid App Development200

      </div>

      <div class="form-floating">

        <label for="floatingPassword">Password</label>

        <input type="password" @bind="@currentUser

            .Password" class="form-control"

                id="floatingPassword" placeholder=

                    "Password">

      </div>

      <div class="checkbox mb-3">

        <label>

          <input type="checkbox" value="remember-me">

              Remember me

        </label>

      </div>

      <button class="w-100 btn btn-lg btn-primary"

          type="submit" @onclick="OnLogin">Sign in</button>

      <p class="mt-5 mb-3 text-muted">&copy; 2017–2021</p>

    </form>

  </main>

</div>

@code {

  private LoginUser currentUser { get; set; } = default!; ❷

  protected override void OnInitialized() {               ❸

    if (currentUser == null) {

      currentUser = viewModel.CurrentUser;

    }

  }

  private void OnLogin(MouseEventArgs e) {

    viewModel.OnLoginClicked();                           �

  }

}

As we can see in Login.razor, Razor is a markup language that can mix HTML pages with C# 
code. We can embed C# code after the @ symbol in HTML or put C# code inside the @code block.



Creating a Razor component 201

In the @code block, we define a private variable called currentUser ❷ of the LoginUser type. 
We initialize currentUser in the override method, OnInitialized() ❸, to the property of 
the view model. We can refer to currentUser in HTML after the @ symbol ❹. In the same way, 
we can define the OnLogin() event handler and refer to it in the onclick event.

Once the user enters their username and password, the properties of currentUser are filled in. When 
the user clicks the login button, OnLogin() will be invoked. The view model’s OnLoginClicked() 
method � is used to perform the login action.

The Model-View-ViewModel (MVVM) pattern in Blazor

The advantage of using Blazor for the user interface design is that we can do most of the UI design 
using HTML first. Once we are satisfied with the UI design, we can add our programming logic to the 
design. To separate the responsibilities in design, we can use the MVVM pattern, which we learned 
about in Chapter 3, User Interface Design with XAML, in Razor component development. In Blazor, 
we can treat the HTML markup as a view and the code block as a view model. If the logic in the code 
block is too complex, we can separate it into a C# code-behind file.

On the login page, we can still use LoginViewModel from the XAML world. This is because 
we will transit from Blazor back to the XAML UI inside LoginViewModel. This is done just to 
demonstrate how we can mix the Blazor and XAML UIs in one app. We will replace the XAML UI 
with the Blazor UI in the next chapter.

In a Razor component, we can either put both HTML and C# in one file, or we can split it into a Razor 
file and a C# code-behind file, just like XAML.

Let’s do this for Login.razor. If we split it into two files, the component will be split into two partial 
classes residing in Login.razor and Login.razor.cs, as we can see in Listing 7.6 and Listing 7.7:

Listing 7.6 Login.razor (https://epa.ms/Login7-6)

@namespace PassXYZ.Vault.Pages

<div>

  <main class="form-signin">

    <form>

      <img class="mb-4"...>

      <h1 class="h3 mb-3 fw-normal">Please sign in</h1>

      <div class="form-floating">

        <label for="floatingInput">Username</label>



Introducing Blazor Hybrid App Development202

        <input type="text" @bind="@currentUser.Username"

            class="form-control" id="floatingInput"

                placeholder="Username">

      </div>

      <div class="form-floating">

        <label for="floatingPassword">Password</label>

        <input type="password" @bind="@currentUser.

            Password" class="form-control"

              id="floatingPassword" placeholder="Password">

      </div>

      <div class="checkbox mb-3">

        <label>

          <input type="checkbox" value="remember-me"> Remember 
me

        </label>

      </div>

      <button class="w-100 btn btn-lg btn-primary"

          type="submit" @onclick="OnLogin">Sign in</button>

      <p class="mt-5 mb-3 text-muted">&copy; 2021–2022</p>

    </form>

  </main>

</div>

In Listing 7.6, there is HTML markup only in Login.razor. This makes it looks better in terms of 
separating the UI and logic. Let’s review the corresponding C# code in Listing 7.7:

Listing 7.7: Login.razor.cs (https://epa.ms/Login7-7)

using Microsoft.AspNetCore.Components;

using System.Diagnostics;

using PassXYZ.Vault.Services;

using PassXYZ.Vault.ViewModels;

using Microsoft.AspNetCore.Components.Web;

namespace PassXYZ.Vault.Pages;

public partial class Login : ComponentBase {

    [Inject]



Creating a Razor component 203

    LoginViewModel viewModel { get; set; } = default!;

    private LoginUser currentUser { get; set; } = default!;

    protected override void OnInitialized() {

        if (currentUser == null) {

            currentUser = viewModel.CurrentUser;

        }

    }

    private void OnLogin(MouseEventArgs e) {

        viewModel.OnLoginClicked();

    }

}

In Listing 7.7, we moved all the code from the @code block to the C# file inside the Login class, which 
is derived from the ComponentBase class. All Razor components are derived from ComponentBase.

You may have noticed that there is an attribute called Inject in the declaration of the viewModel 
property. This is used for dependency injection.

Dependency injection in Blazor

We introduced dependency injection in Chapter 6, Introducing Dependency Injection and Platform-
Specific Services. All the knowledge in that chapter applies equally here, but Blazor provides more. 
With Blazor, we can use dependency injection in both HTML and C#.

As shown in Listing 7.5, the following declaration is defined at the beginning of Login.razor:

@inject LoginViewModel viewModel

Here, we inject the LoginViewModel class into the viewModel variable. This is property injection, 
and we can use property injection much easier than before in Blazor.

To use dependency injection, we need to register LoginViewModel in MauiProgram.cs, as we 
did in Chapter 6, Introducing Dependency Injection and Platform-Specific Services:

builder.Services.AddSingleton<LoginViewModel,

    LoginViewModel>();

When we move it to the C# code-behind file, we can use the Inject attribute to do the same:

    [Inject]

    LoginViewModel viewModel { get; set; } = default!;



Introducing Blazor Hybrid App Development204

In web development, we usually use both HTML and CSS styles together to design web user interfaces. 
In the Bootstrap example, there is a signin.css file. Where do we keep our CSS styles? Let’s look 
at this topic in the next section.

CSS isolation

When we introduced the Bootstrap sign-in example, we mentioned that there’s an HTML file and a 
CSS file. Where do we put that CSS file so that we can reuse the sign-in CSS styles on our login page?

In HTML design, when we use a CSS framework such as Bootstrap, sometimes, we also need to 
customize styles at the page level. To support this in Blazor, there is a technique called CSS isolation 
for Razor components. For component- or page-specific CSS styles, we can keep it in a file with the 
.razor.css extension. The filename should match the name of the .razor file in the same folder. 
For our login page, we can copy sign-in.css from the Bootstrap example to Login.razor.
css and make minor modifications, as shown in Listing 7.8:

Listing 7.8: Login.razor.css (https://epa.ms/Login7-8)

div {

    display: flex;

    align-items: center;

    background-color: #f5f5f5;

}

.form-signin {

    width: 100%;

    max-width: 330px;

    padding: 15px;

    margin: auto;

}

.form-signin .checkbox {

    font-weight: 400;

}

.form-signin .form-floating:focus-within {

    z-index: 2;

}

.form-signin input[type="email"] {

    margin-bottom: -1px;

    border-bottom-right-radius: 0;

    border-bottom-left-radius: 0;



Creating a Razor component 205

}

.form-signin input[type="password"] {

    margin-bottom: 10px;

    border-top-left-radius: 0;

    border-top-right-radius: 0;

}

The styles defined in Login.razor.css are only applied to the rendered output of the Login 
component. Finally, let’s look at this new login UI in Blazor:

Figure 7.7: Login page



Introducing Blazor Hybrid App Development206

We can see that the look and feel of this new UI in Figure 7.7 (shown in iOS) are the same as those 
from the Bootstrap sign-in example, except we changed the icon. The functionality of logging in 
hasn’t changed, except we used Blazor to create a new UI. After we log in using this Razor page, the 
remaining programming logic is still the same as what was shown in Chapter 6, Introducing Dependency 
Injection and Platform-Specific Services. The UI framework is switched back to XAML after login since 
we haven’t changed anything after that yet.

Summary
In this chapter, we learned about Blazor and how to develop a Blazor Hybrid app. Blazor is an 
alternative solution for UI design for .NET MAUI. The difference between Blazor and XAML is that 
the look and feel of the XAML user interface are the same as the native user interface, but the Blazor 
UI has the look and feel of a web app. In terms of the functionalities that they can provide, there is 
not much difference. We can mix Blazor and XAML in one app. We can use the MVVM pattern in 
both XAML and Blazor. With Blazor, the UI code can be shared between the Blazor Hybrid app and 
the web app. If you are looking for a solution that supports both native and web apps, .NET MAUI 
Blazor could be a good choice.

In the next chapter, we will replace all the user interfaces in our app using Blazor. We will also introduce 
how to do the initial UI design using layout and routing.



8
Understanding the  

Blazor Layout and Routing

In the last chapter, we learned how to design a login page using Blazor. The app layout and navigation 
hierarchy are still XAML-based. Our app is using a mixed UI implementation of Blazor and XAML. 
Blazor is a different choice of UI design for a .NET MAUI app. In this (second) part of the book, we will 
rebuild the entire UI using Blazor. The first step of UI design usually starts from the implementation 
of the layout and navigation, so in this chapter, we will introduce the layout and routing of Blazor.

We will cover the following topics in this chapter:

• Blazor routing

• Using Blazor layout components

Technical requirements
To test and debug the source code in this chapter, you need to have Visual Studio 2022 installed on 
your PC or Mac. Please refer to Development environment setup in Chapter 1, Getting Started with 
.NET MAUI, for the details.

The source code for this chapter is available in the following GitHub repository:

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-
Application-Development/tree/main/Chapter08

The source code can be downloaded using the following Git command:

git clone -b chapter08 https://github.com/PacktPublishing/.
NET-MAUI-Cross-Platform-Application-Development PassXYZ.Vault2

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter08
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter08


Understanding the Blazor Layout and Routing208

Understanding client-side routing
The routing and layout of Blazor are similar to the concept of Shell and navigation in the XAML world. 
In Chapter 5, Navigation using .NET MAUI Shell and NavigationPage, when we introduced navigation 
and Shell, we discussed the routing strategy of Shell. Shell provides a URI-based navigation experience 
that uses routes to navigate to the selected pages. The routing of Blazor is quite similar to that.

The routing of Blazor provides a way to switch from one Razor page to another. The rendering of 
Razor pages in BlazorWebView is similar to web apps running in a browser.

In a classic web application, when we load an HTML page in a browser, the HTML page is retrieved 
from the web server. When we choose a different route, we load a new page from the server. For 
Single-Page Applications (SPAs), things work a little differently.

Blazor WebAssembly apps are SPAs. When the app is started, the app is loaded in a browser. After that, 
the navigation of pages only happens on the client side. This is so-called client-side routing. Blazor 
Hybrid apps use client-side routing as well.

Setup of BlazorWebView

To perform client-side routing, the router has to be installed at the application startup. In .NET MAUI 
apps, the entry point of both XAML and Blazor is set up in App.xaml.cs. We can refer to changing 
App.xaml.cs here (in the code) to switch the UI implementation from XAML to Blazor.

The Blazor Hybrid app runs inside BlazorWebView. To start the Blazor Hybrid app, we need to 
set up an instance of BlazorWebView first. In the last chapter, we set it up in LoginPage and we 
navigated back to Shell after logging in successfully.

To set up an instance of BlazorWebView for the entire application, we need to replace the instance 
assigned to the MainPage property of the App class. To do this, we changed the constructor of the 
App class (in App.xaml.cs) as follows:

public App()

{

  InitializeComponent();

#if MAUI_BLAZOR

  MainPage = new MainPage();                              ❶

#else

  Routing.RegisterRoute(nameof(ItemsPage),

      typeof(ItemsPage));

  Routing.RegisterRoute(nameof(ItemDetailPage),

    typeof(ItemDetailPage));

  Routing.RegisterRoute(nameof(NewItemPage),



Understanding client-side routing 209

      typeof(NewItemPage));

  MainPage = new AppShell();

#endif

}

❶ We can define a symbol, MAUI_BLAZOR, to set up conditional compilation so that we can switch 
between XAML and Blazor UI in the build. To use Blazor UI, we set the MainPage property to a 
MainPage instance. In the MainPage class, we define the BlazorWebView control as follows:

<BlazorWebView HostPage="wwwroot/index.html">

  <BlazorWebView.RootComponents>

    <RootComponent Selector="#app" ComponentType="{x:Type

        local:Main}" />

  </BlazorWebView.RootComponents>

</BlazorWebView>

In BlazorWebView, it loads an HTML page (index.html) to start the Blazor UI setup. Let’s see 
how the Router setup works.

Setup of Router

Blazor UI is an HTML page-based UI design. It is similar to an SPA and starts from a static HTML 
page. In BlazorWebView, the HTML page to be loaded is index.html, which is very similar to 
the login.html page that we introduced in the last chapter. The top-level Razor component that 
is loaded in RootComponent is the Main component that we can see here:

Listing 8.1: Main.razor (https://epa.ms/Main8-1)

<Router AppAssembly="@typeof(Main).Assembly">            ①

  <Found Context="routeData">                            ②

    <RouteView RouteData="@routeData"

      DefaultLayout="@typeof(MainLayout)" />

      <FocusOnNavigate RouteData="@routeData" Selector="h1" />

  </Found>

  <NotFound>                                             ③

    <LayoutView Layout="@typeof(MainLayout)">

      <p role="alert">Sorry, there's nothing at this

          address.</p>



Understanding the Blazor Layout and Routing210

    </LayoutView>

  </NotFound>

</Router>

As we can see in Listing 8.1, we set up the Router component, ①, in Main.razor.

In the Router component, it uses reflection to scan all the page components to build a routing table. 
The AppAssembly parameter specifies the assemblies to be scanned.

If there is a navigation event, the router checks the routing table for a matching route. The Router 
component is a templated component. We will discuss what a templated component is in a later 
chapter. When a route is found, the Found template is used. Otherwise, the NotFound template is 
used when there are no matching routes.

The Found template, ②, uses a RouteView component to render the selected component with its 
layout. The layout is specified in the DefaultLayout attribute. We will discuss the layout in the 
next section. The new page to be loaded, along with any route parameters, is passed using an instance 
of the RouteData class.

If a match could not be found, the NotFound template, ③, is rendered. The NotFound template 
uses a LayoutView component to display error messages. The layout used by LayoutView is 
specified using a Layout attribute.

Defining routes

Once we have set up the router, we can create pages and define route templates in pages. The router 
will scan the route templates defined in pages to build a routing table.

At a high level, we can create the navigation hierarchy and route templates of our app referring to 
Figure 8.1.



Understanding client-side routing 211

Figure 8.1: Navigation hierarchy of Razor pages

We listed the major pages in our app in Figure 8.1. Each page has a name that is also the class name 
of a Razor page. The path under the name is the route template. For example, for the About page, 
we can declare the route template as follows:

@page "/about"

The @page directive includes two parts – the directive name, and the route template. In this example, 
the route template is "/about", which must be in quotes and always starts with a forward slash (/). 
Since the final output of a Razor page is an HTML page, we can navigate to a Razor page just like a 
web page using an anchor tag, <a>, as shown here:

<a href="/about">About</a>

Passing data using route parameters

When we navigate to a page using a route template, we can pass data to the page using route parameters. 
If we recall how to pass data with the query parameter in Shell, the usage of the route parameter is 
similar to the query parameter.



Understanding the Blazor Layout and Routing212

As we can see in Figure 8.1, after we log in successfully, the Items page is shown and a list of items 
in the root group is displayed as in Figure 8.2. On this page, if we click on an item, we can navigate 
to the selected item based on the item type. To find the selected item, an item Id value is passed to 
the new page as a parameter.

Figure 8.2: Items page in a Blazor Hybrid app

In the Items page, we have the following route templates defined:

@page "/group"

@page "/group/{SelectedItemId}"



Understanding client-side routing 213

The first route template is used when we display the root page. The second one is used when we select a 
group. The group Id value is passed to the  Items page using the SelectedItemId route parameter.

To specify the type of route parameter, we can add constraints to it with the data type as shown here:

@page "/user/{Id:int}"

In the preceding page directive, we specify the data type of Id as an integer. Please refer to the 
corresponding Microsoft documents to find more details about route constraints. You can find the 
relevant document here:

https://learn.microsoft.com/en-us/aspnet/core/blazor/fundamentals/
routing?view=aspnetcore-6.0#route-constraints

Navigating with NavigationManager

In a Razor page, although we can generally navigate to another page using an <a> anchor tag, 
sometimes, we might need to do it using code. For example, when we handle an event, we may redirect 
to a page in the event handler. This is exactly the case on our Login page. Let’s see how to navigate 
to the Items page using NavigationManager after logging in successfully.

In our app, we need to redirect to the Items page to display the root group after login. The UI of the 
Login page is the same as the one in the last chapter, but we changed the event handle in Login.
razor.cs to the following one:

namespace PassXYZ.Vault.Pages;

public partial class Login : ComponentBase {

  [Inject]

  private IUserService<User> userService { get; set; } =

      default!;

  [Inject]

  private IDataStore<Item> dataStore { get; set; } =

      default!;

  [Inject]

  private NavigationManager navigationManager {get; set;} ❶

  private LoginUser currentUser => LoginUser.Instance;

  private async void OnLogin(MouseEventArgs e) {

    bool status = await userService.LoginAsync

        (currentUser);

    if (status) {

https://learn.microsoft.com/en-us/aspnet/core/blazor/fundamentals/routing?view=aspnetcore-6.0#route-constraints
https://learn.microsoft.com/en-us/aspnet/core/blazor/fundamentals/routing?view=aspnetcore-6.0#route-constraints


Understanding the Blazor Layout and Routing214

      string path = Path.Combine(PxDataFile.TmpFilePath,

        currentUser.FileName);

      if (File.Exists(path)) {

        bool result = await dataStore.MergeAsync(path);

      }

      navigationManager.NavigateTo("/group");             ❷

    }

  }

}

❶ We get an instance of NavigationManager using dependency injection.

❷ We call the NavigateTo("/group") method of NavigationManager to navigate to the 
Items page.

We learned how to use routing and navigation in this section. In the next step, we can implement a 
navigation hierarchy similar to what we did with Shell navigation with Blazor UI.

The top level of the HTML page navigation hierarchy includes a header, toolbar, menu, and footer. 
We can implement the layout using a Blazor layout component. It is something similar to the flyout 
and menu items in Shell, which we introduced in Chapter 5, Navigation using .NET MAUI Shell 
and NavigationPage.

Using Blazor layout components
Most web pages usually contain fixed parts, such as a header, footer, or menu. We can design a page 
using a layout together with the page content to reduce the redundant code. The page itself contains 
the content that we want to show the users and the layout helps to build the styles and provide 
navigation methods.

Blazor layout components are a class derived from LayoutComponentBase. Anything we can do 
with a regular Razor component we can do to the layout components as well.

In Listing 8.1, we can see that MainLayout is used as the default layout of the pages. It is defined 
in Listing 8.2 here:

Listing 8.2: MainLayout.razor (https://epa.ms/MainLayout8-2)

@inherits LayoutComponentBase                             ❶

<div class="page">

  <div class="sidebar">

    <NavMenu />                                           ❷



Using Blazor layout components 215

  </div>

  <main>

    @Body                                                 ❸

  </main>

</div>

In the MainLayout component, ❶, it inherits the LayoutComponentBase class. ❷ It includes 
a NavMenu component to define the menu for navigation. ❸ Inside the <main> tag, it uses the @
Body Razor syntax to specify the location in the layout markup where the content is rendered.

Let’s review the NavMenu component in detail since it is the top-level navigation method in our app. 
Please refer to Figure 8.3 to see the UI of NavMenu before we review the code. NavMenu includes 
three menu items Home, About, and Logout.

Figure 8.3: NavMenu



Understanding the Blazor Layout and Routing216

NavMenu is a Razor component that defines the links for navigation. We can review the source code 
of NavMenu in Listing 8.3 here:

Listing 8.3: NavMenu.razor (https://epa.ms/NavMenu8-3)

<div class="top-row ps-3 navbar navbar-dark">            ①

  <div class="container-fluid">

    <a class="navbar-brand" href="">PassXYZ.Vault</a>

<button title="Navigation menu" class="navbar-toggler"

  @onclick="ToggleNavMenu">                              ②

      <span class="navbar-toggler-icon"></span>

    </button>

  </div>

</div>

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

  <nav class="flex-column">

    <div class="nav-item px-3">                          ③

      <NavLink class="nav-link" href="/group">           ④

        <span class="oi oi-home" aria-hidden="true"></span>

            Home

      </NavLink>

    </div>

    <div class="nav-item px-3">

      <NavLink class="nav-link" href="/about">

        <span class="oi oi-plus" aria-hidden="true"></span>

             About

      </NavLink>

    </div>

    <div class="nav-item px-3">

      <NavLink class="nav-link" href="" Match=

           "NavLinkMatch.All">

        <span class="oi oi-list-rich" aria-hidden="true">

            </span>

        Logout

      </NavLink>



Using Blazor layout components 217

    </div>

  </nav>

</div>

@code {

  private bool collapseNavMenu = true;

  private string NavMenuCssClass => collapseNavMenu ?

      "collapse" : null;

  private void ToggleNavMenu() {

    collapseNavMenu = !collapseNavMenu;

  }

}

In the source code of the NavMenu component, we can see that it is a Bootstrap navBar component 
with some C# logic in the code block. ① NavBar is defined using a navbar Bootstrap class in the 
<div> tag as follows:

<div class="top-row ps-3 navbar navbar-dark">

As we can see in Figure 8.3, there is a hamburger icon, ②, in the top left of the screen using a <button> 
tag to toggle NavMenu. The hamburger button UI is implemented using the navbar-toggler 
Bootstrap class as follows:

  <button title="Navigation menu" class="navbar-toggler"

    @onclick="ToggleNavMenu">

    <span class="navbar-toggler-icon"></span>

  </button>

There are three links defined as the menu items using the nav-item Bootstrap class, ③. The link is 
defined using NavLink ④ instead of the anchor tag, <a>. The NavLink component behaves like 
<a>  except it toggles an active CSS class based on whether its href matches the current URL 
as we can see here:

    <div class="nav-item px-3">

      <NavLink class="nav-link" href="/group">

        <span class="oi oi-home" aria-hidden="true"></span>

            Home



Understanding the Blazor Layout and Routing218

      </NavLink>

    </div>

We explained MainLayout, which is the default layout in our app. Let us look at how to apply the 
layout to a component.

Applying a layout to a component

MainLayout is used as the default layout component, so it will apply to all pages if we don’t specify 
a layout. Sometimes, we need to use a specific layout instead of the default layout. For example, in our 
app, we use a different layout component on the Login page instead of the default layout (see Listing 
8.4). MainLayout includes a NavMenu component. We do not want to show it on the Login page 
since we don’t allow the user to see any other content before logging in. Let us look at the changes to 
the Login page after we apply a specific layout in Listing 8.4:

Listing 8.4: Login.razor (https://epa.ms/Login8-4)

@page "/"

@layout LogoutLayout                                         ❶

@namespace PassXYZ.Vault.Pages

<div class="text-center">

  <main class="form-signin">

    <form>

      <img id="first" class="mb-4" src=

           "passxyz-blue.svg"...>

      <h1 class="h3 mb-3 fw-normal">Please sign in</h1>

      <div class="form-floating">

        <label for="floatingInput">Username</label>

        <input type="text"

            @bind="@currentUser.Username"...>

      </div>

      <div class="form-floating">

        <label for="floatingPassword">Password</label>

        <input type="password" @bind=

            "@currentUser.Password"...>

      </div>

      <div class="checkbox mb-3">



Using Blazor layout components 219

        <label>

          <input type="checkbox" value="remember-me">

                Remember me

        </label>

      </div>

      <button...>Sign in</button>

      <p class="mt-5 mb-3 text-muted">&copy; 2021–2022</p>

    </form>

  </main>

</div>

To use a specific layout, we can use the @layout Razor directive, ❶. In the Login page, we use the 
LogoutLayout layout. The code of LogoutLayout is shown in Listing 8.5 here:

Listing 8.5: LogoutLayout.razor (https://epa.ms/LogoutLayout8-5)

@inherits LayoutComponentBase

<div class="page">

  <main>

    <div class="top-row px-4">

      <a href="#" target="_blank">Sign-in</a>

    </div>

    <article class="content px-4">

      @Body

    </article>

  </main>

</div>

In LogoutLayout, we removed the NavMenu element and added a sign-in link to allow a new 
user to sign up.



Understanding the Blazor Layout and Routing220

Nesting layouts

Layout components can also be nested. In MainLayout, we did not specify any margin for the content. 
MainLayout is suitable for a content list view on an items page or item details page. However, it 
does not look good for content pages, such as the About page. We can use a different layout for an 
About page and this layout is nested in MainLayout. We can call it PageLayout and we can 
see an implementation in Listing 8.6:

Listing 8.6: PageLayout.razor (https://epa.ms/PageLayout8-6)

@inherits LayoutComponentBase

@layout MainLayout

<article class="content px-4">

  @Body

</article>

PageLayout is a layout component that uses MainLayout. It puts @Body in an <article> 
tag with the "content px-4" style applied so that the content can apply the style that is suitable 
for a paragraph of text.

In the About page, we can set the layout to PageLayout like so:

@page "/about"

@layout PageLayout

We have now introduced the routing and layout of Blazor. With this knowledge, it’s time to implement 
the navigation elements of our app.

Implementing navigation elements
In Chapter 5, Navigation using .NET MAUI Shell and NavigationPage, when we introduced Shell, we 
mentioned the absolute route and relative route in Shell. We can define absolute routes in a visual 
navigation hierarchy and navigate to the relative route through query parameters.

This navigation strategy is similar in the Blazor version of our app. As we can see in Figure 8.4, we 
implement Blazor UI elements in the same way as our XAML version.



Implementing navigation elements 221

Figure 8.4: Navigation elements

The Items page is the main page of our app after login. In the Items page, in which the list of items 
is displayed, the following UI elements are related to the navigation:

• A list view – The user can navigate through the list and select an item.

• Context menu – It is associated with each item in the list view. The user can edit or delete an 
item using the context menu.

• Back button – The user can use it to navigate back.

• Add button – The user can use it to add new items.

In this section, we will implement the preceding navigation elements using the knowledge we have gained.



Understanding the Blazor Layout and Routing222

Implementing a list view

In the XAML version, our navigation starts from a list of items after the user logs in to the app. The list 
view is implemented using a .NET MAUI ListView control, which uses the underlying platform-
specific UI component, so the look and feel are the same as the platform-specific one. In the Blazor 
version, we use a web UI, so the look and feel are the same on different platforms.

To implement a list view using a web UI, we have many choices. In this book, we stick with the 
Bootstrap framework. The way that we are going to do so is the same as in the last chapter. We can 
reuse the UI design from the Bootstrap examples. We are using Bootstrap 5.1 in this book, so we can 
refer to the following list group example shown in Figure 8.5.

Figure 8.5: Bootstrap list group

The preceding example can be found at the following URL:

https://getbootstrap.com/docs/5.1/components/list-group/

https://getbootstrap.com/docs/5.1/components/list-group/


Implementing navigation elements 223

A Bootstrap list group can be used to build a UI-like ListView component in XAML. To do this, 
we can apply a CSS class, list-group, to HTML tags, such as <ul> or <div>, to create a list 
group. Inside the list group, the list-group-item CSS class is applied to the list item in the group.

In the XAML version, we support CRUD operations using the context menu. However, there is no 
context menu available in the Bootstrap list group, so we need to implement a context menu by ourselves. 
To implement a context menu in the list group, we can use the dropdown component of Bootstrap.

To use the dropdown component, we need to include the JavaScript dependency in index.html 
as follows:

<script src="_framework/blazor.webview.js"

  autostart="false"></script>

<script src="css/bootstrap/bootstrap.bundle.min.js">

     </script>

We added a JavaScript file, bootstrap.bundle.min.js, after blazor.webview.js. The 
bootstrap.bundle.min.js JavaScript file is part of the Bootstrap release package.

To create a new Razor component, Items, we can right-click on the Pages folder in Visual Studio 
and select Add -> Razor Component… to create it. We add the following code in Listing 8.7 and 
name the Razor file Items.razor:

Listing 8.7: Items.razor (https://epa.ms/Items8-7)

@page "/group"

@page "/group/{SelectedItemId}"

<!-- Back button and title -->

<div class="container">...

<!-- List view with context menu -->

<div class="list-group">                                  ❶

  @foreach (var item in items) {

   <div class="dropdown list-group-item

       list-group-item-action...>                         ❷

      <img src="@item.GetIcon()"...>

      <a href="@item.GetActionLink()"

           class="list-group-item...>

        <div class="d-flex">

          <div>



Understanding the Blazor Layout and Routing224

            <h6 class="mb-0">@item.Name</h6>

            <p class="mb-0 opacity-75">@item.Description

            </p>

          </div>

        </div>

      </a>

      <button class="opacity-50 btn btn-light

           dropdown-toggle"

        type="button" id="itemsContextMenu"

        data-bs-toggle="dropdown" aria-expanded="false">

        <span class="oi oi-menu" aria-hidden="true"></span>

      </button>                                           ❸

      <ul class="dropdown-menu"

        aria-labelledby="itemsContextMenu">               ❹

        <li>

          <button class="dropdown-item"

              data-bs-toggle="modal"

            data-bs-target="#editModel"> Edit </button>

        </li>

        <li>

          <button class="dropdown-item"

               data-bs-toggle="modal"

            data-bs-target="#deleteModel"> Delete </button>

        </li>

      </ul>

    </div>

  }

</div>

<!-- Editing Modal -->

<div class="modal fade" id="editModel" tabindex="-1"

  aria-labelledby="editModelLabel" aria-hidden="true">...

<!-- Deleting Modal -->

<div class="modal fade" id="deleteModel" tabindex="-1"

  aria-labelledby="deleteModelLabel" aria-hidden="true">...

<!-- New Modal -->



Implementing navigation elements 225

<div class="modal fade" id="newItemModel" tabindex="-1" aria-
labelledby="newItemModelLabel" aria-hidden="true">...

In Items.razor, ❶, we can the copy Bootstrap list group sample code that uses the <div> tag 
by applying the list-group CSS class to it.

❷ We customize the list group item to meet our requirements as you can see in Figure 8.6. The list 
group item is created inside a foreach loop using the <div> tag, which includes an icon, a name, 
a description, and a context menu:

<div class="dropdown list-group-item list-group-item-action...>

We apply dropdown, list-group-item, and list-group-item-action, CSS classes, to 
the <div> tag, so it is a list group item including a context menu using a dropdown.

Figure 8.6: List group item

Inside the list group item, we use an <img> tag to display the item icon:

      <img src="@item.GetIcon()"...>

We can get the icon source using an extension method, GetIcon(), from the Item class. To create 
the extension method, we add a new class file under the Shared folder and name it ItemEx.cs 
as shown in Listing 8.8.

An <a> anchor tag is used to display the name and description of the item. Inside <a>, the name 
and description are defined like so:

      <a href="@item.GetActionLink()" class=

           "list-group-item...>

        <div class="d-flex">

          <div>

            <h6 class="mb-0">@item.Name</h6>



Understanding the Blazor Layout and Routing226

            <p class="mb-0 opacity-75">@item.Description

            </p>

          </div>

        </div>

      </a>

We can get the link of the item using the GetActionLink() extension method, which is also 
defined in Listing 8.8.

The context menu is a Bootstrap dropdown component including a <button> tag, ❸, and an 
unordered list using the <ul> tag, ❹. This button is displayed as a hamburger icon using Open 
Iconic font.

Open Iconic icons
We use Open Iconic icons in Blazor UI design. Open Iconic is an open source icon set with 
223 icons in SVG, web font, and raster formats. In XAML design, we use FontAwesome, which 
can also be used in Blazor with Bootstrap. However, we need extra configuration before we 
can use it. Open Iconic is included in the Blazor template together with Bootstrap. We can use 
it directly without any extra configuration. For example, to display a hamburger icon in the 
context menu, we can use the following HTML tag:

<span class="oi oi-menu" aria-hidden="true"></span>

In the drop-down menu, there are two context action buttons, Edit and Delete. We apply the 
dropdown-item CSS class to the buttons. The context action button triggers a dialog box to perform 
the CRUD operations so that there are two Bootstrap modal CSS attributes, data-bs-toggle and 
data-bs-targe, applied to it. We will discuss how to handle CRUD operations in the next chapter.

Let us review the extension methods of Item that we will use to support a list view UI in Listing 8.8:

Listing 8.8: ItemEx.cs (https://epa.ms/ItemEx8-8)

using KeePassLib;

using KPCLib;

using PassXYZLib;

namespace PassXYZ.Vault.Shared {

  public static class ItemEx {

    public static string GetIcon(this Item item) {       ①

      if(item.IsGroup) {

        // Group



Implementing navigation elements 227

        if(item is PwGroup group) {          if(group.
CustomData.Exists(PxDefs.PxCustomDataIconName)) {

            return $"/images/{group.CustomData.Get

                (PxDefs.PxCustomDataIconName)}";

          }

        }

      }

      else {

        // Entry

        if(item is PwEntry entry) {

          if(entry.CustomData.Exists

              (PxDefs.PxCustomDataIconName)) {

            Return $"/images/{entry.CustomData.Get

               (PxDefs.PxCustomDataIconName)}";

          }

        }

      }

      // 2. Get custom icon

      return item.GetCustomIcon();

    }

    /// <summary>

    /// Get the action link of an item.

    /// </summary>

    public static string GetActionLink(this Item

        item, string? action = default) {                ②

      string itemType = (item.IsGroup) ?

          PxConstants.Group : PxConstants.Entry;

      return (action == null) ? $"/{itemType}/{item.Id}" :

          $"/{itemType}/{action}/{item.Id}";

    }

    /// <summary>

    /// Get the parent link of an item.

    /// </summary>

    public static string? GetParentLink(this Item item) {③



Understanding the Blazor Layout and Routing228

      Item? parent = default;

      if (item == null) return null;

      if(item.IsGroup) {

        PwGroup group = (PwGroup)item;

        if (group.ParentGroup == null) return null;

        parent = group.ParentGroup;

      }

      else {

        PwEntry entry = (PwEntry)item;

        if (entry.ParentGroup == null) return null;

        parent = entry.ParentGroup;

      }

      return $"/{PxConstants.Group}/{parent.Id}";

}

  }

}

In Listing 8.8, we define a static class, ItemEx, to implement an extension method of the Item class. 
In this class, we defined three extension methods to get the URL needed for navigation:

• GetIcon(), ① – returns the URL of the icon image

• GetActionLink(), ② – return the URL of a selected item based on the item type

• GetParentLink(), ③ – returns the URL of the parent item

With the preceding implementation of a list view UI, we have a list, including password entries and 
groups. When an item is selected, we actually click an anchor tag, <a>. The href property of <a> is 
set to the return value of the GetActionLink() method. The return value of this method is 
in the format of a "/{itemType}/{item.Id}" route template, which can be used to navigate 
to the selected item. At the right-hand side of each item, there is a context menu button. If we click 
on it, a list of context actions is shown, and we can select an action to edit or delete the current item.

We can handle most of the navigation actions now, but there are still two actions missing. When we 
enter a child group, we cannot navigate back, and we also cannot add a new item. We will add these 
two functions in the next section.

Adding a new item and navigating back

To support navigating back and adding a new item, we can add a Back button and an Add button in 
the title bar to simulate the navigation page of the XAML version as shown in Figure 8.7:



Implementing navigation elements 229

Figure 8.7: The Title bar of the Items page

As we can see in the title bar here, three UI elements are included:

• Title – the title of the current item group

• The Back button – the button can be used to navigate back, but it won’t be shown when there 
is no parent group

• The Add button – the button can be used to add a new item

To review the implementation, we can expand the code of the Back button and the Title part in 
Listing 8.7 as shown here:

<!-- Back button and title -->

<div class="container">

  <div class="row">

    <div class="col-12">

      <h1>

        @if (selectedItem!.GetParentLink() != null) {

          <a class="btn btn-outline-dark" href=

              "@selectedItem!.GetParentLink()"><span

                  class="oi oi-chevron-left"

                      aria-hidden="true"></span></a>      ❶

        }

        @(" " + Title)

        <button type="button" class="btn btn-outline-dark

            float-end" data-bs-toggle="modal" data-bs-

            target="#newItemModel"><span class="oi

            oi-plus" aria-hidden="true"></span></button>  ❷

      </h1>

    </div>



Understanding the Blazor Layout and Routing230

  </div>

</div>

The Back button, ❶, is implemented as an anchor tag, <a>. The href attribute of the anchor tag is 
set to the return value of the Item extension method, GetParentLink(). This function returns 
the link of the parent item in the route template format, so we can navigate back using this link. If 
there is no parent group, such as a root group, the Back button is not shown.

The Add button, ❷, is implemented using a <button> tag. The Add button is displayed on the 
right-hand side of the title bar. To push this button to the right of the screen, we can use a Bootstrap 
class, float-end. When the user clicks on this button, a new item dialog box is shown. The dialog 
box is set using the following attributes:

data-bs-toggle="modal" data-bs-target="#newItemModel"

There are three Bootstrap modal dialogs used in Items.razor as shown in Listing 8.7:

<!-- Editing Modal -->

<div class="modal fade" id="editModel" tabindex="-1"

  aria-labelledby="editModelLabel" aria-hidden="true">...

<!-- Deleting Modal -->

<div class="modal fade" id="deleteModel" tabindex="-1"

  aria-labelledby="deleteModelLabel" aria-hidden="true">...

<!-- New Modal -->

<div class="modal fade" id="newItemModel" tabindex="-1" aria-
labelledby="newItemModelLabel" aria-hidden="true">...

We use these dialogs to perform CRUD operations. To implement these dialogs, we also reuse code 
from Bootstrap. It is quite straightforward to do it this way, but there is a lot of duplicated code involved. 
To save space, they are collapsed in Listing 8.7. In the next chapter, we will explain the implementation 
of model dialogs and convert the code into reusable Razor components.

Summary
In this chapter, we introduced the routing and layout of Blazor. These are the components that we 
can use to build the navigation hierarchy of our app. By the end of this chapter, we can now perform 
basic navigation as in the XAML version of our app.

When we built the UIs in this chapter, we saw that the UI design technique of Blazor is the same as 
web UI design. We can reuse the code from an existing framework, such as Bootstrap.



Summary 231

If we want to create the UI on our own, we can work on the initial design in a playground first. After 
we are satisfied with the UI design, we can copy HTML and CSS code into our Razor file to build 
a Razor component. There are many playgrounds used by frontend developers, such as CodePen, 
JSFiddle, CodeSandbox, and StackBlitz.

In this chapter, we reused Bootstrap examples to build our UIs. Even though this is a straightforward 
way to implement a web UI, there are many duplicated codes created. In the next chapter, we will 
refine our code and convert the code into reusable Razor components. We will implement the CRUD 
operations to add, edit, and delete items using these Razor components.





9
Implementing Blazor 

Components

In the last chapter, we learned about Blazor routing and layout. We then built a navigation framework 
by creating the routing and layout of our app. After we created the navigation framework, we created 
the top-level pages. With the implementation of Razor pages, we can explore the password database 
in a similar way that we can explore in the XAML version. Razor pages are Razor components, but 
they are not reusable. Razor components are building blocks of the Blazor UI. In this chapter, we 
will introduce Razor components. To understand Razor components, we will introduce data binding 
and the Razor component life cycle. After learning about these concepts, we will refine our code and 
convert duplicated code into reusable Razor components. Finally, we will use the Razor components 
that we build to implement CRUD operations in our app.

We will cover the following topics in this chapter:

• Introducing Razor components

• Data binding

• Understanding the life cycle of Razor components

• Implementing CRUD operations

Technical requirements
To test and debug the source code in this chapter, you need to have Visual Studio 2022 installed on 
your PC or Mac. Please refer to the Development environment setup section in Chapter 1, Getting 
Started with .NET MAUI, for the details.

The source code of this chapter is available in the following GitHub repository:

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-
Application-Development/tree/main/Chapter09

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter09
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter09


Implementing Blazor Components234

The source code can be downloaded using the following git command:

git clone -b chapter09 https://github.com/PacktPublishing/.
NET-MAUI-Cross-Platform-Application-Development PassXYZ.Vault2

Understanding Razor components
Even though we have created and used Razor components in the last two chapters, we haven’t taken a 
closer look at Razor components yet. In this section, we will continue improving the app from the last 
chapter and dig deeper into Razor components to learn some key concepts about these components.

Blazor apps are built using Razor components. The first Razor component in our app is Main and it 
is defined in Main.razor, as shown here:

<Router AppAssembly="@typeof(Main).Assembly">

  <Found Context="routeData">

    <RouteView RouteData="@routeData"

      DefaultLayout="@typeof(MainLayout)" />

<FocusOnNavigate RouteData="@routeData"

  Selector="h1" />

  </Found>

  <NotFound>

    <LayoutView Layout="@typeof(MainLayout)">

      <p role="alert">

        Sorry, there's nothing at this address.

      </p>

    </LayoutView>

  </NotFound>

</Router>

The Router component is installed in the Main component, and it handles the routing of pages 
and selects the default layout component. All other Razor pages are loaded by Router components. 
The Razor pages loaded by Router have route templates defined and are used to present the UI to 
the users. In our project, Razor pages are located in the Pages folder. There are also reusable Razor 
components, and they are the building blocks of Razor pages. These Razor components are in the 
Shared folder.



Understanding Razor components 235

Basically, each file with the .razor file extension is a Razor component and it is compiled into a 
C# class when it is executed. The class name is the filename. The folder name is used as part of the 
namespace. For example, the Login Razor component is in the Pages folder so the folder name, 
Pages, is used as part of the namespace. So, the full name of the Login class is PassXYZ.Vault.
Pages.Login.

We use Pascal case for the class name in C#, so the folder name and Razor filename should use Pascal 
case as well.

What are Pascal case, camel case, and snake case?
Pascal case, camel case, and snake case are commonly used naming conventions in programming 
languages. Here are some examples:

• Camel case uses uppercase and lowercase in the variable name. The first letter is lowercase, 
such as loginUser.

• Pascal case also uses uppercase and lowercase in the variable name, but the first letter is 
uppercase, such as LoginUser.

• Snake case uses lowercase only and separates each word with an underscore, such as login_
user.

Razor components can be authored in a single file or they can be split into a Razor file (.razor) and 
a code-behind C# file (.cs). In the code-behind C# file, a partial class is defined to contain all the 
programming logic. We did this when we created the Login component in Chapter 7, Introducing 
Blazor Hybrid App Development.

Figure 9.1: Razor component naming convention

When we created the Login component, we used Bootstrap CSS style for the styling. Razor components 
can support CSS isolation, which can simplify CSS and avoid collisions with other components or 
libraries. Additionally, it can include its own CSS style in a .razor.css file.



Implementing Blazor Components236

Inheritance

Since a Razor component is a C# class, it includes all features of a C# class. A Razor component can 
be a child class of another Razor component. In Chapter 8, Understanding Blazor Layout and Routing, 
when we created layout components, we could see that all layout components are derived classes of 
LayoutComponentBase. As we can see in MainLayout.razor in the following code, we use 
the @inherits directive to specify the LayoutComponentBase base class:

@inherits LayoutComponentBase

<div class="page">

  <div class="sidebar"><NavMenu/></div>

  <main>@Body</main>

</div>

All Razor components derive from the ComponentBase class, so it is possible to create a Razor 
component derived from the ComponentBase class using the C# file without the Razor markup 
file. For example, we can create a Razor component called AppName in a C# class, as shown here:

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.Components.Rendering;

namespace PassXYZ.Vault.Pages;

public class AppName : ComponentBase

{

  protected override void BuildRenderTree

    (RenderTreeBuilder builder)

  {

    base.BuildRenderTree(builder);

    builder.OpenElement(0, "div");

    builder.AddContent(1, "PassXYZ.Vault");

    builder.CloseElement();

  }

}

AppName is a Razor component created without a Razor markup file (.razor), but it is the same 
as other Razor components, as shown here:

...

<AppName/>

...



Creating a Razor class library 237

We introduced Razor components in this section. We will learn how to package Razor components 
in a library in the next section.

Creating a Razor class library
In our project, we create reusable components in the Shared folder. These components can be reused 
by other components, such as layout components or NavMenu.

We can also encapsulate Razor components in a separate library in the form of the Razor class library. 
The components in the Razor class library are not project-specific, so they can be used in any Blazor 
project. We can use them in Blazor Hybrid, Blazor WebAssembly, or Blazor Server apps.

In this book, we build Razor components using Bootstrap. There are many open source Razor class 
libraries built on top of Bootstrap in GitHub. Some of them are good enough for commercial product 
development. Here are some examples:

• BootstrapBlazor – https://github.com/dotnetcore/BootstrapBlazor

• Blazorise – https://github.com/Megabit/Blazorise

• Havit.Blazor – https://github.com/havit/Havit.Blazor/

These open source projects are built as Razor class libraries so that they can be reused similarly to 
other .NET libraries. Razor class libraries can be published as NuGet packages so we can import them 
into our Blazor projects.

In this section, we will create a Razor class library similar to the previously mentioned open source 
projects. We will put Razor components that can be reused in our Razor class library. This library can 
be published as a NuGet package.

We can create a Razor class library using Visual Studio or the dotnet command line.

To create a Razor class library using Visual Studio, we can add a new project to our solution, as shown 
in Figure 9.2, by following these steps:

1. Search for and select Razor Class Library from the project templates.

2. Click Next and name the project PassXYZ.BlazorUI.

3. On the next screen, click Create to create it.

https://github.com/dotnetcore/BootstrapBlazor
https://github.com/Megabit/Blazorise
https://github.com/havit/Havit.Blazor/


Implementing Blazor Components238

Figure 9.2: Creating a Razor class library

To create the project using a dotnet command line, we can change the directory to the solution folder 
and execute the following command in Command Prompt:

dotnet new razorclasslib -n PassXYZ.BlazorUI

The dotnet new command will create a new project using the razorclasslib template 
and name the project PassXYZ.BlazorUI. To add the project to the solution, we can use the 
following command:

dotnet sln add PassXYZ.BlazorUI\PassXYZ.BlazorUI.csproj

We need to remove the unused Component1.* and ExampleJsInterop.cs files from the 
PassXYZ.BlazorUI project.



Creating reusable Razor components 239

To use Razor components in our project, we need to add the project reference into the PassXYZ.
Vault project. We can add it in Visual Studio by right-clicking the project node and selecting Add 
-> Project Reference. We can also edit the PassXYZ.Vault.csproj project file to add the 
following line:

<ItemGroup>

  <ProjectReference

    Include="..\PassXYZ.BlazorUI\PassXYZ.BlazorUI.csproj"

      />

</ItemGroup>

To use this library, we need to update the PassXYZ.Vault\_Imports.razor file to add the 
following line:

@using PassXYZ.BlazorUI

Using static assets in the Razor class library

We use Bootstrap in our Razor components, so we need to include Bootstrap CSS and JavaScript files 
in the Razor class library. From the Blazor app point of view, we can put these static assets in either 
the project’s wwwroot folder or the component library’s wwwroot folder. Using the Bootstrap CSS 
file as an example, if we put it in the wwwroot project, we can refer to it in index.html with the 
following path:

<script src="css/bootstrap/bootstrap.bundle.min.js"/>

If we choose to put it in the component library’s wwwroot folder, we can refer to it with the following path:

<script src="_content/PassXYZ.BlazorUI/css/bootstrap/

  bootstrap.bundle.min.js"/>

The difference is that we need to refer to the URL in the component library starting with _content/
{LibraryProjectName}.

After we have created a Razor class library project, we can add more components to it.

Creating reusable Razor components
In this section, we can create reusable components by optimizing our code. Throughout the process, we 
can get a better understanding of the features of Razor components and how to make them reusable.

We created the Blazor Hybrid version of our app, PassXYZ.Vault in Chapter 7, Introducing Blazor Hybrid 
App Development, and we added layout and routing functionalities to it in Chapter 8, Understanding 



Implementing Blazor Components240

the Blazor Layout and Routing. Our app can browse and update the password database now. So far, we 
haven’t implemented most of the CRUD operations. We will add these functionalities after we refine 
our Razor components in this chapter.

To navigate the password database, we created two Razor components – Items and ItemDetail 
– in Chapter 7, Introducing .NET MAUI Blazor. The Items class is used to display a list of password 
entries and groups in the current group, and the ItemDetail class is used to display the content 
of a password entry.

If we look at the layout of Items and ItemDetail as shown in Figure 9.3, the look and feel of 
both pages are quite similar:

Figure 9.3: UI layout of Items and ItemDetail

The layout of both pages includes a sidebar, a header, and a list view. The sidebar is defined in the 
layout component. The header and list view are implemented in both Items and ItemDetail 
with partially duplicated code there. We will optimize our code and abstract the duplicated code into 
reusable components in this chapter and the next chapter.

There are two buttons, Add and Back, in the header. The Back button can be used to navigate back 
to the parent group, and the Add button can be used to add a new item or field.



Creating reusable Razor components 241

In the list view item, we can use the context menu to perform item-level operations, such as edit or 
delete. The context menu includes menu items to perform specific actions related to the selected 
item or field. For the edit or delete CRUD operations, after the menu item is selected, a modal dialog 
related to the action is displayed.

In the current implementation, both Items and ItemDetail include all UI elements in one 
Razor markup. We will start to refine the code into smaller reusable components to make our 
implementation clean.

We will convert modal dialogs into Razor components in this chapter and convert the header and 
list view into Razor components in the next chapter. Let us start with modal dialogs. To support add, 
edit, and delete operations, we need two kinds of dialog boxes:

• Editor dialog – adding or editing items or fields

• Confirmation dialog – to confirm before deleting an item or a field

In Chapter 8, Understanding the Blazor Layout and Routing, we used the HTML and CSS code from 
Bootstrap examples to implement modal dialogs. We haven’t investigated them in detail yet, since 
our markup files look long and complex. We will analyze the code and turn it into Razor components 
in this chapter.

Creating a base modal dialog component

To refine Editor and Confirmation dialogs, we can build a base modal dialog first. Using this base 
modal dialog, we can create either Editor or Confirmation dialogs.

To create a new Razor component in the PassXYZ.BlazorUI project, we can right-mouse-click 
on the project node and select Add -> New Item… -> Razor Component in the project template. We 
name the Razor component as ModalDialog and create a C# code-behind file for it. After that, we 
type the code in Listing 9.1 to ModalDialog.razor and Listing 9.2 to ModalDialog.razor.cs.

The UI code is extracted from the Items or ItemDetail code in Chapter 8, Understanding the 
Blazor Layout and Routing, as shown in Listing 9.1:

Listing 9.1: ModalDialog.razor (https://epa.ms/ModalDialog9-1)

<div class="modal fade" id=@Id tabindex="-1"

    aria-labelledby="ModelLabel" aria-hidden="true">

  <div class="modal-dialog"><div class="modal-content">

    <div class="modal-header">                            ❶

      <h5 class="modal-title" id="ModelLabel">@Title</h5> ❷

      <button type="button" class="btn-close"             ❸

        data-bs-dismiss="modal" aria-label="Close"/>



Implementing Blazor Components242

    </div>

    <div class="modal-body">                              ❹

      <form class="row gx-2 gy-3">

        @ChildContent                                     ❺

        <div class="col-12">

          <button type="button" class="btn btn-secondary"

            data-bs-dismiss="modal" @onclick=

              "OnClickClose">

            @CloseButtonText                              ❻

          </button>

            <button type="submit" class="btn btn-primary"

              data-bs-dismiss="modal" @onclick=

                "OnClickSave">

            @SaveButtonText                               ❼

          </button>

        </div>

      </form>

    </div>

  </div></div>

</div>

From the markup code in Listing 9.1, we can see that this is a typical HTML code snippet in Bootstrap 
style. We embedded C# variables in HTML to create the component UI.

This base dialog UI includes a header ❶ and body ❹. There is a title ❷ and a close button ❸ in the 
header. Inside the body, we can see a child content area ❺ and two buttons (Close ❻/Save ❼). We 
can refer to Figure 9.4 to see the layout of this base modal dialog:

Figure 9.4: Base dialog



Creating reusable Razor components 243

Even though the HTML and CSS code is very similar to the Bootstrap example, we replaced all the 
hardcode content with C# variables. If we use this modal dialog component to build a new component, 
the following is an example:

<ModalDialog Id=@id Title="Please confirm" OnSaveAsync=

  @OnDelete

    SaveButtonText="Save" CloseButtonText="Close">

    Do you want to delete UserName?

</ModalDialog>

<button class="dropdown-item" data-bs-toggle="modal"

    data-bs-target="#@Id">Please confirm</button>

In the preceding markup code, we define the modal dialog using the <ModalDialog> component 
tag. Each modal dialog has a unique ID to identify it. We can show the dialog box after clicking a 
button. In the button, we provide the modal dialog ID to identify it.

Inside the <ModalDialog> component tag, we assigned the value of multiple attributes defined 
in the ModalDialog component, such as the ID, title, text of buttons, event handler, and so on.

Data binding

Instead of assigning a string or data directly to the attribute of an HTML element, we can assign a 
variable to it. This is the data binding feature of the Razor component. We will learn how to use data 
binding in this section.

In data binding, when we assign a variable to the attribute of the DOM element, the data flows from 
Razor components to DOM elements. When we respond to the DOM event, the data flows from DOM 
elements to Razor components. Since we can use a Razor component just like a DOM element, the 
data flow between child and parent Razor components is similar to the data exchange between Razor 
components and DOM elements.

For example, we can bind the id variable to the Id attribute of ModalDialog and we can handle 
the button click event using the OnDelete event handler:

<ModalDialog Id=@id Title="Please confirm" OnSaveAsync=

  @OnDelete

    SaveButtonText="Save" CloseButtonText="Close">

In the preceding example, the data flows from the id variable to the Id attribute of ModalDialog. 
When the OnDelete event handler is invoked, the data flows from ModalDialog back to the 
current context. The ModalDialog attributes, Id and OnSaveAsync, are defined in the C# code-
behind file. Let’s review the C# code-behind file of ModalDialog in the next section.



Implementing Blazor Components244

Component parameters

We can define the attributes of Razor components using component parameters. To define component 
parameters, we must create public properties with the [Parameter] attribute.

In the ModalDialog class, as shown in Listing 9.2, we declare seven component parameters, Id, Title, 
ChildContent, OnClose, OnSaveAsync, CloseButtonText, and SaveButtonText. 
We can use these component parameters in data binding:

Listing 9.2: ModalDialog.razor.cs (https://epa.ms/ModalDialog9-2)

using Microsoft.AspNetCore.Components;

using System.Diagnostics;

using System.Diagnostics.CodeAnalysis;

namespace PassXYZ.BlazorUI;

public partial class ModalDialog : IDisposable

{

  [Parameter]

  public string? Id { get; set; }                         ❶

  [Parameter]

  public string? Title { get; set; }                      ❷

  [Parameter]

  public RenderFragment ChildContent { get; set; }        ❸

  [Parameter]

  public Func<Task>? OnClose { get; set; }                ❹

  [Parameter]

  public Func<Task<bool>>? OnSaveAsync { get; set; }      ❺

  [Parameter]

  [NotNull]

  public string? CloseButtonText { get; set; }            ❻

  [Parameter]

  [NotNull]

  public string? SaveButtonText { get; set; }             ❼

  private async Task OnClickClose() {

    if (OnClose != null) { await OnClose(); }

  }



Creating reusable Razor components 245

  private async Task OnClickSave() {

    if (OnSaveAsync != null) { await OnSaveAsync(); }

  }

  void IDisposable.Dispose() {

      GC.SuppressFinalize(this);

  }

}

The component parameters of ModalDialog are defined as follows:

• Id ❶  – This is used to identify a modal dialog

• Title ❷ – This is the title of the modal dialog

• ChildContent ❸ – This is where the content of the child component should be inserted

Two event handlers – OnClose ❹ and OnSaveAsync ❺ – are defined to handle button click actions. 
We can customize the text of both buttons using CloseButtonText ❻ and SaveButtonText ❼.

We can treat component parameters just like HTML attributes. We can assign a C# field, property, or 
return value of a method to the component parameter of ModalDialog.

After we create the ModalDialog base component, we can create Editor and Confirmation dialog 
components using it.

Let’s create a new modal dialog, ConfirmDialog, to ask for the confirmation of deleting an item. 
To create a new ConfirmDialog componwent in the PassXYZ.BlazorUI project, we can 
right-mouse-click on the project node and select Add -> New Item… -> Razor Component in the 
project template. We can name the Razor component ConfirmDialog and type the following code 
as shown in Listing 9.3:

Listing 9.3: ConfirmDialog.razor (https://epa.ms/ConfirmDialog9-3)

<ModalDialog Id=@Id Title=@($w"Deleting {Title}") OnSaveAsync= 
@OnSavew

    SaveButtonText="Confirm" CloseButtonText="Cancel">

    Please confirm to delete @Title?

</ModalDialog>

@code {w

  [Parameter]

  public string Id { get; set; } = "confirmDialog"w;      ①

  [Parameter]



Implementing Blazor Components246

  public string? Title { get; set; }                     ②

  [Parameter]

  public Action? OnConfirmClick { get; set; }

  async Task<bool> OnSave() {

    OnConfirmClick?.Invoke();

    return true;

  }

}

We define the Id ① and Title ② component parameters in ConfirmDialog and pass their 
values to the base class through data binding. We also subscribe to the OnSaveAsync event using the 
OnSave event handler. We also define our own event handler, OnConfirmClick, as a component 
parameter to which other components can subscribe.

In ConfirmDialog, we actually bind parameters through nested components. In this case, the data 
should flow in the directions suggested here:

• Change notifications flow up the hierarchy

• New parameter values flow down the hierarchy

The values of the Id and Title attributes are assigned by the components that use ConfirmDialog, 
and their values flow down to ModalDialog. The Save or Close button events are triggered in 
the ModalDialog component, and they flow up the chain to ConfirmDialog and upper-level 
components. If we use the Save button as an example, the event flows up in the direction shown here:

onclick (DOM) ->se OnSaveAsync (ModalDialog) -> OnConfirmClick 
(ConfirmDialog)

It starts from the onclick event in DOM. ModalDialog defines its own event, OnSaveAsync, 
which is triggered by the onclick event handler. ConfirmDialog defines its own event, 
OnConfirmClick, which is triggered by the OnSaveAsync event handler.

Nested components

ConfirmDialog is one of the examples of nested components. As we can see, we can embed 
components inside components by declaring them using HTML syntax. The embedded components 
look like HTML tags, where the name of the tag is the component type. For example, we can use 
ModalDialog inside ConfirmDialog, as shown here:

<ModalDialog ...>Please confirm to delete @Title?</ModalDialog>



Creating reusable Razor components 247

Nested components are the way to build the component hierarchy in Blazor. Inheritance and composition 
are the two ways that we can extend and reuse a class in an object-oriented programming language. In 
Blazor, composition is used in nested components to extend the functionalities. Inheritance is an is-a 
relationship, while composition is a has-a relationship. In nested components, the parent component 
has a child component in it.

In Microsoft Blazor and ASP.NET Core documents, the terms ancestor and descendant or parent 
and child are used to explain the relationship of nested components. Here, parent and child is not an 
inheritance relationship, but a composition relationship. A better term could be an outer component 
or an inner component. Nevertheless, to be consistent with the Microsoft documentation, I won’t 
choose a different term in the discussion. Please just be aware that when we discuss nested components 
and data binding, the ancestor and descendant relationship is a has-a relationship or composition.

In our previous example, the ConfirmDialog component is the outer component, while ModalDialog 
is the inner component. The relationship is that ConfirmDialog, has ModalDialog in it.

Child content rendering

When we build nested components, there are many cases in which one component can set the content 
of another component. The outer component provides the content between the inner component’s 
opening and closing tags. In ConfirmDialog, it sets the content of ModalDialog as follows:

<ModalDialog Id=@Id Title=@($"Deleting {Title}")

  OnSaveAsync=@OnSave

    SaveButtonText="Confirm" CloseButtonText="Cancel">

    Please confirm to delete @Title?

</ModalDialog>

This is done by using a special component parameter called ChildContent, which is of the 
RenderFragment type. In the preceding code, the Please confirm to delete @Title? 
string is set to the ChildContent parameter of ModalDialog.

ConfirmDialog is still a relatively simple example of nested components. Let’s look at another 
example, EditorDialog, to explore more Razor component features. As we mentioned earlier, we 
need two dialog boxes to handle add, edit, and delete actions. ConfirmDialog is used to confirm 
with users before deleting an item or a field. To add or edit an item or a field, we need a dialog box 
that can provide editing features.

We can do the same to create the new component, EditorDialog. After selecting Add -> New Item… 
-> Razor Component in the project template, we can name the Razor component EditorDialog 
and create a C# code-behind file for it. After that, we type the code in Listing 9.4 to EditorDialog.
razor and Listing 9.5 to EditorDialog.razor.cs.



Implementing Blazor Components248

Let’s review the Razor markup code of EditorDialog as shown in Listing 9.4:

Listing 9.4: EditorDialog.razor  (https://epa.ms/EditorDialog9-4)

<ModalDialog Id=@Id Title=@Key OnSaveAsync=@OnSaveClicked

  SaveButtonText ="Save" CloseButtonText="Close">

  @if (IsKeyEditingEnable) {                              ❶

    <input type="text" class="form-control" id="keyField"

       @bind="Key" placeholder=@KeyPlaceHolder required>  ❷

  }

  @ChildContent

  <div>

    <textarea class="form-control" id="valueField"

      style="height: 100px"

      placeholder=@ValuePlaceHolder

      @bind="Value" required />                           ❸

  </div>

</ModalDialog>

EditorDialog is built using ModalDialog. It can be used to edit a key-value pair. When we 
create a new key-value pair, we want to edit both the key and the value. When we edit an existing 
key-value pair, we may want to make a change to the value field only. These are the two use cases that 
we want to support in EditorDialog. The condition is detected using a component parameter 
called IsKeyEditingEnable ❶. The key portion of the UI is rendered as an <input> ❷ 
element when we want to create a new key-value pair. When we edit an existing key-value pair, the 
key is displayed as the title in the header area, and we edit the value in the <textarea> ❸ element. 
This is the main functionality of our EditorDialog component.

We can see the UI in Figure 9.5. On the left-hand side, it shows the dialog when we want to add a new 
field. We need to provide the field name and content. On the right-hand side, it shows the dialog when 
we want to edit an existing URL field. The field name is displayed in the title, and we can change the 
content in <textarea>:



Creating reusable Razor components 249

Figure 9.5: Editing a field

In the EditorDialog component, when we edit the key and value using the <input> and 
<textarea> HTML elements, the initial value is displayed. The initial value sets from the Razor 
component to the DOM. After we make the changes, the data flows from the DOM to the Razor 
component. This is two-way data binding.



Implementing Blazor Components250

Two-way data binding

Two-way data binding can be created with the @bind Razor directive attribute. With this syntax, an 
HTML element attribute can bind to a field, property, expression value, or result of a method. In Listing 
9.4, the <input> element value binds to the Key property in the EditorDialog component:

    <input type="text" class="form-control" id="keyField"

       @bind="Key" placeholder=@KeyPlaceHolder required>

With two-way data binding, the DOM element <input> value is updated whenever the Key property 
is changed. The Key property is updated as well when the user updates the <input> value in the DOM.

In the preceding example, instead of using the @bind directive attribute, we can replace the @bind 
directive attribute with two one-way data bindings, as you can see in the following code:

<input type="text" class="form-control" id="keyField"

  value="@Key"

  @onchange="@((ChangeEventArgs e) => Key = e?.Value?

    .ToString())"

  placeholder=@KeyPlaceHolder required>

When our EditorDialog component is rendered, the value of the <input> element comes from 
the Key property. When the user enters a value in the textbox and changes the element focus, the 
onchange event is fired and the Key property is set to the changed value.

For the <input> element, the default event of the @bind directive attribute is the onchange event. 
We can change the event with an @bind:event="{event}" attribute. The {event} placeholder 
should be a DOM event. For example, we can change the onchange event to an oninput event 
with the following code snippet:

<input type="text" class="form-control" id="keyField"

  @bind="Key" @bind:event="oninput" placeholder=@KeyPlaceHolder 
required>

Binding with component parameters

In the previous section, we discussed two-way data binding between a Razor component and a DOM 
element. Since the Razor component can be used in a similar way as the DOM element, we can create 
a two-way data binding between two Razor components as well. This is usually the case when we need 
to communicate between parent and child (inner or outer) components.

We can bind a component parameter of an inner component to the property of an outer component 
with the @bind-{PROPERTY} syntax. The {PROPERTY} placeholder is the property to bind. We 
explained that the @bind directive attribute can be replaced by two one-way data binding setups, 



Creating reusable Razor components 251

which include assigning a variable to the <input> value attribute and assigning an event handler to 
the onchange event. The event handler can be added automatically for @bind by the compiler, but 
not for @bind-{PROPERTY}. We need to define our own event of the EventCallback<TValue> 
type to bind with component parameters. The event name must be {PARAMETER NAME}Changed. 
Let’s use our EditorDialog component to explain how to use the @bind-{PROPERTY} 
directive attribute.

In our code, we edit a field using EditorDialog in the ItemDetail component or edit an item 
using the same in the Items component. Let’s use field editing as an example:

<EditorDialog Id=@_dialogEditId

  @bind-Key="listGroupField.Key"                         ❶

  @bind-Value="listGroupField.Value"                     ❷

  IsKeyEditingEnable=@_isNewField OnSave="UpdateFieldAsync"

  KeyPlaceHolder="Field name" ValuePlaceHolder="Field

    content">

  @if (_isNewField) {

    <div class="form-check">

      <input class="form-check-input" type="checkbox"

        @bind="listGroupField.IsProtected"

          id="flexCheckDefault">

      <label class="form-check-label"

        for="flexCheckDefault">

        Password

      </label>

    </div>

  }

</EditorDialog>

In the preceding code of the ItemDetail component, we can create data binding of Key ❶ and 
Value ❷ to the listGroupField of the Field type. We need to implement the {PARAMETER 
NAME}Changed events in C# code-behind of EditorDialog, as shown here in Listing 9.5:

Listing 9.5: EditorDialog.razor.cs (https://epa.ms/EditorDialog9-5)

namespace PassXYZ.BlazorUI;

public partial class EditorDialog {

  [Parameter]



Implementing Blazor Components252

  public string? Id { get; set; }

  bool _isKeyEditingEnable = false;

  [Parameter]

  public bool IsKeyEditingEnable ...

  [Parameter]

  public EventCallback<bool>? IsKeyEditingEnableChanged {

    get; set; }

  string _key = string.Empty;

  [Parameter]

  public string Key {                                     ❶

    get => _key;

    set {

      if(_key != value) {

        _key = value;

        KeyChanged?.InvokeAsync(_key);                    ❸

      }

    }

  }

  [Parameter]

  public EventCallback<string>? KeyChanged { get; set; }  ❷

  [Parameter]

  public string? KeyPlaceHolder { get; set; }

  string _value = string.Empty;

  [Parameter]

  public string Value ...

  [Parameter]

  public EventCallback<string>? ValueChanged { get; set; }

  [Parameter]

  public string? ValuePlaceHolder { get; set; }

  [Parameter]

  public RenderFragment ChildContent { get; set; } =

    default!;

  [Parameter]

  public Action<string, string>? OnSave { get; set; }

  async Task<bool> OnSaveClicked() {



Creating reusable Razor components 253

      OnSave?.Invoke(Key, Value);

      return true;

  }

}

In Listing 9.5, we use the Key property as an example to explain the process of component parameter 
binding. The Key property is defined as a component parameter with the [Parameter] attribute. 
An associated event is defined as KeyChanged of the EventCallback<TValue> type. When the 
user changes the text input and changes the element focus, the setter of the Key property is invoked. 
Inside the setter of the Key property, it fires the KeyChanged event, which will inform the outer 
ItemDetail component. As a result, the listGroupField.Key linked variable is updated.

Communicating with cascading values and parameters

We can use data binding to pass data between parent and child components. Data binding is good to 
pass data to the intermediate child component. Sometimes, we may want to pass data to components 
several levels deep. If we use data binding in this situation, then we have to create multiple levels of 
chained data binding. The complexity increases with the chained levels. For example, if we want to pass 
data from Items to ModalDialog, we have to create a data binding to ConfirmDialog first. Then, 
another level of data binding needs to be created between ConfirmDialog and ModalDialog.

In Items, we need to pass the Id dialog to ModalDialog. We need to use an Id dialog to identify the 
dialog instance that we want to display. As we can see next, we define ConfirmDialog in the Items 
component. Id is defined in Items and passes to ConfirmDialog using the component parameter:

<ConfirmDialog Id="@_dialogDeleteId" Title=

  @listGroupItem.Name

  OnConfirmClick="DeleteItemAsync" />

Then, ConfirmDialog has to pass it to ModalDialog:

<ModalDialog Id=@Id Title=@($"Deleting {Title}")

  OnSaveAsync=@OnSave

  SaveButtonText="Confirm" CloseButtonText="Cancel">

  Please confirm to delete @Title?

</ModalDialog>

In ModalDialog, Id is used as an attribute of the <div> element:

<div class="modal fade" id=@Id tabindex="-1"

  aria-labelledby="ModelLabel" aria-hidden="true"> ...



Implementing Blazor Components254

To avoid multiple levels of data binding, we can use cascading values and parameters as a method to 
flow data down a component hierarchy.

CascadingValue is a component of the Blazor framework. The outer component provides 
a cascading value using CascadingValue, and the inner component can receive it using the 
[CascadingParameter] attribute. To demonstrate the usage, we can change the code of the 
Items component as follows:

<CascadingValue Value="@_dialogDeleteId" Name="Id">

  <ConfirmDialog Title=@listGroupItem.Name

    OnConfirmClick="DeleteItemAsync" />

</CascadingValue>

We use cascading value with the <CascadingValue> tag. In the <CascadingValue> tag, we 
pass the_dialogDeleteId variable to the Value attribute and the "Id" string to the Name 
attribute. Since this Id is not used by ConfirmDialog directly, the Id component parameter can 
be removed from ConfirmDialog.

In ModalDialog, we change the Id property from a component parameter to a parameter using 
the [CascadingParameter] attribute:

    [CascadingParameter(Name = "Id")]

public string Id { get; set; } = default!;

If we have only one cascading value, we don’t have to specify the cascading value name. The compiler 
can help us to find it by data type. However, to avoid ambiguities, we can name the cascading value 
using the Name attribute. Let’s look at the final changes in the Items component using the cascading 
value for both ConfirmDialog and EditorDialog:

<CascadingValue Value="@_dialogEditId" Name="Id">

  <EditorDialog @bind-Key="listGroupItem.Name"

      @bind-Value="listGroupItem.Notes"

      IsKeyEditingEnable=true

      OnSave="UpdateItemAsync" KeyPlaceHolder="Item name"

      ValuePlaceHolder="Please provide a description">

    @if (_isNewItem) {

      <select @bind="newItem.SubType" class="form-select"

        aria-label="Group">

        <option selected value=@ItemSubType.Group>

          @ItemSubType.Group</option>

        <option value=@ItemSubType.Entry>



Understanding the component lifecycle 255

          @ItemSubType.Entry</option>

        <option value=@ItemSubType.PxEntry>

          @ItemSubType.PxEntry</option>

        <option value=@ItemSubType.Notes>

          @ItemSubType.Notes</option>

      </select>

    }

  </EditorDialog>

</CascadingValue>

<CascadingValue Value="@_dialogDeleteId" Name="Id">

  <ConfirmDialog Title=@listGroupItem.Name

    OnConfirmClick="DeleteItemAsync" />

</CascadingValue>

As we can see, after we use a cascading value, ConfirmDialog and EditorDialog don’t need 
to handle the Id field directly. The code is more concise than the previous version.

In this section, we discussed how to create reusable components. Some Razor components may have 
dependencies on data or network services. We need to take extra actions during the creation or the 
destruction of the components. We can do these as part of the life cycle management of Razor components.

Let us review the life cycle of Razor components in the next section.

Understanding the component lifecycle
A Razor component has a lifecycle just like any other object. There is a set of synchronous and 
asynchronous lifecycle methods that can be overridden to help developers perform additional operations 
during component initialization and rendering.



Implementing Blazor Components256

We can review the Razor component lifecycle in Figure 9.6:

Figure 9.6: Razor component lifecycle

In Figure 9.6, we can see that we can add hooks during the initialization and rendering phases. The 
following methods can be overridden to catch initialization events:

• SetParametersAsync

• OnInitialized and OnInitializedAsync

• OnParametersSet and OnParametersSetAsync

SetParametersAsync and OnInitialized(Async) are invoked only in the first render. 
OnParametersSet(Async) is called every time a parameter is changed.

The following methods can be overridden to customize rendering:

• ShouldRender

• OnAfterRender and OnAfterRenderAsync

We will review these lifecycle methods in detail and show how we use them in our code.

SetParametersAsync

SetParametersAsync is the first hook after the object is created and it has the following signature:

public override Task SetParametersAsync(ParameterView 
parameters)



Understanding the component lifecycle 257

The ParameterView parameter contains component parameters or cascading parameter 
values. SetParametersAsync sets the value of each property with the [Parameter] or 
[CascadingParameter] attribute. This function can be overridden to add logic that needs 
to be executed before the parameters are set. The next hook after SetParametersAsync 
is OnInitialized{Async}.

OnInitialized and OnInitializedAsync

OnInitialized and OnInitializedAsync are invoked when the component is initialized. 
They have the following signatures, respectively:

protected override void OnInitialized()

protected override async Task OnInitializedAsync()

By overriding these two functions, we can add logic to initialize our component here. Please be 
aware that they are only called once, right after the creation of the component. For time-consuming 
initialization tasks, the asynchronous method can be used, such as downloading data using RESTful 
API calls. As we can see in Figure 9.6, after an asynchronous method is completed, the DOM needs 
to be rendered again.

OnParametersSet and OnParametersSetAsync

When component parameters are set or changed, OnParametersSet and OnParametersSetAsync 
are invoked. We can see that there are two versions to handle both synchronous and asynchronous 
cases. The asynchronous version of OnParametersSetAsync can be used to handle time-
consuming tasks. Once the asynchronous task is completed, the DOM needs to be rendered again 
to reflect any changes.

The methods have the following signatures, respectively:

protected override void OnParametersSet()

protected override async Task OnParametersSetAsync()

These two methods will be invoked whenever component parameters or cascading parameters are 
changed. They can be called multiple times, while OnInitialized{Async} is only called once.

As we can see in Figure 9.6, the DOM can be rendered multiple times during the initialization phase 
due to which asynchronous calls may be invoked. The methods involved in the rendering process are 
ShouldRender and OnAfterRender{Async}.



Implementing Blazor Components258

ShouldRender

The ShouldRender method returns a Boolean value, indicating whether the component should 
be rendered. As we can see in Figure 9.6, the first render ignores this method, so a component should 
be rendered at least once. This method has the following signature:

protected override bool ShouldRender()

OnAfterRender and OnAfterRenderAsync

OnAfterRender and OnAfterRenderAsync are called after a component has finished rendering. 
They have the following signatures, respectively:

protected override void OnAfterRender(bool firstRender)

protected override async Task OnAfterRenderAsync(bool

  firstRender)

They can be used to perform additional initialization tasks with the rendered content, such as invoking 
JavaScript code in the component. This method has a Boolean firstRender parameter, which allows 
us to attach JavaScript event handlers only once. There is an asynchronous version of this method, 
but the framework won’t schedule a further render cycle after the asynchronous task is completed.

To have a look at the effect of lifecycle methods, we can run a test to add all lifecycle methods in the 
ConfirmDialog component, as you can see here:

public ConfirmDialog()

{

  Debug.WriteLine($"ConfirmDialog-{Id}: is created");

}

public override Task SetParametersAsync

  (ParameterView parameters)

{

  Debug.WriteLine($"ConfirmDialog-{Id}:

    SetParametersAsync called");

  return base.SetParametersAsync(parameters);

}

protected override void OnInitialized()

  => Debug.WriteLine($"ConfirmDialog-{Id}: OnInitialized

    called - {Title}");

protected override async Task OnInitializedAsync() =>

  await Task.Run(() => {



Understanding the component lifecycle 259

  Debug.WriteLine($"ConfirmDialog-{Id}: OnInitializedAsync

    called - {Title}");

});

protected override void OnParametersSet()

  => Debug.WriteLine($"ConfirmDialog-{Id}: OnParametersSet

    called - {Title}");

protected override async Task OnParametersSetAsync() =>

  await Task.Run(() => {

Debug.WriteLine($"ConfirmDialog-{Id}:

  OnParametersSetAsync called - {Title}");

});

protected override void OnAfterRender(bool firstRender)

  => Debug.WriteLine($"ConfirmDialog-{Id}: OnAfterRender

    called with firstRender = {firstRender}");

protected override async Task OnAfterRenderAsync(bool

  firstRender) => await Task.Run(() => {

    Debug.WriteLine($"ConfirmDialog-{Id}:

      OnAfterRenderAsync called - {Title}");

});

protected override bool ShouldRender() {

  Debug.WriteLine($"ConfirmDialog-{Id}: ShouldRender called

    - {Title}");

  return true;

}

We override all lifecycle methods in ConfirmDialog and add debug output to show the progress. 
After we launch our app, we can see the following output:

ConfirmDialog-: is created

ConfirmDialog-: SetParametersAsync called

ConfirmDialog-deleteModel: OnInitialized called -

ConfirmDialog-deleteModel: OnInitializedAsync called -

ConfirmDialog-deleteModel: OnParametersSet called -

ConfirmDialog-deleteModel: OnParametersSetAsync called -

ConfirmDialog-deleteModel: ShouldRender called -

ConfirmDialog-deleteModel: ShouldRender called -

ConfirmDialog-deleteModel: OnAfterRender called with



Implementing Blazor Components260

  firstRender = True

ConfirmDialog-deleteModel: OnAfterRenderAsync called -

ConfirmDialog-deleteModel: OnAfterRender called with

  firstRender = False

ConfirmDialog-deleteModel: OnAfterRenderAsync called -

ConfirmDialog-deleteModel: OnAfterRender called with

  firstRender = False

ConfirmDialog-deleteModel: OnAfterRenderAsync called -

The preceding output is the one when we just launch our app and the Items page is shown. We can 
see that the Id cascading parameter is not set before the SetParametersAsync method is called. 
Since we override the asynchronous methods, there are multiple render cycles scheduled in parallel. 
ShouldRender and OnAfterRender{Async} are invoked multiple times due to rendering 
occurring in parallel.

Let’s look at another case when we click on the context menu on the Items page. When we click on 
the context menu of an item, such as Google, ConfirmDialog is initialized again. The output is 
as follows:

ConfirmDialog-deleteModel: SetParametersAsync called

ConfirmDialog-deleteModel: OnParametersSet called - Google

ConfirmDialog-deleteModel: ShouldRender called - Google

ConfirmDialog-deleteModel: OnParametersSetAsync called –

  Google

ConfirmDialog-deleteModel: ShouldRender called - Google

ConfirmDialog-deleteModel: OnAfterRender called with

  firstRender = False

ConfirmDialog-deleteModel: OnAfterRenderAsync called –

  Google

ConfirmDialog-deleteModel: OnAfterRender called with

  firstRender = False

ConfirmDialog-deleteModel: OnAfterRenderAsync called –

  Google

The SetParametersAsync method is called again since the Title component parameter is 
changed. We can see that the Title component parameter is set to Google in the subsequent calls.



Understanding the component lifecycle 261

In our code, we use OnParametersSet to load the list of items in Items.razor.cs and load a 
list of Field in ItemDetail.razor.cs. Let’s review OnParametersSet in ItemDetail.
razor.cs:

protected override void OnParametersSet() {

  base.OnParametersSet();

  if (SelectedItemId == null) {                           ❶

throw new InvalidOperationException(

  "ItemDetail: SelectedItemId is null");

  }

  selectedItem = DataStore.GetItem(SelectedItemId, true); ❷

  if (selectedItem == null) {

throw new InvalidOperationException(

  "ItemDetail: entry cannot be found with SelectedItemId");

  }

  else {

    if (selectedItem.IsGroup) {

      throw new InvalidOperationException(

        "ItemDetail: SelectedItemId should not be a group

          here.");

    }

    fields.Clear();

    List<Field> tmpFields = selectedItem.GetFields();     ❸

    foreach (Field field in tmpFields) {

      fields.Add(field);

    }

    notes = selectedItem.GetNotesInHtml();

  }

}

❶ In OnParametersSet, we check whether the SelectedItemId component parameter is 
null. This is the ID of the selected item. ❷ If it is not null, we can find the item by calling the 
IDataStore method called GetItem(). ❸ Once we get the instance of the selected item, we can 
get a list of fields by calling the GetFields() method.



Implementing Blazor Components262

In Items.razor.cs, the implementation of OnParametersSet is very similar to this. You can 
refer to the following GitHub link to find out the details:

https://epa.ms/Items9-6

So far, we have an almost full-function password manager app, and the UI of this app is built with 
Blazor. We created reusable modal dialog components to support the context menu so we can perform 
CRUD operations. The last piece of the puzzle is the implementation of CRUD operations.

Implementing CRUD operations
Once we have prepared modal dialogs, which will be used in CRUD operations from previous sections, 
we can implement CRUD operations in this section.

CRUD operations of items

To add or update an item, we can use the UpdateItemAsync() method in Items.razor.cs 
to handle both cases. To detect whether we want to create a new item or update an existing item, we 
define a private _isNewItem field as follows:

    bool _isNewItem = false;

Next, we’ll see how to add or edit an item.

Adding a new item

To add a new item, we can click the + button in the header of the Items page, as shown in Figure 9.7:

Figure 9.7: Adding a new item

The Razor markup of this page header can be reviewed here:

<div class="container"><div class="row">

  <div class="col-12"><h1>

    @if (selectedItem?.GetParentLink() != null) {

https://epa.ms/Items9-6


Implementing CRUD operations 263

      <a class="btn btn-outline-dark"

        href="@selectedItem?.GetParentLink()">

        <span class="oi oi-chevron-left"

          aria-hidden="true"></span></a>                  ❶

    }

    @(" " + Title)                                        ❷

<button type="button"

  class="btn btn-outline-dark float-end"

      data-bs-toggle="modal"

      data-bs-target="#@_dialogEditId"

      @onclick="@(() => _isNewItem=true)">

      <span class="oi oi-plus" aria-hidden="true">

    </span></button>                                      ❸

  </h1></div>

</div></div>

The page header displays the Back button ❶, Title ❷, and the Add button ❸. The Back button is 
displayed if the parent link exists.

When the Add button is clicked, it will display a modal dialog with Id defined in the _dialogEditId 
variable. The onclick event handler just sets _isNewItem to true so the modal dialog event 
handler knows this is an action to add a new item.

Editing or deleting an item

To edit or delete an item, we can click on the context menu on the item, as shown in Figure 9.8:

Figure 9.8: Editing or deleting an item



Implementing Blazor Components264

After we click on the context menu button, a list of menu items will be displayed. Let’s review the 
markup for the context menu in Items.razor as follows:

<div class="list-group">

  @foreach (var item in items) {

<div class="dropdown list-group-item list-group-item-action

  d-flex gap-1 py-2" aria-current="true">

      <img src="@item.GetIcon()" alt="twbs" width="32"

        height="32"

          class="rounded-circle flex-shrink-0 float-start">

      <a href="@item.GetActionLink()" class="..."> ...

      <button class="opacity-50 btn btn-light

          dropdown-toggle" type="button"

            id="itemsContextMenu"

          data-bs-toggle="dropdown" aria-expanded="false"

          @onclick="@(() => listGroupItem=item)">         ❶

        <span class="oi oi-menu" aria-hidden="true"></span>

      </button>

      <ul class="dropdown-menu" aria-labelledby=

        "itemsContextMenu">

        <li><button class="dropdown-item"

          data-bs-toggle="modal"

              data-bs-target="#@_dialogEditId"

              @onclick="@(() => _isNewItem=false)">       ❷

              Edit</button></li>

        <li><button class="dropdown-item"

          data-bs-toggle="modal"

              data-bs-target="#@_dialogDeleteId">         ❸

              Delete</button></li>

      </ul>

    </div>

  }

</div>



Implementing CRUD operations 265

There is a context menu button ❶ defined in the preceding markup code. When this button is clicked, 
two menu items, Edit ❷ and Delete ❸, will be displayed. Since the markup code of the context 
menu runs in a foreach loop, we need to get a reference of the selected item to edit or delete it. In 
the logic of C# code-behind, the listGroupItem variable is used to refer to the selected item. We 
can catch the reference in the onclick event handler of the context menu button.

When the Edit menu item is selected, we need to set the _isNewItem variable to false so the 
event handler of the modal dialog can know we are editing an existing item.

With all the previous setup, let’s review the event handler in modal dialogs. Let’s review the 
UpdateItemAsync() event handler in Items.razor.cs first:

private async void UpdateItemAsync(string key, string value) {

  if (listGroupItem == null) { return; }

  if (string.IsNullOrEmpty(key) || string.IsNullOrEmpty

    (value))

    { return; }

  listGroupItem.Name = key;

  listGroupItem.Notes = value;

  if (_isNewItem) {                                      ①

      // Add new item

    if (listGroupItem is NewItem aNewItem) {

      Item? newItem = DataStore.CreateNewItem

        (aNewItem.SubType);

      if (newItem != null) {

        newItem.Name = aNewItem.Name;

        newItem.Notes = aNewItem.Notes;

        items.Add(newItem);

        await DataStore.AddItemAsync(newItem);

      }

    }

  }

  else {

    // Update the current item

    await DataStore.UpdateItemAsync(listGroupItem);

  }

}



Implementing Blazor Components266

The UpdateItemAsync() event handler can handle both adding and editing an item. As we can 
see, it checks the _isNewItem variable ① to detect whether we want to add or edit an item. After 
that, it calls IDataStore methods to process add or update actions.

Next, let’s review the event handler of deleting an item:

private async void DeleteItemAsync() {

  if (listGroupItem == null) return;

  if (items.Remove(listGroupItem)) {

      _ = await DataStore.DeleteItemAsync

         (listGroupItem.Id);

  }

}

In the DeleteItemAsync()event handler, it just removes the item from the list and calls 
IDataStore methods to process the delete action.

CRUD operations of fields

The CRUD operations of fields are similar to what we have done for items. To add or update a field, 
we can use the UpdateFieldAsync() method in ItemDetail.razor.cs to handle both 
cases. To detect whether we want to create a new field or update an existing field, we define a private 
_isNewField field as follows:

    bool _isNewField = false;

The UI of CRUD operations is also similar to what we have explained in the previous section. Please 
refer to Figure 9.9 to see the Add button and context menu items:



Implementing CRUD operations 267

Figure 9.9: Add, edit, or delete a field

We can review the Razor markup code of the page header in IwwtemDetail.razor as follows:

<div class="container">

  <div class="row"><div class="col-12">

    <h1>

      @if (selectedItem?.GetParentLink() != null) {

        <a class="btn btn-outline-dark"

          href="@selectedItem?.GetParentLink()">

        <span class="oi oi-chevron-left"

          aria-hidden="true"></span></a>



Implementing Blazor Components268

      }

      @(" " + selectedItem!.Name)

      <button type="button" class="btn btn-outline-dark

        float-end"

        data-bs-toggle="modal" data-bs-

          target="#@_dialogEditId"

        @onclick="@(() => _isNewField=true)">

          <span class="oi oi-plus"

            aria-hidden="true"></span></button>

    </h1>

  </div></div>

</div>

As we can see, the preceding source code is also similar to the one in Items.razor except the 
_isNewItem variable is replaced by _isNewField. We can refine this page header to a reusable 
component later.

Just like in the previous section, let’s review the source code of the list group and context menu:

<div class="list-group">

  @foreach (var field in fields) {

    @if(field.ShowContextAction == null) {

      <div class="dropdown list-group-item ...

        aria-current="true">

        <span class="oi oi-pencil" aria-hidden="true">

         </span>

        <div class="d-flex gap-2 w-100

          justify-content-between"> ...

        <button class="opacity-50 btn btn-light

          dropdown-toggle" type="button"

          id="itemDetailContextMenu"

          data-bs-toggle="dropdown" aria-expanded="false"

          @onclick="@(() => listGroupField=field)">       ❶

            <span class="oi oi-menu" aria-hidden="true">

            </span>

        </button>

        <ul class="dropdown-menu"

          aria-labelledby="itemDetailContextMenu">



Implementing CRUD operations 269

          <li><button class="dropdown-item"

            data-bs-toggle="modal"

            data-bs-target="#@_dialogEditId"

            @onclick="@(() => _isNewField=false)">        ❷

                Edit

          </button></li>

          <li><button class="dropdown-item"

            data-bs-toggle="modal"

            data-bs-target="#@_dialogDeleteId">           ❸

                Delete

          </button></li>

          @if (field.IsProtected) {

            <li><button class="dropdown-item"

              @onclick="OnToggleShowPassword">            ❹

                @if (field.IsHide) { <span>Show</span> }

                else { <span>Hide</span> }

            </button></li>

          }

        </ul>

      </div>

    }

  }

</div>

The preceding source code of ItemDetail.razor includes a context menu button ❶ and three 
buttons for the Add ❷, Edit ❸, and Show ❹ menu items. You can see that the source code is also 
similar to the one in Items.razor, which includes a list group and a context menu. We will refine 
this to a reusable component in the next chapter. The difference in the context menu is we add a 
menu item to show or hide the field if the field is a protected field, such as a password. We use the 
onclick event handler, OnToggleShowPassword(), to set the IsHide field property to toggle 
the visibility of the password field.

Finally, let’s review the event handlers of modal dialogs in ItemDetail.razor.cs:

private async void UpdateFieldAsync(string key, string

  value) {

  if (selectedItem == null || listGroupField == null) {

      throw new NullReferenceException("Selected item is

        null");



Implementing Blazor Components270

  }

  if (string.IsNullOrEmpty(key) ||

      string.IsNullOrEmpty(value)) { return; }

  listGroupField.Key = key;

  listGroupField.Value = value;

  if (_isNewField) {

    // Add a new field

Field newField =

    selectedItem.AddField(listGroupField.Key,

        ((listGroupField.IsProtected) ?

          listGroupField.EditValue :

          listGroupField.Value),

          listGroupField.IsProtected);

          fields.Add(newField);

  }

  else {

    // Update the current field

    var newData = (listGroupField.IsProtected) ?

          listGroupField.EditValue : listGroupField.Value;

selectedItem.UpdateField(listGroupField.Key,

   newData, listGroupField.IsProtected);

  }

  await DataStore.UpdateItemAsync(selectedItem);

}

The UpdateFieldAsync() event handler handles both adding and editing a field. It is called with 
two parameters – key and value. The corresponding arguments are passed from the modal dialog 
and we use them to set the field of listGroupField. The handler checks the _isNewField 
variable to detect whether we want to add or edit a field. After that, it calls IDataStore methods 
to process add or update actions.

To remove a field, the following DeleteFieldAsync() event handler is invoked:

private async void DeleteFieldAsync() {

  if (listGroupField == null || selectedItem == null) {

    throw new NullReferenceException(



Summary 271

      "Selected item or field is null");

  }

  listGroupField.ShowContextAction = listGroupField;

  selectedItem.DeleteField(listGroupField);

  await DataStore.UpdateItemAsync(selectedItem);

}

In the DeleteFieldAsync() event handler, we just delete the field from the selected item and 
call the IDataStore method to update the database.

With the implementation of CRUD operations, we have concluded this section. Now, we have a new 
version of the password manager app using Blazor UI. The difference between this version and the 
one in Part 1 of this book is that we use Blazor to build all UIs. The look and feel of Blazor UI are 
similar to web apps, while XAML UI is the same as native apps.

Summary
In this chapter, we introduced how to create Razor components. We learned about data binding 
and the component lifecycle. After that, we created a set of modal dialog components to clean up 
our code. With Razor components, we can remove duplicated code and improve the UI design. We 
implemented CRUD operations in the event handlers of modal dialogs. We now have a new version 
of the password manager app.

During the code analysis, we can see that we still have redundant code in the two main components, 
Items and ItemDetail. Even though we optimized modal dialogs, we still have duplicated code 
in the list group and context menu. We will convert them to Razor components in the next chapter.





10
Advanced Topics in Creating 

Razor Components

In Blazor app development, everything is a component. We learned how to create Razor components 
in the last chapter. In this chapter, we will explore more advanced topics about Razor components. To 
convert list groups and context menus to Razor components, we need to understand advanced topics 
such as templated components and form validation. We will introduce these concepts while we are 
creating more Razor components in our project.

We will cover the following topics in this chapter:

• Creating more Razor components

• Using templated components

• Built-in Razor components and input validation

Technical requirements
To test and debug the source code in this chapter, you need to have Visual Studio 2022 installed on 
your PC or Mac. Please refer to the Development environment setup section in Chapter 1, Getting 
Started with .NET MAUI, for the details.

The source code of this chapter is available in the following GitHub repository:

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-
Application-Development/tree/main/Chapter10

The source code can be downloaded using the following Git command:

git clone -b chapter10 https://github.com/PacktPublishing/.
NET-MAUI-Cross-Platform-Application-Development PassXYZ.Vault2

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter10
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter10


Advanced Topics in Creating Razor Components274

Creating more Razor components
We developed Modal dialog components in Chapter 9, Razor Components and Data Binding. In this 
chapter, we will refine our code to remove the duplicated code in Items and ItemDetail pages 
and convert the duplicated code into Razor components. We will create the following components:

• Navbar – This is a component to display a navigation bar

• Dropdown – This is a component to support the context menu

• ListView – This is a component to display a list of items

The ListView component is the most complicated one so we will leave it till the end of this section. 
Let’s work on Navbar and Dropdown first.

Creating the Navbar component

Let’s look at the navigation bar UI in Figure 10.1. We can see that the navigation bar contains a Back 
button, a title, and an Add button:

Figure 10.1: Navigation bar

The current code of the navigation bar is shown next, and this code snippet is duplicated on both the 
Items and ItemDetail pages:

<div class="container">

  <div class="row">

    <div class="col-12">

      <h1>



Creating more Razor components 275

        @if (selectedItem?.GetParentLink() != null) {     ❶

          <a class="btn btn-outline-dark"

            href="@selectedItem?.GetParentLink()">

            <span class="oi oi-chevron-left"

              aria-hidden="true"></span></a>              ❷

        }

        @(" " + Title)                                    ❸

        <button type="button"

          class="btn btn-outline-dark float-end"

          data-bs-toggle="modal"

          data-bs-target="#@_dialogEditId"

          @onclick="@(() => _isNewItem=true)">            ❹

          <span class="oi oi-plus" aria-hidden="true">

          </span>

        </button>

      </h1>

    </div>

  </div>

</div>

In the preceding code, ❶ the Back button is shown when there is a parent link. ❷ The Back button 
is implemented as a <a> tag. ❸ Title is a string and is shown as part of the <h1> tag. ❹ The 
Add button is implemented as a <button> tag. Bootstrap style is used to format both the Back and 
Add buttons.

To convert the preceding code to a Razor component, we can create a new Razor component in 
the PassXYZ.BlazorUI project and name it Navbar. Navbar can display the UI elements in 
Figure 10.1, which include a Back button, a title, and an Add button. To separate the UI and logic, we 
create both a Navbar.razor.cs C# code-behind file and Razor markup, Navbar.razor. We 
define component parameters and event handlers in the C# code-behind file, as shown in Listing 10.1:

Listing 10.1: Navbar.razor.cs (https://epa.ms/Navbar10-1)

public partial class Navbar

{

  [Parameter]

  public string? ParentLink { get; set; }                 ❶

  [Parameter]



Advanced Topics in Creating Razor Components276

  public string? DialogId { get; set; }                   ❷

  [Parameter]

  public string? Title { get; set; }                      ❸

  [Parameter]

  public EventCallback<MouseEventArgs> OnAddClick { get;

  set; }                                                  ❹

  private void OnClickClose(MouseEventArgs e) {

      OnAddClick.InvokeAsync();

  }

}

There are four component parameters and an event handler defined in Navbar. We can set the 
parent link of the Back button with the ParentLink parameter ❶. The value of Title is set to 
the Title parameter ❸. For the Add button, we need to provide an Id and an event handler for 
the dialog box so the DialogId ❷ and OnAddClick ❹ parameters are used.

Now, let us look at the Razor file of Navbar in Listing 10.2:

Listing 10.2: Navbar.razor (https://epa.ms/Navbar10-2)

@namespace PassXYZ.BlazorUI

<div class="container">

  <div class="row">

    <div class="col-12">

      <h1>

        @if (ParentLink != null) {                        ①

          <a class="btn btn-outline-dark"

            href="@ParentLink">                           ①

            <span class="oi oi-chevron-left"

              aria-hidden="true"></span>

          </a>

        }

        @(" " + Title)                                    ③

        <button type="button"

          class="btn btn-outline-dark float-end"



Creating more Razor components 277

          data-bs-toggle="modal"

          data-bs-target="#@DialogId"                     ②

          @onclick="OnClickClose">                        ④

          <span class="oi oi-plus" aria-hidden="true">

          </span>

        </button>

      </h1>

    </div>

  </div>

</div>

We can see that the code is very similar to the one in Items and ItemDetail. The difference is 
that we replaced the hardcode value with component parameters (ParentLink ①, DialogId ②, 
Title ③, and OnClickClose ④). With this new Navbar component, we can replace the code 
in Items using the Navbar component as follows:

<Navbar ParentLink="@selectedItem?.GetParentLink()"

    Title="@Title" DialogId="@_dialogEditId"

    OnAddClick="@(() => {_isNewItem=true;})" />

And we can replace the code in ItemDetail as follows:

<Navbar ParentLink="@selectedItem?.GetParentLink()"

Title="@selectedItem?.Name" DialogId="@_dialogEditId"

OnAddClick="@(() => {_isNewField=true;})" />

As we can see, we refined the code by removing duplicated code, and the new code looks much more 
elegant and concise.

We have done the work for Navbar. Now let’s move to the Dropdown component.

Creating a Dropdown component for the context menu

To create a component similar to the context menu, we can reuse the Bootstrap Dropdown component. 
As we can see in Figure 10.2, a context menu includes a context menu button and a list of menu items. 
When users click on the context menu button, a list of menu items is displayed:



Advanced Topics in Creating Razor Components278

Figure 10.2: Context menu

The current code of the context menu is duplicated on both the Items and ItemDetail pages, 
which are shown here:

<button class="opacity-50 btn btn-light dropdown-toggle"

  type="button" id="itemsContextMenu"

  data-bs-toggle="dropdown"

  aria-expanded="false"

  @onclick="@(() => listGroupItem=item)">

    <span class="oi oi-menu" aria-hidden="true"></span>

</button>

<ul class="dropdown-menu"

  aria-labelledby="itemsContextMenu">

  <li><button class="dropdown-item" data-bs-toggle="modal"

        data-bs-target="#@_dialogEditId"

        @onclick="@(() => _isNewItem=false)">

        Edit

  </button></li>

  <li><button class="dropdown-item" data-bs-toggle="modal"

        data-bs-target="#@_dialogDeleteId">

      Delete

  </button></li>

</ul>



Creating more Razor components 279

The Dropdown component of Bootstrap includes a button and an unordered list. We need to define 
an event handler for the button to take action. In the preceding code, we set the item variable to 
listGroupItem. For the menu items, each menu item is implemented as a <button> tag and it 
accepts a dialog ID and an event handler as parameters. When a menu item is clicked, the corresponding 
modal dialog will be shown.

We can create two new Razor components in the PassXYZ.BlazorUI project and name them as 
Dropdown and MenuItem. We can also implement them in the C# code-behind file (Listing 10.4) 
and Razor file (Listing 10.3) to separate the UI and logic, which we’ll be doing now.

Let’s review the Dropdown component UI first in Listing 10.3:

Listing 10.3: Dropdown.razor (https://epa.ms/Dropdown10-3)

@namespace PassXYZ.BlazorUI

<button class="opacity-50 btn btn-light dropdown-toggle"

  type="button" id="itemDetailContextMenu"

  data-bs-toggle="dropdown"

  aria-expanded="false" @onclick="OnClick">

  <span class="oi oi-menu" aria-hidden="true"></span>

</button>                                                 ❶

<ul class="dropdown-menu"

  aria-labelledby="itemDetailContextMenu">

  @ChildContent

</ul>                                                     ❷

In the Dropdown component, we define a button ❶ and an unordered list ❷. The click event of the 
button is defined as an OnClick event handler. The items in the unordered list are displayed as child 
content of the Dropdown component. The component parameters are defined in the C# Dropdown.
razor.cs code-behind file in Listing 10.4:

Listing 10.4: Dropdown.razor.cs (https://epa.ms/Dropdown10-4)

namespace PassXYZ.BlazorUI;

public partial class Dropdown

{

  [Parameter]

  public EventCallback<MouseEventArgs> OnClick {get;set;}①

  [Parameter]



Advanced Topics in Creating Razor Components280

  public RenderFragment ChildContent { get; set; }       ②

}

In Dropdown.razor.cs, two component parameters – OnClick ① and ChildContent 
② – are defined.

The MenuItem component can be displayed as the child content of the Dropdown component. We 
can see the UI code of MenuItem in Listing 10.5:

Listing 10.5: MenuItem.razor (https://epa.ms/MenuItem10-5)

@namespace PassXYZ.BlazorUI

<li>

  <button class="dropdown-item" data-bs-toggle="modal"

    data-bs-target="#@Id" @onclick="OnClick">

    @ChildContent

  </button>

</li>

The MenuItem component defines three component parameters – Id, OnClick, and ChildContent. 
These parameters are defined in MenuItem.razor.cs in Listing 10.6:

Listing 10.6: MenuItem.razor.cs (https://epa.ms/MenuItem10-6)

namespace PassXYZ.BlazorUI;

public partial class MenuItem

{

  [Parameter]

  public string? Id { get; set; }                          ❶

  [Parameter]

  public EventCallback<MouseEventArgs> OnClick {get; set;} ❷

  [Parameter]

  public RenderFragment ChildContent { get; set; }         ❸

}

❶ The Id parameter is used to specify the dialog ID when the menu item is clicked. ❷ OnClick 
is used to register an event handler for a button click event. ❸ ChildContent is used to display 
child content such as the menu item name.



Using templated components 281

We have implemented the components for the context menu. We can replace the redundant code 
in the Items and ItemDetail pages with context menu components. On the Items page, the 
context menu is implemented as follows:

<Dropdown OnClick="@(() => currentItem.
Data=listGroupItem=item)">

  <MenuItem Id="@_dialogEditId"

    OnClick="@(() => _isNewItem=false)">Edit</MenuItem>

  <MenuItem Id="@_dialogDeleteId">Delete</MenuItem>

</Dropdown>

On the ItemDetail page, the context menu is implemented as follows:

<Dropdown OnClick="@(() = >

  {currentField.Data=listGroupField=field;})">

  <MenuItem Id="@_dialogEditId"

    OnClick="@(() => _isNewField=false)">Edit</MenuItem>

  <MenuItem Id="@_dialogDeleteId">Delete</MenuItem>

  @if (field.IsProtected) {

<MenuItem OnClick="OnToggleShowPassword">

  @(field.IsHide ? "Show":"Hide")

</MenuItem>

  }

</Dropdown>

After we refined the code of the Items and ItemDetail pages, we created a modal dialog, 
navigation bar, and context menu components. The code looks much more elegant and concise now. 
However, we still have room to refine the code further. The main UI logic in both the Items and 
ItemDetail pages is a list view. We can refine this part of the code as a ListView component. To 
create a ListView component, we need to use an advanced feature called templated components.

Using templated components
To build a Razor component, component parameters are the channels for parent and child communication. 
In Chapter 9, Razor Components and Data Binding, we introduced nested components. We mentioned 
a special ChildContent component parameter of the RenderFragment type. The parent 
component can set the content of the child component with this parameter. For example, the content 
of MenuItem in the following code can be set to an HTML string:

<MenuItem Id="@_dialogDeleteId">

  <strong>Delete</strong>

</MenuItem>



Advanced Topics in Creating Razor Components282

We can do this because MenuItem defines the following component parameter as we can see in 
Listing 10.6:

[Parameter]

public RenderFragment ChildContent { get; set; }

If we want to explicitly specify the ChildContent parameter, we can do this as well:

<MenuItem Id="@_dialogDeleteId">

  <ChildContent>

    <strong>Delete</strong>

  </ChildContent>

</MenuItem>

ChildContent is a special component parameter that we can implicitly use in the markup language. To 
use ChildContent, we define a component that can accept a UI template of the RenderFragment 
type as a component parameter. We can define more than one UI template as a parameter when we 
create a new component. This kind of component is called a templated component.

A render fragment of the RenderFragment type represents a segment of the UI to render. There 
is also a generic version, RenderFragment<TValue>, which takes a type parameter. We can 
specify a type when RenderFragment is invoked.

Creating a ListView component

To create ListView, we need to use multiple UI templates as component parameters. We can create 
a new Razor component in the PassXYZ.BlazorUI project and name it ListView. As we did 
for Navbar and the context menu, we separate the UI and code in a Razor file (Listing 10.7) and a 
C# code-behind file (Listing 10.8):

Listing 10.7: ListView.razor (https://epa.ms/ListView10-7)

@namespace PassXYZ.BlazorUI

@typeparam TItem

<div class="list-group">

  @if (Header != null) {

      @Header                                             ❶

  }

  @if (Row != null && Items != null) {

    @foreach (var item in Items) {



Using templated components 283

      <div class="dropdown list-group-item

        list-group-item-action

        d-flex gap-1 py-2" style="border: none"

        aria-current="true">

          @Row.Invoke(item)                               ❷

      </div>

    }

  }

  @if (Footer != null) {

      <div class="container">

        <article>@Footer</article>

      </div>                                              ❸

  }

</div>

In the ListView Razor file, we define three UI templates – Header ❶, Row ❷, and Footer ❸. 
We render Header and Footer the same as ChildContent, but the Row component parameter 
looks different. We render it as follows:

@Row(item)

Or we can render it like this:

@Row.Invoke(item)

We render it with an item argument. The type of Row is RenderFragment<TValue>, as we 
can see in Listing 10.8:

Listing 10.8: ListView.razor.cs (https://epa.ms/ListView10-8)

namespace PassXYZ.BlazorUI;

public partial class ListView<TItem>

{

  [Parameter]

  public RenderFragment? Header { get; set; }            ①

  [Parameter]

  public RenderFragment<TItem>? Row { get; set; }        ②

  [Parameter]



Advanced Topics in Creating Razor Components284

  public IEnumerable<TItem>? Items { get; set; }         ③

  [Parameter]

  public RenderFragment? Footer { get; set; }            ④

}

We define ListView as a generic ListView<TItem> type with the TItem type parameter. In the 
ListView component, we can define a list view header using the Header ① parameter and the footer 
using Footer ④. ListView can be bound to any data collection of the IEnumerable<TItem> 
type using the Items parameter ③. The Row parameter ② can be used to define the UI template 
for an individual item in the foreach loop.

Using the ListView component

Now, we can look at the usage of the ListView component in the Items and ItemDetail pages. 
We use the ItemDetail page as an example here:

<ListView Items="fields">                                ❶

  <Row Context="field">                                  ❷

    @if (field.ShowContextAction == null) {

      <span class="oi oi-pencil" aria-hidden="true"></span>

      <div class="d-flex gap-2 w-100

        justify-content-between">

        <div>

          <h6 class="mb-0">@field.Key</h6>

          <p class="mb-0">@field.Value</p>

        </div>

      </div>

      <Dropdown

       OnClick="@(() =>

       {currentField.Data=listGroupField=field;})">

         <MenuItem Id="@_dialogEditId"

           OnClick="@(() => _isNewField=false)">

           Edit

         </MenuItem>

         <MenuItem Id="@_dialogDeleteId">Delete</MenuItem>

        @if (field.IsProtected) {

          <MenuItem OnClick="OnToggleShowPassword">



Built-in components and validation 285

            @(field.IsHide ? "Show":"Hide")

          </MenuItem>

        }

      </Dropdown>

    }

  </Row>

  <Footer>

    @((MarkupString)notes)

  </Footer>

</ListView>

Since we define Header, Row, and Footer as optional parameters, we don’t have to specify all of 
them. In the ItemDetail page, we use Row and Footer. ❶ We need to pass the list of fields to the 
Items parameter first. ❷ Each field in the foreach loop is passed to ListView as an argument 
to Row, which is defined here:

<Row Context="field">

The "field" value of the Context property is used to specify the argument to Row. Inside the UI 
template of Row, we display the key value of field and create a context menu using the Dropdown 
and MenuItem components that we implemented in the last section.

Using the ListView component, we can see that the implementation of the ItemDetail page 
looks much better now.

We have made the improvement by creating our own Razor components.

In Blazor, there are a few options for us to develop a UI. We can use HTML/CSS for the UI design. On 
top of HTML/CSS, we can build our own Razor components to improve the design and implementation. 
There are also many third-party Razor component libraries available for us, and we can also use ASP.
NET Core built-in Razor components.

In the next section, we will support data validation using ASP.NET built-in Razor components.

Built-in components and validation
In our app, we implement EditorDialog as a key value editor. When we create or edit an item or a 
field, we use it to edit a pair of key-value data. EditorDialog is built using the Bootstrap framework.

One key feature missing in EditorDialog is that it doesn’t support data validation. Data validation 
includes two layers – the UI layer and logic. We can implement simple data validation logic in C#, but 
the UI of data validation is much more complicated. We haven’t done it in the UI layer yet. In both 



Advanced Topics in Creating Razor Components286

the Items and ItemDetail pages, we implemented simple data validation logic. We can review 
the data validation logic in the UpdateItemAsync() method of the Items page:

private async Task<bool> UpdateItemAsync(string key, string 
value)

{

  if (listGroupItem == null) return false;

  if (string.IsNullOrEmpty(key) ||

    string.IsNullOrEmpty(value))

    return false;

  listGroupItem.Name = key;

  listGroupItem.Notes = value;

  if (_isNewItem) {…}

  else {...}

  StateHasChanged();

  return true;

}

In EditorDialog, after we complete the editing, UpdateItemAsync() is invoked to save 
data. We check the value of the key and value arguments first before we continue. If any of them 
is null, we just return false. There is no problem in the program logic here, but we should notify 
users about the error, which is due to data saving. With ASP.NET built-in components, data validation 
is supported at the UI layer. The user can get instant feedback about the error.

Using built-in components

We actually used built-in components in previous chapters. When we introduced routing and the 
layout of Razor components, we used the Router, RouteView, LayoutView, and MainLayout 
components in Main.razor. They are all built-in components.

In this section, we will explore built-in input components, which we can use to enhance the experience 
of editing components with data validation support. The following table is a list of the built-in 
input components:

Input component HTML tag
InputCheckbox <input type="checkbox">

InputDate<TValue> <input type="date">

InputFile <input type="file">



Built-in components and validation 287

InputNumber<TValue> <input type="number">

InputRadio<TValue> <input type="radio">

InputRadioGroup<TValue> Group of child InputRadio<TValue>
InputSelect<TValue> <select>

InputText <input>

InputTextArea <textarea>

EditForm <form>

Table 10.1: Built-in components

To find detailed information about built-in input components, you can check the following 
Microsoft document:

https://learn.microsoft.com/en-us/aspnet/core/blazor/forms-and-input-
components?view=aspnetcore-6.0

In Table 10.1, we can see a list of input components and an EditForm component. The built-in 
input components are enhanced versions of the corresponding HTML elements listed in the right-
hand column. When we use built-in input components with EditForm, EditForm can coordinate 
both validation and submission events. The built-in input components can validate user input when 
a form is submitted.

Using the EditForm component

The EditForm component is an enhanced version of the HTML <form> element. To use EditForm, 
we can refer to the following code, which shows an empty EditForm component:

<EditForm Model="ModelData" OnSubmit="HandleSubmit"

  OnInValidSubmit="HandleInValidSubmit"

  OnValidSubmit="HandleValidSubmit">

</EditForm>

Or, it can be used in another way:

<EditForm EditContext="_editContext" OnSubmit="HandleSubmit"

  OnInValidSubmit="HandleInValidSubmit"

  OnValidSubmit="HandleValidSubmit">

</EditForm>

We can pass data to it using the Model parameter or EditContext.

https://learn.microsoft.com/en-us/aspnet/core/blazor/forms-and-input-components?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/blazor/forms-and-input-components?view=aspnetcore-6.0


Advanced Topics in Creating Razor Components288

We can specify an instance of a class as Model to be edited in EditForm. An instance of EditContext 
will be created based on the assigned model instance by EditForm. EditContext is used as a 
cascading value for other components in the form. We can also specify an EditContext instance 
directly if we want to take control of it.

To handle the result of form editing, we can register the following callback functions:

• OnInvalidSubmit – This callback will be invoked when the form is submitted and 
EditContext is invalid

• OnSubmit – This callback will be invoked when the form is submitted

• OnValidSubmit – This callback will be invoked when the form is submitted and EditContext 
is valid

We will use the EditForm component and built-in input components to create a new EditFormDialog 
component to enhance our key value editor with data validation support.

Creating an EditFormDialog component

To support data validation, the EditForm component needs to be bound to a model that uses data 
annotations. The built-in input components should be used for the form editing so that enhanced 
features such as data validation can be used.

First, we need to create a model class, KeyValueData, that can be used for key-value editing in the 
PassXYZ.BlazorUI project, as shown in Listing 10.9:

Listing 10.9: KeyValueData.cs (https://epa.ms/KeyValueData10-9)

using System.ComponentModel.DataAnnotations;              ❸

using KPCLib;

using PassXYZLib;

namespace PassXYZ.BlazorUI;

public class KeyValueData<T> : IKeyValue {

  [Required(ErrorMessage = "{0} cannot be empty.")]

  [Display(Name = "This field")]

  public string Key {                                     ❶

    get {

      if (Data is Item item) { return item.Name; }

      if (Data is Field field) { return field.Key; }

      return string.Empty;



Built-in components and validation 289

    }

    set {

      if (Data is Item item) { item.Name = value;

        IsChanged = true; }

      if (Data is Field field) { field.Key = value;

        IsChanged = true; }

    }

  }

  [Required(ErrorMessage = "{0} cannot be empty.")]

  [Display(Name = "This field")]

  public string Value {                                   ❷

    get {

      if (Data is Item item) { return item.Notes; }

      if (Data is Field field) { return field.EditValue; }

      return string.Empty;

    }

    set {

      if (Data is Item item) { item.Notes = value;

        IsChanged = true; }

      if (Data is Field field) { field.EditValue = value;

        IsChanged = true; }

    }

  }

  public bool IsChanged { get; set; } = false;

  public bool IsValid {

    get {

      return !(string.IsNullOrEmpty(Key) ||

        string.IsNullOrEmpty(Value));

    }

  }

  public T? Data { get; set; }                            ❹

  public KeyValueData() {

    if (Data is Item item) { item = new NewItem(); }

    if (Data is Field field) { field = new NewField(); }

  }

}



Advanced Topics in Creating Razor Components290

The KeyValueData<T> class is used to create the model instance for EditForm. It is a generic 
type and implements an IKeyValue interface, which defines properties that need to be implemented. 
In the KeyValueData<T> class, we define the Key ❶ and Value ❷ properties, IsChanged, 
IsValid, and Data ❹. We can see that we mark the Key and Value properties with data annotation 
[Required] and [Display] attributes. The [Required] attribute indicates the user must enter 
a value. The [Display] attribute defines the name to display for the property in the error message 
of data validation, as shown in Figure 10.3.

Both [Required] and [Display] are defined in the System.ComponentModel.
DataAnnotations namespace ❸.

The KeyValueData<T> class is a generic class and takes a T type parameter to specify the actual 
data type for editing. The Data property ❹ is defined as the T type. We can pass either the Item or 
Field class as a type parameter to the Data property. The Key or Value property is bound to the 
property of the Item or Field instance stored in the Data property.

Figure 10.3: EditFormDialog (adding a new item)

We can see in Figure 10.3 that the error messages will be displayed when users submit the form with 
an empty value in either the key or value field. To enable data validation, we also need to add the 
<DataAnnotationsValidator/> component to EditForm, as shown here:

<EditForm class="row gx-2 gy-3" Model="@ModelData"

  OnValidSubmit="@HandleValidSubmit">

  <DataAnnotationsValidator />

  ...

</EditForm>



Built-in components and validation 291

Using EditForm, it is quite easy to support data validation. To enable data validation using EditForm, 
follow these steps:

1. Bind EditForm to a model that uses data annotations attributes.

2. Add the <DataAnnotationsValidator/> component to EditForm.

3. Use built-in input components for the editing

There is a long list of built-in attribute-defined validations. You can find out more information about 
them in the Microsoft documentation in the Further reading section. Some of them are listed here:

• [ValidateNever]: Indicates that a property or parameter should be excluded from validation

• [Compare]: Validates that two properties in a model match

• [EmailAddress]: Validates that the property has an email format

• [Phone]: Validates that the property has a telephone number format

• [Range]: Validates that the property value falls within a specified range

• [RegularExpression]: Validates that the property value matches a specified regular expression

• [Required]: Validates that the field isn’t null

• [StringLength]: Validates that a string property value doesn’t exceed a specified length limit

• [Url]: Validates that the property has a URL format

With the introduction of built-in components, we can create a new Razor component, EditFormDialog, 
in the PassXYZ.BlazorUI project. The implementation of the EditFormDialog<TItem> 
component can be found in Listing 10.10 and Listing 10.11:

Listing 10.10: EditFormDialog.razor (https://epa.ms/EditFormDia-
log10-10)

@namespace PassXYZ.BlazorUI

@typeparam TItem

<div class="modal fade" id=@Id tabindex="-1"

  aria-labelledby="ModelLabel" aria-hidden="true">

  <div class="modal-dialog">

    <div class="modal-content">

      <div class="modal-header">

        <h5 class="modal-title" id="ModelLabel">

          @ModelData.Key</h5>



Advanced Topics in Creating Razor Components292

        <button type="button" class="btn-close"

          data-bs-dismiss="modal"

          aria-label="Close"></button>

      </div>

      <div class="modal-body">

        <EditForm class="row gx-2 gy-3" Model="@ModelData" ❶

          OnValidSubmit="@HandleValidSubmit">

          <DataAnnotationsValidator />                     ❷

          @if (IsKeyEditingEnable) {

            <div class="form-group">

              <InputText id="Name" class="form-control"    ❸

                @oninput="KeyHandler"

                placeholder=@KeyPlaceHolder

                @bind-Value="ModelData.Key" />

              <ValidationMessage For="()=>ModelData.Key"/> ❺

            </div>

          }

          @ChildContent

          <div class="form-group">

            <InputTextArea id="Value" class="form-control" ❹

              @oninput="KeyHandler"

              placeholder=@ValuePlaceHolder

              @bind-Value="ModelData.Value" />

            <ValidationMessage For="()=>ModelData.Value"/> ❺

          </div>

          <div class="col-12">

            <button type="button" class="btn btn-secondary"

              data-bs-dismiss="modal"

              @onclick="OnClickClose">

              @CloseButtonText

            </button>

            <button type="submit" class="btn btn-primary"

              data-bs-dismiss="@dataDismiss"

              @onclick="OnClickSave">

              @SaveButtonText

            </button>



Built-in components and validation 293

          </div>

        </EditForm>

      </div>

    </div>

  </div>

</div>

As we can see in the Razor markup in Listing 10.10, we build the EditFormDialog<TItem> 
component using Bootstrap’s Modal. It includes the EditForm ❶ component in the modal body. 
The model bound to EditForm is ModelData of the KeyValueData<TItem> type defined in 
Listing 10.11. The DataAnnotationsValidator component ❷ is defined for the data validation.

We use InputText ❸ for key editing and InputTextArea ❹ for value editing. The 
ValidationMessage validation component ❺ is used to define the error message for validation. 
In ValidationMessage, we need to specify the field using the For property as follows:

<ValidationMessage For="() => ModelData.Key" />

The format of the error message is defined using the ErrorMessage property of the [Required] 
attribute as follows:

    [Required(ErrorMessage = "{0} cannot be empty.")]

    [Display(Name = "This field")]

    public string Value { ... }

As we can see in Listing 10.11, component parameters and callback functions for the event handling 
are defined in EditFormDialog.razor.cs:

Listing 10.11: EditFormDialog.razor.cs (https://epa.ms/EditFormDia-
log10-11)

namespace PassXYZ.BlazorUI;

public partial class EditFormDialog<TItem> {

  [Parameter]

  public string Id { get; set; } = default!;

  [Parameter]

  public RenderFragment ChildContent { get; set; }

  [Parameter]

  public Action? OnClose { get; set; }

  [Parameter]



Advanced Topics in Creating Razor Components294

  public Func<string, string, Task<bool>>? OnSaveAsync {

    get; set; }

  [Parameter]

  [NotNull]

  public string CloseButtonText { get; set; } = "Cancel";

  [Parameter]

  [NotNull]

  public string SaveButtonText { get; set; } = "Save";

  [Parameter]

  public KeyValueData<TItem> ModelData { get; set; }

  [Parameter]

  public string? KeyPlaceHolder { get; set; }

  [Parameter]

  public string? ValuePlaceHolder { get; set; }

  bool _isKeyEditingEnable = false;

  [Parameter]

  public bool IsKeyEditingEnable ...

  [Parameter]

  public EventCallback<bool>?

    IsKeyEditingEnableChanged{get; set;}

  private string dataDismiss = string.Empty;

  public EditFormDialog() {

    ModelData = new();

  }

  private void OnClickClose() {

    OnClose?.Invoke();

  }

  private void OnClickSave() {

      SetSaveButtonText();

  }

  private async Task HandleValidSubmit() {

    if (OnSaveAsync != null && ModelData.IsChanged) {

        await OnSaveAsync(ModelData.Key, ModelData.Value);

        ModelData.IsChanged = false;

    }



Built-in components and validation 295

  }

  private void KeyHandler() {

      SetSaveButtonText(true);

  }

  private void SetSaveButtonText(bool changed = false) {

    if (ModelData == null) return;

    if (!ModelData.IsValid || changed) {

        dataDismiss = string.Empty;

        SaveButtonText = "Save";

    }

    else {

        dataDismiss = "modal";

        SaveButtonText = "Close";

    }

  }

}

We can refer to the component parameters of EditFormDialog<TItem> in Table 10.2:

Parameter Description
Id The ID of the dialog. This is used by Bootstrap.
ChildContent Child content render fragments.
OnClose Callback for the Close button.
OnSaveAsync Callback for the Save button.
CloseButtonText Text of the Close button.
SaveButtonText Text of the Save button.
ModelData Model data bound to EditForm.
KeyPlaceHolder A Key placeholder.
ValuePlaceHolder A Value placeholder.
IsKeyEditingEnable Enable or disable key editing.
IsKeyEditingEnableChanged Callback for two bindings  

of IsKeyEditingEnable.

Table 10.2: EditFormDialog<TItem> component parameters



Advanced Topics in Creating Razor Components296

After we have created the EditFormDialog<TItem> component, we have done all the optimization 
of our code. Let us review the final code of the Items (Listing 10.12) and ItemDetail (Listing 
10.13) pages:

Listing 10.12: Items.razor (https://epa.ms/Items10-12)

@page "/group"

@page "/group/{SelectedItemId}"

@using System.Diagnostics

@using PassXYZLib

<Navbar ParentLink="@selectedItem?.GetParentLink()"

  Title="@Title"                                          ❶

  DialogId="@_dialogEditId"

  OnAddClick="@(() =>

    {_isNewItem=true;

     currentItem.Data=listGroupItem=_newItem;

     _newItem.Name="";_newItem.Notes="";})" />

<ListView Items="items">                                  ❷

  <Row Context="item">

<img src="@item.GetIcon()" alt="twbs"

  width="32" height="32"

      class="rounded-circle flex-shrink-0 float-start">

<a href="@item.GetActionLink()"

  class="list-group-item ...">

      <div class="d-flex"><div>

          <h6 class="mb-0">@item.Name</h6>

          <p class="mb-0 opacity-75">@item.Description</p>

      </div></div>

    </a>

<Dropdown OnClick="@(() =>                                ❸

  currentItem.Data=listGroupItem=item)">

      <MenuItem Id="@_dialogEditId" OnClick="@(() =>

        _isNewItem=false)">Edit</MenuItem>

      <MenuItem Id="@_dialogDeleteId">Delete</MenuItem>

    </Dropdown>

  </Row>



Built-in components and validation 297

</ListView>

<EditFormDialog Id="@_dialogEditId"                       ❹

  ModelData="@currentItem" IsKeyEditingEnable="true"

  OnSaveAsync="UpdateItemAsync" KeyPlaceHolder="Item name"

  ValuePlaceHolder="Pleae provide a description">

  @if (_isNewItem) {

<InputSelect @bind-Value="_newItem.SubType"

  class="form-select">

      <option selected value=@ItemSubType.Group>

        @ItemSubType.Group</option>

      <option value=@ItemSubType.Entry>

        @ItemSubType.Entry</option>

      <option value=@ItemSubType.PxEntry>

        @ItemSubType.PxEntry</option>

      <option value=@ItemSubType.Notes>

        @ItemSubType.Notes</option>

    </InputSelect>

  }

</EditFormDialog>

<CascadingValue Value="@_dialogDeleteId" Name="Id">

<ConfirmDialog Title=@listGroupItem.Name                  ❺

  OnConfirmClick="DeleteItemAsync" />

</CascadingValue>

In the final code of Items.razor, we use Navbar ❶ to create the navigation bar. In the body of the 
page, we use a ListView ❷ component to display the list of items. For each item, the UI template is 
defined in the Row property. In the UI template, we display the item name, description, and context 
menu. In the context menu, we use the Dropdown ❸ component to support editing or deleting the 
item. For Add, Edit, or Delete actions, EditorFormDialog ❹ or ConfirmDialog ❺ is 
used to perform the respective actions.

In ItemDetail.razor, the code is similar to Items.razor:

Listing 10.13: ItemDetail.razor (https://epa.ms/ ItemDetail10-13)

@page "/entry/{SelectedItemId}"

@namespace PassXYZ.Vault.Pages



Advanced Topics in Creating Razor Components298

<!-- Back button and title -->

<Navbar ParentLink="@selectedItem?.GetParentLink()"       ①

  Title="@selectedItem?.Name" DialogId="@_dialogEditId"

  OnAddClick="@(() => {_isNewField=true;

  currentField.Data=listGroupField=_newField;_

  newField.Key="";_newField.Value="";})" />

<!-- List view with context menu -->

<ListView Items="fields">                                 ②

  <Row Context="field">                                   ③

    @if (field.ShowContextAction == null) {

      <span class="oi oi-pencil" aria-hidden="true"></span>

      <div class="d-flex gap-2 w-100

        justify-content-between">

        <div>

            <h6 class="mb-0">@field.Key</h6>

            <p class="mb-0">@field.Value</p>

        </div>

      </div>

      <Dropdown OnClick="@(() =>

        {currentField.Data=listGroupField=field;})">

        <MenuItem Id="@_dialogEditId" OnClick="@(() =>

          _isNewField=false)">Edit</MenuItem>

        <MenuItem Id="@_dialogDeleteId">Delete</MenuItem>

        @if (field.IsProtected) {

          <MenuItem OnClick="OnToggleShowPassword">

            @(field.IsHide ? "Show":"Hide")</MenuItem>

        }

      </Dropdown>

    }

  </Row>

  <Footer>@((MarkupString)notes)</Footer>                 ④

</ListView>

<!-- Editing Modal -->

<EditFormDialog Id="@_dialogEditId"                       ⑤

  ModelData="@currentField"



Summary 299

  IsKeyEditingEnable=@_isNewField

  OnSaveAsync="UpdateFieldAsync"

  KeyPlaceHolder="Field name"

  ValuePlaceHolder="Field content">

  @if (_isNewField) {

    <div class="form-check">

      <input class="form-check-input" type="checkbox"

        @bind="listGroupField.IsProtected"

        id="flexCheckDefault">

      <label class="form-check-label"

        for="flexCheckDefault">

        Password

      </label>

    </div>

  }

</EditFormDialog>

<!-- Deleting Modal -->

<CascadingValue Value="@_dialogDeleteId" Name="Id">

  <ConfirmDialog Title=@listGroupField.Key                ⑥

    OnConfirmClick="DeleteFieldAsync" />

</CascadingValue>

There is a navigation bar using Navbar ①. We use ListView ② to display the fields of an entry, 
which include a Row template ③ and a Footer template ④. In the Row template, the content of 
the field is displayed, and each row has a context menu. The context menu includes the menu of three 
actions (Edit, Delete, and Show). The Edit action is associated with the EditFormDialog 
dialog ⑤ and the Delete action is associated with the ConfirmDialog dialog ⑥.

We now have a working password manager app built using Blazor UI. With this, we conclude this 
chapter and Part 2 of this book.

Summary
In this chapter, we continue our work of optimizing our UI implementation by creating more Razor 
components. We introduced advanced topics such as templated components and using generic types 
in the Razor component. We also introduced Blazor built-in components and used these components 
to support data validation in our app. We developed an enhanced version of the key value editor using 
EditForm. With an understanding of the advanced topics about Razor components, we can now 
create more powerful Razor components.



Advanced Topics in Creating Razor Components300

We have completed Part 2 of this book. We will move to Part 3 of this book to introduce unit tests 
and deployment of .NET MAUI applications. We will learn how to implement unit tests for the .NET 
MAUI app in the next chapter, and how to deploy our app to different app stores in Chapter 12, 
Preparing for Deployment in App Stores.

Please stay tuned!

Further reading
• Dropdown is a Bootstrap component

• https://getbootstrap.com/docs/5.1/components/dropdowns/

• Modal is the Bootstrap modal component

• https://getbootstrap.com/docs/5.1/components/modal/

• ASP.NET Core Blazor forms and input components

• https://learn.microsoft.com/en-us/aspnet/core/blazor/forms-and-
input-components?view=aspnetcore-6.0

https://getbootstrap.com/docs/5.1/components/dropdowns/
https://getbootstrap.com/docs/5.1/components/modal/
https://learn.microsoft.com/en-us/aspnet/core/blazor/forms-and-input-components?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/blazor/forms-and-input-components?view=aspnetcore-6.0


Part 3:  
Testing and Deployment

In Part 1 of this book, we introduced .NET MAUI app development. In Part 2, we introduced 
.NET MAUI Blazor Hybrid app development. We now have two different versions of the password 
management app from Part 1 and Part 2. Both XAML and Blazor Hybrid apps use the MVVM 
pattern in their design. When we introduced the MVVM pattern, we mentioned that we can test 
the view model and model separately. In Part 3 of this book, we will introduce unit testing in .NET 
MAUI. Lastly, we will introduce the deployment of the .NET MAUI app.

This section comprises the following chapters:

• Chapter 11, Developing Unit Tests

• Chapter 12, Deploying and Publishing in App Stores





11
Developing Unit Tests

Testing is an important way to ensure software quality in modern software development. There are 
different types of testing involved in the software development lifecycle, such as unit testing, integration 
testing, and system testing. Unit testing is used to test software modules or components in an isolated 
environment. It is usually done by developers. With a well-planned unit test strategy, programming 
issues can be found at the earliest stage in the software development lifecycle, so unit testing is the 
most efficient and economical approach to ensuring the quality of your software. In .NET MAUI app 
development, we can reuse existing unit test frameworks or libraries in the .NET ecosystem. By using 
a test framework or library, we can speed up the unit test development. A good test framework is 
usually designed to easily integrate with a continuous integration (CI) and continuous deployment 
(CD) environment. In this chapter, we will introduce how to set up unit testing and run unit test cases 
as part of the .NET MAUI app development lifecycle.

We will cover the following topics in this chapter:

• Unit testing in .NET

• Razor component testing using bUnit

Technical requirements
To test and debug the source code in this chapter, you need to have Visual Studio 2022 installed on 
your PC or Mac. Please refer to the Development environment setup section in Chapter 1, Getting 
Started with .NET MAUI, for the details.

The source code for this chapter is available in the following GitHub repository:

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-
Application-Development/tree/main/Chapter11

The source code can be downloaded using the following Git command:

git clone -b chapter11 https://github.com/PacktPublishing/.
NET-MAUI-Cross-Platform-Application-Development PassXYZ.Vault2

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter11
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter11


Developing Unit Tests304

Unit testing in .NET
To develop unit test cases, we usually use a unit test framework to improve efficiency. There are several 
unit test frameworks available in a .NET environment as follows:

• Microsoft Test Framework (MSTest) is shipped together with Visual Studio. The initial 
version of MSTest (V1) was not an open source product. The first release was shipped with 
Visual Studio 2005. Please refer to the book Microsoft Visual Studio 2005 Unleashed by Lars 
Powers and Mike Snell to find more information about MSTest (V1). Later, Microsoft made the 
new-release MSTest (V2) open source and hosted it on GitHub. The first MSTest (V2) release 
was available around 2017.

• NUnit is an open source testing framework ported from JUnit. It was the first unit test 
framework for .NET. The earliest releases were hosted at SourceForge in 2004. Please refer to 
the version 2.0 release note in the Further reading section. The most recent releases have been 
moved to GitHub.

• xUnit is a more modern and extensible framework developed by Jim Newkirk and Brad Wilson. 
They were the creators of NUnit, and they made many improvements to this new test framework 
compared to NUnit. Please refer to Jim’s blog Why Did we Build xUnit 1.0? to find out more 
information about the improvements. The first stable release of xUnit was available around 2015.

They are all quite popular and can be chosen based on the project requirements. In this chapter, 
we will use xUnit to develop unit test cases since it is a newer framework with many improvements 
compared to NUnit.

No matter which unit test framework you choose, the process of unit test development is quite similar. 
The content in this chapter can still help you if you use a different framework in your project. Unit 
test cases can only run against a cross-platform target framework rather than platform-specific target 
frameworks. In this book, we use .NET 6.0, so the target framework of unit testing is net6.0 instead 
of net6.0-android or net6.0-ios.

To develop a unit test for .NET MAUI, we will introduce the test case development for both XAML-
based and Blazor-based apps. In both cases, we will use the MVVM pattern in the design. The unit 
test cases at the model layer are the same for both, but the testing in the view and the view model is 
quite different. For a XAML-based app, it is quite complicated to develop unit test cases for the view 
and the view model. In order to test the view model, we have to resolve the dependencies of XAML 
components. For example, in the XAML version of our app, we need to call Shell navigation methods 
in the view model as shown in the following code:

await Shell.Current.GoToAsync(

  $"{nameof(ItemsPage)}?{nameof(ItemsViewModel.ItemId)}={item

  .Id}");

To resolve dependencies, in Xamarin.Forms, there is an open source project, Xamarin.Forms.
Mocks, which can help mock Xamarin.Forms components. We also need something similar to 
develop unit test cases for the view model in .NET MAUI XAML apps, but I cannot find any equivalent 



Unit testing in .NET 305

at the moment. There is also a native user interface test framework, Xamarin.UITest, which is 
for Android and iOS, but this framework cannot be used in .NET MAUI yet. Regardless, Xamarin.
UITest is not a cross-platform solution so we won’t discuss it in this book.

For a Blazor Hybrid app, we have a good test library, bUnit, which can be used to test Razor components. 
We can develop unit test cases for the view, view model, and model layers for Blazor apps.

In this chapter, we will develop unit tests for the model layer first, which is common for both XAML 
and Blazor. After that, we will introduce unit test development for Blazor apps using bUnit. bUnit is 
a testing library that can be used with all three test frameworks (xUnit, NUnit, and MSTest).

Setting up the unit test project

To get our hands dirty, let us create a unit test project. We can create a xUnit project using either 
Visual Studio or the .NET command line:

1. To start with Visual Studio, we can add a new project to our current solution as shown in 
Figure 11.1:

Figure 11.1 – Creating a xUnit project



Developing Unit Tests306

2. We can type xunit into the search box and select xUnit Test Project for C#.

3. On the next screen, we can name the project PassXYZ.Vault.Tests and click on Next.

4. After that, please select the framework as .NET 6.0 and click Create.

To create the project using a command line, we can create the folder first and use a .NET command 
to create the project as follows:

mkdir PassXYZ.Vault.Tests

cd PassXYZ.Vault.Tests

dotnet new xunit

dotnet test

Once we have created the project, we can use the dotnet test command to run the test cases. 
The default test case in the template will be executed. We will add test cases to this test project. The 
test targets are the components of the PassXYZ.Vault and PassXYZ.BlazorUI projects, 
so we need to add these two projects as reference projects. The target framework of PassXYZ.
BlazorUI is net6.0, so we can add it directly. However, the target frameworks of PassXYZ.
Vault are platform-specific, so we need to make some changes before we can add them as a reference 
in PassXYZ.Vault.Tests.

The project file of our password manager app is PassXYZ.Vault.csproj. We need to add 
net6.0 as one of the target frameworks to this project file:

<TargetFrameworks>net6.0;net6.0-android;net6.0-ios;net6.0-

  maccatalyst</TargetFrameworks>

When we build project PassXYZ.Vault on the supported platforms, we expect an executable since 
it is an app. However, when we build PassXYZ.Vault for the net6.0 target framework, we want 
to test it. PassXYZ.Vault should be generated as a library so that the test framework can use it 
to run test cases. In this case, we expect to build a file with a .dll extension instead of .exe, so we 
need to make the following change:

<OutputType Condition="'$(TargetFramework)'!='net6.0'">

  Exe</OutputType>

In the preceding build setup, a condition is added to check the target framework for the output type. 
If the target framework is not net6.0, we will build output as an executable.



Unit testing in .NET 307

With these changes, we can add reference projects to PassXYZ.Vault.Tests by right-clicking on 
the solution node and selecting Add -> Project Reference … or editing the project file for PassXYZ.
Vault.Tests to add these lines:

<ItemGroup>

  <ProjectReference Include="..\PassXYZ.BlazorUI\PassXYZ. 
    BlazorUI.csproj" />

  <ProjectReference Include="..\PassXYZ.Vault\PassXYZ.Vault. 
    csproj" />

</ItemGroup>

To test the MAUI project, we also need to add the following configuration to the PassXYZ.Vault.
Tests project:

<UseMaui>true</UseMaui>

Now, we have set up the xUnit project. Let us add our test cases.

Creating test cases to test the IDataStore interface

We will start to add test cases at the model layer first since the test case setup at the model layer is the 
same for both the XAML and Blazor versions of our app.

At the model layer, the major implementation is in the PassXYZLib library – you may refer to the 
source code of PassXYZLib to find more about the unit test cases at the model layer:

https://github.com/shugaoye/PassXYZLib

In our app, IDataStore is the interface to export PassXYZLib, so let’s add test cases to our 
test interface, IDataStore. To test the IDataStore interface, we can create a new test class, 
DataStoreTests, in the PassXYZ.Vault.Tests project. We can start to add a new test case 
to test the case by adding an item as follows:

public class DataStoreTests

{

  [Fact]                                                  ❶

  public async void Add_Item()

  {

      // Arrange                                          ❷

      IDataStore<Item> datastore = new MockDataStore();

      ItemSubType itemSubType = ItemSubType.Entry;

https://github.com/shugaoye/PassXYZLib


Developing Unit Tests308

      // Act                                              ❸

      var newItem = datastore.CreateNewItem(itemSubType);

      newItem.Name = $"{itemSubType.ToString()}01";

      await datastore.AddItemAsync(newItem);

      var item = datastore.GetItem(newItem.Id);

      // Assert                                           ❹

      Assert.Equal(newItem.Id, item.Id);

  }

}

xUnit uses attributes to inform the framework about test case setup. In this test case, we use the 
[Fact] attribute, ❶, to mark this method as a test case. To define a test case, we can use a common 
pattern – Arrange, Act, and Assert:

• Arrange ❷ – We will prepare all necessary setup for the test. To add an item, we need to initialize 
the IDataStore interface first, and then we will define a variable to hold the item type.

• Act ❸ – We execute the methods that we want to test, which are CreateNewItem() 
and AddItemAsync().

• Assert ❹ – We check the result that we expected. In our case, we try to retrieve the new item 
using item.Id. After that, we check to ensure that the item ID retrieved is the same as what 
we expected.

As you may have noticed, we tested the Entry type in the previous test case. The Entry type is only 
one of the item types – we have many. To test all of them, we need to create many test cases. xUnit 
supports another test case type, [Theory], which helps us to test different scenarios with one test case.

We can use the “delete an item” test case to demonstrate how to test different scenarios in one test 
case with the [Theory] attribute. In this test case, we can delete an item in different item types in 
one test case:

public class DataStoreTests

{

  ...

  [Theory]                                                ①

  [InlineData(ItemSubType.Entry)]                         ②

  [InlineData(ItemSubType.Group)]

  [InlineData(ItemSubType.Notes)]

  [InlineData(ItemSubType.PxEntry)]

  public async void Delete_Item(ItemSubType itemSubType)



Unit testing in .NET 309

  {

      // Arrange

      IDataStore<Item> datastore = new MockDataStore();

      var newItem = datastore.CreateNewItem(itemSubType); ③

      newItem.Name = $"{itemSubType.ToString()}01";

      await datastore.AddItemAsync(newItem);

      // Act

      bool result = await

        datastore.DeleteItemAsync(newItem.Id);            ④

      Debug.WriteLine($"Delete_Item: {newItem.Name}");

      // Assert

      Assert.True(result);                                ⑤

  }

  ...

}

When we create a test case using the [Theory] attribute, ①, we can pass different item types using 
the itemSubType parameter. The value of the itemSubType argument is defined using the 
[InlineData] attribute, ②.

To arrange test data, we create a new item using the itemSubType argument, ③. Then, we execute 
the DeleteItemAsync() method, ④, which is the one that we want to test.

Finally, we check the return value, ⑤. If the item is deleted successfully, the result is true. Otherwise, 
the result is false.

We have learned how to create a test case using the [Fact] attribute and how to cover different 
scenarios using the [Theory] attribute. Let’s discuss more topics in test case development in the 
next section.

Sharing context between tests

In our previous test cases, we created a new IDataStore instance for each test case. Can we share one 
IDataStore instance instead of creating the same instance every time? We can reduce duplication 
by sharing the test setup among a group of test cases in xUnit.



Developing Unit Tests310

There are three ways to share the setup and cleanup code between tests in xUnit:

• Constructor and Dispose – we can use a class constructor to share the setup and cleanup code 
without sharing instances

• Class Fixture – we can use a fixture to share object instances in a single class

• Collection Fixtures – we can use collection fixtures to share object instances in multiple 
test classes

Sharing using a constructor

To remove the duplicated setup code from the previous tests, we can move the creation of the 
IDataStore instance to the constructor of the DataStoreTests test class as follows:

public class DataStoreTests

{

  IDataStore<Item> datastore;

  public DataStoreTests()

  {

    datastore = new MockDataStore();

    Debug.WriteLine("DataStoreTests: Created");

  }

  ...

}

In this code, we added a private member variable, datastore, and created an instance of IDataStore 
in the constructor of DataStoreTests. We also added a debug output so we can monitor the 
creation of the IDataStore interface. Let us debug the execution of the DataStoreTests class 
so we can see the debug output here:

DataStoreTests: Created

Delete_Item: Entry01

DataStoreTests: Created

Delete_Item: Group01

DataStoreTests: Created

Delete_Item: PxEntry01

DataStoreTests: Created

Delete_Item: Notes01

DataStoreTests: Created

Create_Item: PxEntry



Unit testing in .NET 311

DataStoreTests: Created

Create_Item: Group

DataStoreTests: Created

Create_Item: Entry

DataStoreTests: Created

Create_Item: Notes

DataStoreTests: Created

Add_Item: Done

We can see from the debug output that a DataStoreTests class is created for each test case. There 
is no difference whether we create the instance of IDataStore inside the test method or in the 
constructor. All the test cases are still isolated from each other. When we use the [Theory] attribute 
to test different scenarios with one method, each of them looks like a separate test case at runtime. To 
understand this better, we can use dotnet command to list all the tests defined:

dotnet test -t

  Determining projects to restore...

  All projects are up-to-date for restore.

Microsoft (R) Test Execution Command Line Tool Version 17.3.0

  (x64)

Copyright (c) Microsoft Corporation.  All rights reserved.

The following Tests are available:

    PassXYZ.Vault.Tests.DataStoreTests.Add_Item

    PassXYZ.Vault.Tests.DataStoreTests.Delete_Item(itemSubType:

      Entry)

    PassXYZ.Vault.Tests.DataStoreTests.Delete_Item(itemSubType:

      Group)

    PassXYZ.Vault.Tests.DataStoreTests.Delete_Item(itemSubType:

      Notes)

    PassXYZ.Vault.Tests.DataStoreTests.Delete_Item(itemSubType:

      PxEntry)

    PassXYZ.Vault.Tests.DataStoreTests.Create_Item(itemSubType:

      Entry)

    PassXYZ.Vault.Tests.DataStoreTests.Create_Item(itemSubType:

      Group)

    PassXYZ.Vault.Tests.DataStoreTests.Create_Item(itemSubType:

      Notes)



Developing Unit Tests312

   PassXYZ.Vault.Tests.DataStoreTests.Create_Item(itemSubType:

      PxEntry)

We can see that each parameter defined by the [InlineData] attribute is shown as a separate test 
case. They are all isolated test cases at runtime.

After we list all tests, we can selectively execute them using the dotnet command.

If we want to run all the tests in the DataStoreTests class, we can use this command:

dotnet test --filter DataStoreTests

If we want to run Add_Item tests only, we can use this command:

dotnet test --filter DataStoreTests.Add_Item

As we can see from the debug output, even though we created an instance of IDataStore in the 
constructor, the instance is re-created for each test. The instances created in the test class constructor 
won’t be shared across tests. Even though the effect is still the same, the code looks more concise.

However, in some cases, we do want to share instances across tests. We can do so using class fixtures. 
Let’s look at these cases in the next section.

Sharing using class fixtures

When we use a tool in all test cases, we may want to share the setup in all test cases instead of creating 
the same one every time. Let’s use a logging function as an example to explain this.

To have a test report, we want to create a test log to monitor the execution of unit tests. There is a 
library called Serilog that can be used for this purpose. We can log messages to different channels 
using Serilog. To use Serilog, we need to set it up first and clean up it after all the tests have 
been executed. In this case, we want to share an instance of Serilog between all the tests instead 
of creating one for each test. With this setup, we can generate one log file for all the tests instead of 
multiple log files for each test.

To use Serilog, we need to add the Serilog package to the project first. To do that, we can run 
the following dotnet commands in the project’s PassXYZ.Vault.Tests folder:

dotnet add package Serilog

dotnet add package Serilog.Sinks.File

After adding the Serilog libraries to the project, we can create a class fixture, SerilogFixture, 
for demonstration purposes:



Unit testing in .NET 313

public class SerilogFixture : IDisposable {                ❶

  public ILogger Logger { get; private set; }

  public SerilogFixture() {

    Logger = new LoggerConfiguration()                     ❷

        .MinimumLevel.Debug()

        .WriteTo.File(@"logs\xunit_log.txt")

        .CreateLogger();

    Logger.Debug("SerilogFixture: initialized");

  }

  public void Dispose() {

    Logger.Debug("SerilogFixture: closed");

    Log.CloseAndFlush();                                   ❸

  }

}

public class DataStoreTests : IClassFixture<SerilogFixture> 
{                                                          ❹

  IDataStore<Item> datastore;

  SerilogFixture serilogFixture;

  public DataStoreTests(SerilogFixture fixture) {          ❺

      serilogFixture = fixture;                            ❻

      datastore = new MockDataStore();

      serilogFixture.Logger.Debug("DataStoreTests: Created");

  }

  [Fact]

  public async void Add_Item() ...

  ...

}

If  we want to use class fixtures, we can create them using the following steps:

1. We can create a new class as the fixture class and add the setup code to the constructor. Here, 
we created a fixture class, SerilogFixture, ❶, and initialized the ILogger interface, 
❷, in the constructor.

2. Because we need to clean up the setup after the test case execution, we need to implement the 
IDisposable interface for the fixture class and put the cleanup code in the Dispose() 



Developing Unit Tests314

method. We implemented IDisposable in SerilogFixture and called the Serilog 
function, Log.CloseAndFlush(), ❸, in the Dispose() method.

3. To use the fixture, the test case needs to implement the IClassFixture<T> interface. We 
implemented this in the DataStoreTests test class, ❹.

4. To access the fixture instance, we can add it as a constructor argument and it will be provided 
automatically. In the constructor of DataStoreTests, ❺, we assign the argument to the 
private member variable, serilogFixture, ❻. In test cases, we can access Serilog 
using this variable.

To verify this setup, we replaced all our debug output with Serilog Debug. After executing the 
tests in DataStoreTests, we can see the log messages here in the xunit_log.txt log file:

2022-08-28 10:25:39.273 +08:00 [DBG] SerilogFixture: 
initialized

2022-08-28 10:25:39.332 +08:00 [DBG] DataStoreTests: Created

2022-08-28 10:25:39.350 +08:00 [DBG] Delete_Item: Entry01

2022-08-28 10:25:39.355 +08:00 [DBG] DataStoreTests: Created

2022-08-28 10:25:39.355 +08:00 [DBG] Delete_Item: Group01

2022-08-28 10:25:39.356 +08:00 [DBG] DataStoreTests: Created

2022-08-28 10:25:39.357 +08:00 [DBG] Delete_Item: PxEntry01

2022-08-28 10:25:39.358 +08:00 [DBG] DataStoreTests: Created

2022-08-28 10:25:39.358 +08:00 [DBG] Delete_Item: Notes01

2022-08-28 10:25:39.359 +08:00 [DBG] DataStoreTests: Created

2022-08-28 10:25:39.359 +08:00 [DBG] Create_Item: PxEntry

2022-08-28 10:25:39.360 +08:00 [DBG] DataStoreTests: Created

2022-08-28 10:25:39.360 +08:00 [DBG] Create_Item: Group

2022-08-28 10:25:39.361 +08:00 [DBG] DataStoreTests: Created

2022-08-28 10:25:39.361 +08:00 [DBG] Create_Item: Entry

2022-08-28 10:25:39.362 +08:00 [DBG] DataStoreTests: Created

2022-08-28 10:25:39.362 +08:00 [DBG] Create_Item: Notes

2022-08-28 10:25:39.362 +08:00 [DBG] DataStoreTests: Created

2022-08-28 10:25:39.364 +08:00 [DBG] Add_Item: Done

2022-08-28 10:25:39.367 +08:00 [DBG] SerilogFixture: closed

As we expected, the SerilogFixture class is initialized just once, and the instance can be used 
in all the tests in DataStoreTests, compared to the IDataStore interface being initialized 
for each test.



Unit testing in .NET 315

Sharing using collection fixtures

Using class fixtures, as shown in the previous section, we can share the test setup context in one test 
class. There are also cases in which we might want to share the test setup in multiple test classes. We 
can do so using collection fixtures.

In our case of Serilog, we can use it in many test classes as well so that we can see all the log 
messages in one log file. To use one Serilog setup for all the test classes, we can implement collection 
fixtures in our project. To use collection fixtures, we can create two new classes, SerilogFixture 
and SerilogCollection, in the PassXYZ.Vault.Tests project as shown in Listing 11.1:

Listing 11.1: SerilogFixture.cs (https://epa.ms/SerilogFixture11-1)

namespace PassXYZ.Vault.Tests;

public class SerilogFixture : IDisposable {

  public ILogger Logger { get; private set; }

  public SerilogFixture() {

      Logger = new LoggerConfiguration()

          .MinimumLevel.Debug()

          .WriteTo.File(@"logs\xunit_log.txt")

          .CreateLogger();

      Logger.Debug("SerilogFixture: initialized");

  }

  public void Dispose() {

      Logger.Debug("SerilogFixture: closed");

      Log.CloseAndFlush();

  }

}

[CollectionDefinition("Serilog collection")]              ❶

public class 
SerilogCollection:ICollectionFixture<SerilogFixture>

{

}                                                         ❷



Developing Unit Tests316

We can follow the steps below to implement collection fixtures:

1. We create a new class file, SerilogFixture.cs, and put both SerilogFixture and 
SerilogCollection into this file.

2. We decorate the collection definition class, SerilogCollection , with the 
[CollectionDefinition] attribute, ❶. Then, we give it a unique name that can be 
used to identify the test collection.

3. The collection definition class, SerilogCollection, needs to implement the 
ICollectionFixture<T> interface, ❷.

To use a collection fixture, we can make the following changes to our test classes:

1. We can add the [Collection] attribute to all the test classes that will be part of the 
collection. We assign Serilog collection as a name to the test collection definition in 
the attribute. In our case, as we can see in Listing 11.2, we add a [Collection("Serilog 
collection")]  attribute, ①, to the DataStoreTests class.

2. To access the fixture instance, we can do the same as in the previous section with class fixtures 
and add it as a constructor argument. Then, it will be provided automatically. In the constructor 
of DataStoreTests, we assign a fixture argument to the serilogFixture variable, ②:

Listing 11.2: DataStoreTests.cs (https://epa.ms/DataStoreTests11-2)

namespace PassXYZ.Vault.Tests;

[Collection("Serilog collection")]                       ①

public class DataStoreTests {

  IDataStore<Item> datastore;

  SerilogFixture serilogFixture;

  public DataStoreTests(SerilogFixture fixture) {

    datastore = new MockDataStore();

    serilogFixture = fixture;                            ②

    serilogFixture.Logger.Debug("DataStoreTests

      initialized");

  }

  [Fact]

  public async void Add_Item() {

    // Arrange

    ItemSubType itemSubType = ItemSubType.Entry;



Razor component testing using bUnit 317

    // Act

    var newItem = datastore.CreateNewItem(itemSubType);

    newItem.Name = $"{itemSubType.ToString()}01";

    await datastore.AddItemAsync(newItem);

    var item = datastore.GetItem(newItem.Id);

    // Assert

    Assert.Equal(newItem.Id, item.Id);

    serilogFixture.Logger.Debug("Add_Item done");

  }

  [Theory]

  [InlineData(ItemSubType.Entry)]

  [InlineData(ItemSubType.Group)]

  [InlineData(ItemSubType.Notes)]

  [InlineData(ItemSubType.PxEntry)]

  public async void Delete_Item(ItemSubType itemSubType)...

  [Theory]

  [InlineData(ItemSubType.Entry)]

  [InlineData(ItemSubType.Group)]

  [InlineData(ItemSubType.Notes)]

  [InlineData(ItemSubType.PxEntry)]

  public void Create_Item(ItemSubType itemSubType) ...

}

With these examples, we have introduced how to create unit tests in the model layer. The knowledge 
that we have gained so far can be used in unit testing for other .NET applications as well.

So far, we have concluded the introduction of the model layer unit test. In the next part of this chapter, 
we will explore the Razor component unit test using the bUnit library.

Razor component testing using bUnit
In .NET MAUI development, we don’t really have a good unit test framework for XAML-based UI 
components, but we do have one for Blazor. bUnit is an excellent test library that can be used for the 
unit test development of Razor components. With the bUnit library, we can develop unit test cases 
for Razor components using xUnit, NUnit, or MSTest. We will use xUnit with bUnit for the rest 
of the chapter. The structure of unit test cases using bUnit is similar to the xUnit test cases that we 
introduced in the previous section.



Developing Unit Tests318

The test targets in the rest of this chapter are the following Razor components that we created in the 
second part of this book:

• Razor components in the PassXYZ.BlazorUI project

• Razor components in the PassXYZ.Vault project

To test Razor components using bUnit, we need to change the project configuration of  
PassXYZ.Vault.Tests.

Changing project configuration for bUnit

To set up the test environment, we need to add the bUnit and Moq packages and, update the SDK 
type. We can make the following changes to the xUnit PassXYZ.Vault.Tests testing project:

1. Add bUnit to the project.

To add the bUnit library to the project, we can change to the project folder first and execute 
the following command from a console:

cd PassXYZ.Vault.Tests

dotnet add package bunit

2. We also need to add the Moq package, which is a mocking library that we will use in the test setup:

dotnet add package Moq

3. Change the project configuration.

To test the Razor components, we also need to change the project’s SDK to Microsoft.
NET.Sdk.Razor.

In the PassXYZ.Vault.Tests.csproj project file, we need to replace the following line:

<Project Sdk="Microsoft.NET.Sdk">

We will do so with this:

<Project Sdk="Microsoft.NET.Sdk.Razor">

Once we have the project configuration ready, we can create a simple unit test case using bUnit to 
test our Razor components.



Razor component testing using bUnit 319

Creating a bUnit test case

In our PassXYZ.Vault app, we have two kinds of Razor components that can be tested. The shared 
Razor components reside in the PassXYZ.BlazorUI project. They are generic Razor components 
that can be used in different projects. The other set of Razor components is the one in the Pages 
folder of the PassXYZ.Vault project. They are specific to the PassXYZ.Vault app and they 
use shared components from the PassXYZ.BlazorUI project.

To test the Razor components in the PassXYZ.BlazorUI project, we can test each component 
separately. These test cases are unit test cases. The Razor components in the Pages folder of the 
PassXYZ.Vault project are UI pages. These pages use UI components from other packages, so 
they have more dependencies. These test cases can be considered integration test cases.

We can create a test case for the ModalDialog Razor component in the PassXYZ.BlazorUI 
project first. To test ModalDialog, we can create a xUnit test class, ModalDialogTests, as 
shown in Listing 11.3:

Listing 11.3: ModalDialogTests.cs (https://epa.ms/ModalDialogTests11-3)

namespace PassXYZ.Vault.Tests {

  [Collection("Serilog collection")]

  public class ModalDialogTests : TestContext {           ❶

    SerilogFixture serilogFixture;

    public ModalDialogTests(SerilogFixture serilogFixture) {

      this.serilogFixture = serilogFixture;

    }

    [Fact]

    public void ModalDialogInitTest() {

      string title = "ModalDialog Test";                  ❷

      var cut = RenderComponent<ModalDialog>(             ❸

        parameters => parameters.Add(p => p.Title, title) ❹

        .Add(p => p.CloseButtonText, "Close")

        .Add(p => p.SaveButtonText, "Save"));

      cut.Find("h5").TextContent.MarkupMatches(title);    ❺

      serilogFixture.Logger.Debug("ModalDialogInitTest:

        done");

    }

    ...

  }

}



Developing Unit Tests320

As we can see in the ModalDialogTests unit test class, it is very similar to the unit test class that 
we created for the model layer. We reuse the collection fixture that we created before and initialized 
it in the constructor. In the ModalDialogInitTest test case, we still use the Arrange, Act, and 
Assert pattern to implement the test case.

All bUnit test classes inherit from TestContext ❶. In the Arrange phase, we initialize a local title 
variable, ❷, with a defined string. In the Act phase, we call a generic method, RenderComponent<T>, 
❸, and use the ModalDialog type as the type parameter. We pass the title variable, ❹, as the 
component parameter. The result of RenderComponent<T> is stored in the cut variable. In the 
Assert phase, we verify that the title text after rendering is the same as the argument that we pass to 
it using the Find() bUnit method, ❺. The Find() bUnit method can be used to find any HTML 
tag. In ModalDialog, the title is rendered as a <h5> HTML tag.

In the ModalDialogInitTest test case, we can see the structure of the bUnit tests. In bUnit tests, 
we render the component under test first. The result of the rendering is stored in the cut variable, 
❸. It is an instance of the IRenderedComponent interface. We can verify the result by referring 
to the properties or calling the methods of the IRenderedComponent instance.

When Razor components are rendered in TestContext, they have the same lifecycle as any other 
Razor component. We can pass parameters to components under test, and they can produce output, 
similar to what happens in a browser.

When we render the ModalDialog  component in the preceding example, we can 
pass component parameters to it using the Add() method of a parameter builder of the 
ComponentParameterCollectionBuilder<TComponent> type.

We may not have a problem rendering simple components using C# code. However, we usually need to 
pass multiple parameters to a component, and it is not convenient to do so in C# code. With bUnit, we 
can develop test cases in Razor files, which can bring a much better experience in unit test development.

Creating test cases in Razor files

To create tests in Razor markup files directly, we can declare components using Razor markup as 
we use them in a Razor page. In this way, we don’t have to call Razor components in the C# code 
and pass parameters using function calls. For a Razor page, we can render Razor components using 
Razor templates.

We can demonstrate how to create tests in Razor markup files by creating test cases for a more 
complicated EditorDialog component. We created the EditorDialog component in Chapter 9, 
Razor Components and Data Binding. In Listing 11.4, let’s review the unit tests for it:



Razor component testing using bUnit 321

Listing 11.4: EditorDialogTests.razor (https://epa.ms/EditorDialog-
Tests11-4)

@inherits TestContext                                     ❶

<h3>EditorDialogTests</h3>

@code {

  bool _isOnCloseClicked = false;

  string _key = string.Empty;

  string _value = string.Empty;

  string updated_key = "key updated";

  string updated_value = "value udpated";

  void OnSaveClicked(string key, string value) {

    _key = key; _value = value;

  }

  void OnCloseHandler() {

    _isOnCloseClicked = true;

  }

  [Fact]

  public void EditorDialog_Init_WithoutArgument() ...

  [Fact]

  public void Edit_OnClose_Clicked() {

var cut = Render(@<EditorDialog Key="@_key"

  Value="@_value"

  OnSave=@OnSaveClicked OnClose=@OnCloseHandler>

      </EditorDialog>);                                   ❷

    cut.Find("button[class='btn btn-secondary']").Click();❸

    Assert.True(_isOnCloseClicked);                       ❹

  }

  [Fact]

  public void Edit_With_KeyEditingEnabled() {             ❺

var cut = Render(@<EditorDialog Key="@_key"

  Value="@_value"

  IsKeyEditingEnable="true" OnSave=@OnSaveClicked>

      </EditorDialog>);

    cut.Find("input").Change(updated_key);

    cut.Find("textarea").Change(updated_value);



Developing Unit Tests322

    cut.Find("button[type=submit]").Click();

    Assert.Equal(_key, updated_key);

    Assert.Equal(_value, updated_value);

  }

  [Fact]

  public void Edit_With_KeyEditingDisabled() ...

}

We can create a new Razor component, EditorDialogTests, in the PassXYZ.Vault.Tests 
project. Since it is a bUnit test class, it is a child class of TestContext, ❶. In this class, we create 
test cases in a code block using Razor templates.

We can review the Edit_OnClose_Clicked test case first. In this test case, we render the 
EditorDialog component first and after that, we test the close button.

To render the EditorDialog component, we call the Render() method, ❷, of TestContext. 
Compared to the previous example, here, we can render the Razor markup directly instead of calling 
the C# function. The Razor markup that we use here is called Razor templates and you can find more 
information about it in this Microsoft document:

https://learn.microsoft.com/en-us/aspnet/core/blazor/
components/?view=aspnetcore-5.0#razor-templates-1

Razor templates can be defined in the following format:

@<{HTML tag}>…</{HTML tag}>

It consists of an @ symbol and a pair of open and closed HTML tags. Razor templates can be used in 
the code block of the Razor file. It cannot be used in a C# or C# code-behind file.

Using this format, we can specify a snippet of the Razor markup as the parameter of a C# function. 
The snippet of the Razor markup is a Razor template and its data type is RenderFragment or 
RenderFragment<TValue>. In Listing 11.4, we pass parameters to EditorDialog using 
Razor templates, as we can see in the following code:

    var cut = Render(@<EditorDialog Key="@_key" Value=

      "@_value"

  OnSave=@OnSaveClicked OnClose=@OnCloseHandler>

      </EditorDialog>);

https://learn.microsoft.com/en-us/aspnet/core/blazor/components/?view=aspnetcore-5.0#razor-templates-1
https://learn.microsoft.com/en-us/aspnet/core/blazor/components/?view=aspnetcore-5.0#razor-templates-1


Razor component testing using bUnit 323

After EditorDialog is rendered, we can find the close button and simulate the click action, ❸:

    cut.Find("button[class='btn btn-secondary']").Click();

In the OnCloseHandler event handler, the _isOnCloseClicked variable, ❹, is set to true 
so that we can assert the result.

In the Edit_With_KeyEditingEnabled test case, ❺, after the component is rendered, we can 
simulate user interactions to set the key and value fields in the component. After that, we can simulate 
clicking on the save button as we can see here:

    cut.Find("input").Change(updated_key);

    cut.Find("textarea").Change(updated_value);

    cut.Find("button[type=submit]").Click();

When the button is clicked, the event handler is invoked. In the OnSaveClicked event handler, 
we save the changed key and value so we can assert the result:

    Assert.Equal(_key, updated_key);

    Assert.Equal(_value, updated_value);

As we can see from these two test cases, we can design bUnit tests much more easily by creating tests 
in a Razor file. We can render components using Razor templates and we can also trigger various user 
interactions to test the components interactively.

Razor templates are a great tool to help us combine Razor markup and C# code so that we can leverage 
the best features from both worlds. However, we have a limitation when we use Razor templates. Let’s 
see how to overcome it in the next section.

Using the RenderFragment delegate

Even though Razor templates can help simplify the test setup, there is a limitation, particularly in a 
complicated test case setup. In a complicated test case, the Razor templates can be very long. If we 
want to reuse the same Razor templates in another test case, we need to copy them to the new test 
case. We may have to create a lot of duplicated code, and this is the limitation of Razor templates.

In this case, we can use a RenderFragment delegate. As its name indicates, it is the delegate type 
of RenderFragment or RenderFragment<TValue>. The data type of Razor templates is 
RenderFragment or RenderFragment<TValue>. A RenderFragment delegate is the 
delegate type for Razor templates.



Developing Unit Tests324

You can find more information about the RenderFragment delegate in the following 
Microsoft document:

https://learn.microsoft.com/en-us/aspnet/core/blazor/
performance?view=aspnetcore-3.1#define-reusable-renderfragments-
in-code-2

To demonstrate how to use the RenderFragment delegate, let’s set up a more complex test for the 
EditorDialog component. EditorDialog can be used to edit either Item or Field. We can 
use an item-editing case to show how to use the RenderFragment delegate.

We can create a new test class, ItemEditTests, in the PassXYZ.Vault.Tests project. To 
separate the Razor markup and C# code, we can split the ItemEditTests test class into a Razor 
file (ItemEditTests.razor) and a C# code-behind file (ItemEditTests.razor.cs). We 
can declare the markup for testing in the Razor file, as shown in Listing 11.5:

Listing 11.5: ItemEditTests.razor (https://epa.ms/ItemEditTests11-5)

@inherits TestContext

@namespace PassXYZ.Vault.Tests

<h3>ItemEditTests</h3>

@code {

  private RenderFragment _editorDialog => __builder =>

  {

  <CascadingValue Value="@_dialogId" Name="Id">

<EditorDialog IsKeyEditingEnable=@isNewItem

  OnSave=@OnSaveClicked Key=@testItem.Name

  Value=@testItem.Notes>

      @if (isNewItem) {

        <select id="itemType" @bind="testItem.ItemType"

          class="form-select" aria-label="Group">

            <option selected value="Group">Group</option>

            <option value="Entry">Entry</option>

            <option value="PxEntry">PxEntry</option>

            <option value="Notes">Notes</option>

        </select>

        }

    </EditorDialog>

  </CascadingValue>

https://learn.microsoft.com/en-us/aspnet/core/blazor/performance?view=aspnetcore-3.1#define-reusable-renderfragments-in-code-2
https://learn.microsoft.com/en-us/aspnet/core/blazor/performance?view=aspnetcore-3.1#define-reusable-renderfragments-in-code-2
https://learn.microsoft.com/en-us/aspnet/core/blazor/performance?view=aspnetcore-3.1#define-reusable-renderfragments-in-code-2


Razor component testing using bUnit 325

  };

}

We define a RenderFragment delegate, _editorDialog, in the @code block of ItemEditTests.
razor. The RenderFragment delegate must accept a parameter called __builder of the 
RenderTreeBuilder type. In the markup code, we can access the variables defined in the test class.

Now let’s look at the usage of _editorDialog in the C# code-behind file in Listing 11.6:

Listing 11.6: ItemEditTests.razor.cs (https://epa.ms/ItemEditTests11-6)

namespace PassXYZ.Vault.Tests;

[Collection("Serilog collection")]

public partial class ItemEditTests : TestContext {

  readonly SerilogFixture serilogFixture;

  bool isNewItem { get; set; } = false;

  NewItem testItem { get; set; }

  string _dialogId = "editItem";

  string updated_key = "Updated item";

  string updated_value = "This item is updated.";

  public ItemEditTests(SerilogFixture fixture) {

    testItem = new() {

        Name = "New item",

        Notes = "This is a new item."

    };

    serilogFixture = fixture;

  }

  void OnSaveClicked(string key, string value) {

    testItem.Name = key; testItem.Notes = value;

  }

  [Fact]

  public void Edit_New_Item() {

    isNewItem = true;

    var cut = Render(_editorDialog);                      ❶

    cut.Find("#itemType").Change("Entry");

    cut.Find("input").Change(updated_key);

    cut.Find("textarea").Change(updated_value);



Developing Unit Tests326

    cut.Find("button[type=submit]").Click();

    Assert.Equal(updated_key, testItem.Name);

    Assert.Equal(updated_value, testItem.Notes);

  }

  [Fact]

  public void Edit_Existing_Item() {

    isNewItem = false;                                    ❸

    var cut = Render(_editorDialog);                      ❶

var ex = Assert.Throws<ElementNotFoundException>(() =>

  cut.Find("#itemType").Change("Entry"));                 ❷

    Assert.Equal("No elements were found that matches the

selector '#itemType'", ex.Message);                       ❹

    cut.Find("textarea").Change(updated_value);

    cut.Find("button[type=submit]").Click();

    Assert.Equal(updated_value, testItem.Notes);

  }

}

Since _editorDialog defines the Item editing, we can implement multiple test cases against 
_editorDialog. We can see that we render _editorDialog, ❶, for multiple test cases, such 
as Edit_New_Item and Edit_Existing_Item. Using the RenderFragment delegate, our 
testing code looks much more elegant and cleaner. If we did not go this way, we would need to repeat 
long markup code in multiple places. Using C# code directly may have even led to more duplicated code.

In both test cases, we follow a similar process to testing EditorDialog by setting values and then 
clicking on the Save button. In the markup code, we have a <select> tag defined. We can change 
the option, ❷, of the <select> tag in the test code. This <select> tag is rendered conditionally 
referring to the value of the isNewItem variable. In the Edit_Existing_Item test, we can also 
test the negative case when the isNewItem variable,❸, is set to false. In this case, an exception 
is thrown since the <select> tag is not rendered. We can see that bUnit can also be used to test 
negative cases by verifying the content of exception, ❹.

We created bUnit tests for the shared components in the PassXYZ.BlazorUI project in the previous 
examples. Since these shared components are reusable building blocks for a high-level UI, most of 
them declare many component parameters. The RenderFragment delegate or Razor templates 
can help to simplify the test setup.

If we move to the Razor pages in the Pages folder of the PassXYZ.Vault project, Items, 
ItemDetail, or Login are Razor components as well, but they are not designed for reuse. They are 
Razor pages with route templates defined and they don’t have many component parameters defined. 



Razor component testing using bUnit 327

The component parameters declared in these Razor pages are used for routing purposes. When we 
design test cases for these Razor pages, we can implement tests in a C# class rather than Razor files.

Testing Razor pages

In the process of development testing for Razor pages, we will learn about some very useful bUnit 
features. We won’t be able to review all the tests of Razor pages in our app, so we will use ItemDetail 
as an example. ItemDetail is a Razor page for displaying the content of a password entry. There 
is a route defined for it:

@page "/entry/{SelectedItemId}"

When we want to display the ItemDetail page, we need to pass the Id info for an Item instance 
to it, and this instance cannot be a group. The initialization of the ItemDetail page is done in the 
OnParametersSet() life cycle method as we can see here:

protected override void OnParametersSet() {

  base.OnParametersSet();

  if (SelectedItemId != null) {

    selectedItem = DataStore.GetItem(SelectedItemId, true);

    if (selectedItem == null) {

        throw new InvalidOperationException(              ❷

  "ItemDetail: entry cannot be found with SelectedItemId");

    }

    else {

      if (selectedItem.IsGroup) {

          throw new InvalidOperationException(            ❸

   "ItemDetail: SelectedItemId should not be group here.");

      }

      else {                                              ❹

        fields.Clear();

        List<Field> tmpFields = selectedItem.GetFields();

        foreach (Field field in tmpFields) {

            fields.Add(field);

        }

        notes = selectedItem.GetNotesInHtml();

      }

    }

  }



Developing Unit Tests328

  else {

throw new InvalidOperationException(                      ❶

  "ItemDetail: SelectedItemId is null");

  }

}

We will develop an ItemDetailTests  test class to cover all the execution paths in 
OnParametersSet(). To cover all the execution paths, we can find the following test cases:

• Test case 1: Initialize the ItemDetail instance without a selected item Id. We will get an 
InvalidOperationException exception, ❶, in this case.

• Test case 2: Initialize the ItemDetail instance with the wrong item Id. In this case, we will 
get an InvalidOperationException exception, ❷.

• Test case 3: Initialize the ItemDetail instance with a valid item Id, but the item type as a 
group. In this case, we will get an InvalidOperationException exception, ❸.

• Test case 4: Initialize the ItemDetail instance with a valid item Id and the item type is 
an entry, ❹.

We can implement these test cases in an ItemDetailTests bUnit test class as shown here in 
Listing 11.7:

Listing 11.7: ItemDetailTests.cs (https://epa.ms/ItemDetailTests11-7)

namespace PassXYZ.Vault.Tests;

[Collection("Serilog collection")]

public class ItemDetailTests : TestContext {

  SerilogFixture serilogFixture;

  Mock<IDataStore<Item>> dataStore;

  public ItemDetailTests(SerilogFixture fixture) {

      serilogFixture = fixture;

      dataStore = new Mock<IDataStore<Item>>();          ①

      Services.AddSingleton<IDataStore<Item>>

        (dataStore.Object);                              ②

  }

  [Fact]

  public void Init_Empty_ItemDetail() {                  ③

      var ex = Assert.Throws<InvalidOperationException>(



Razor component testing using bUnit 329

        () => RenderComponent<ItemDetail>());

      Assert.Equal(

        "ItemDetail: SelectedItemId is null", ex.Message);

  }

  [Fact]

  public void Load_ItemDetail_WithWrongId() {

    var ex = Assert.Throws<InvalidOperationException>(() =>

      RenderComponent<ItemDetail>(parameters =>

      parameters.Add(p => p.SelectedItemId, "Wrong Id")));

    Assert.Equal("ItemDetail: entry cannot be found with

        SelectedItemId", ex.Message);

  }

  [Fact]

  public void Load_ItemDetail_WithGroup() {

    Item testGroup = new PwGroup(true, true) {

      Name = "Default Group",

      Notes = "This is a group in ItemDetailTests."

    };

    dataStore.Setup(x => x.GetItem(It.IsAny<string>(),

      It.IsAny<bool>())).Returns(testGroup);

    var ex = Assert.Throws<InvalidOperationException>(() =>

      RenderComponent<ItemDetail>(parameters =>

     parameters.Add(p => p.SelectedItemId, testGroup.Id)));

    Assert.Equal("ItemDetail: SelectedItemId should not be

      group here.", ex.Message);

  }

  [Fact]

  public void Load_ItemDetail_WithEmptyFieldList() {

    Item testEntry = new PwEntry(true, true) {

      Name = "Default Entry",

      Notes = "This is an entry with empty field list."

    };

    dataStore.Setup(x => x.GetItem(It.IsAny<string>(),

        It.IsAny<bool>())).Returns(testEntry);

    var cut = RenderComponent<ItemDetail>(parameters =>

      parameters.Add(p => p.SelectedItemId, testEntry.Id));



Developing Unit Tests330

    cut.Find("article").MarkupMatches(

      $"<article><p>{testEntry.Notes}</p></article>");

  }

}

The first test case is implemented in Init_Empty_ItemDetail, ③. In the test setup, we just try 
to render the ItemDetail component directly without passing it a selected item Id. We expect an 
InvalidOperationException exception to be thrown.

Before we can run the test case, we need to resolve the IDataStore dependency first. ItemDetail 
has a dependency on the IDataStore<Item> interface. We can resolve this using dependency 
injection. In our app, this dependency is registered in MauiProgram.cs.

With bUnit, dependency injection is supported using TestContext. We can register the dependency 
using AddSingleton(), ②. To isolate the test, we use the Moq mocking framework, ①, to replace 
the actual implementation of IDataStore, so we can reduce the complexity of the test setup.

Using Moq, we only need to fake the method or property that we need in our test setup. It can help 
to isolate our tests from their dependencies. To use the Moq framework, we can create a Moq object 
using the interface or class that we need as a type parameter. Later, we can define the behavior of the 
target interface or class when we use it. In the constructor, we create a Mock object and register the 
IDataStore<Item> interface using dataStore.Object:

      dataStore = new Mock<IDataStore<Item>>();

      Services.AddSingleton<IDataStore<Item>>(dataStore. 
        Object);

After we register IDataStore in the constructor, we can execute the first test case again. This time, 
we can get the exception and verify the message is what we expect:

[Fact]

public void Init_Empty_ItemDetail() {

  var ex = Assert.Throws<InvalidOperationException>(

    () => RenderComponent<ItemDetail>());

  Assert.Equal("ItemDetail: SelectedItemId is null",

    ex.Message);

}

Next, let us look at the second test case. In the second test case, we pass an invalid Id to ItemDetail 
and try to render it:

[Fact]

public void Load_ItemDetail_WithWrongId() {



Razor component testing using bUnit 331

  var ex = Assert.Throws<InvalidOperationException>(() =>

RenderComponent<ItemDetail>(parameters =>

  parameters.Add(

p => p.SelectedItemId, "Wrong Id")));

  Assert.Equal("ItemDetail: entry cannot be found with

    SelectedItemId", ex.Message);

}

In this case, we also get an expected exception, and we can verify its content using Assert.Equal.

In the third test case, we pass a valid Id to ItemDetail, but the item type is a group. This is a case 
that is hard to repeat in an integration test or user acceptance test. In a unit test, it is quite easy to 
verify as we can see here:

[Fact]

public void Load_ItemDetail_WithGroup() {

  Item testGroup = new PwGroup(true, true) {

    Name = "Default Group",

    Notes = "This is a group in ItemDetailTests."

  };

  dataStore.Setup(x => x.GetItem(It.IsAny<string>(),

    It.IsAny<bool>())).Returns(testGroup);

  var ex = Assert.Throws<InvalidOperationException>(() =>

RenderComponent<ItemDetail>(parameters =>

parameters.Add(p => p.SelectedItemId, testGroup.Id)));

  Assert.Equal("ItemDetail: SelectedItemId should not be

    group here.", ex.Message);

  }

To test it, we need to create a group and assign it to a testGroup variable. In this test case, we need 
to call the GetItem() method of IDataStore. Since we mocked IDataStore in our setup, 
here, we need to mock the GetItem() method as well. The Moq method returns testGroup 
when it is called. After the test setup is ready, we can render ItemDetail with testGroup.Id. 
The test result is the exception that we expect.

In the final test case, we will pass a valid Item Id and the item type is an entry:

[Fact]

public void Load_ItemDetail_WithEmptyFieldList() {

  Item testEntry = new PwEntry(true, true) {



Developing Unit Tests332

    Name = "Default Entry",

    Notes = "This is an entry with empty field list."

  };

  dataStore.Setup(x => x.GetItem(It.IsAny<string>(),

    It.IsAny<bool>())).Returns(testEntry);

  var cut = RenderComponent<ItemDetail>(parameters =>

    parameters.Add(p => p.SelectedItemId, testEntry.Id));

  cut.Find("article").MarkupMatches(

    $"<article><p>{testEntry.Notes}</p></article>");

  Debug.WriteLine($"{cut.Markup}");

}

This test case is similar to the third test case, except we can create an entry and assign it to testEntry 
variable. After we render ItemDetail with testEntry.Id, we can verify that the <article> 
rendered HTML tag is the one that we expect.

So far, we have learned how to test Razor components using bUnit. We can see that we can achieve a 
very high level of test coverage using bUnit. This is one of the advantages of Blazor UI design.

We have now completed all the topics that we wanted to explore on unit test development with .NET 
MAUI in this chapter.

Summary
In this chapter, we introduced unit test development for .NET MAUI apps. There are multiple test 
frameworks available. We chose xUnit as the framework in this chapter. In the MVVM pattern, the 
unit test of the model layer is the same as with any other .NET application. We developed test cases 
for the IDataStore interface to test our model layer. For the unit test of the view and view model, 
we focused on the eBlazor Hybrid app using the bUnit test library. We can develop an end-to-end 
unit test for a Blazor Hybrid app with the xUnit framework and bUnit library. With bUnit, we covered 
topics such as Razor templates, the RenderFragment delegate, dependency injection, and the 
Moq framework.

Given the knowledge about unit testing in this chapter, you should now be able to work on your own 
unit test development. Please refer to the Further reading section to find more information on.NET 
unit test development.

Unit testing can be part of a CI/CD pipeline. With the CI/CD setup, we can run unit tests automatically 
in the development process. We will discuss this topic further in the next chapter.



Further reading 333

Further reading
• Microsoft Visual Studio 2005 Unleashed by Lars Powers and Mike Snell

• https://www.amazon.com/Microsoft-Visual-Studio-2005-Unleashed/
dp/0672328194

• MSTest

• https://github.com/microsoft/testfx

• Strengthening Visual Studio Unit Tests by John Robbins

• https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/
march/bugslayer-strengthening-visual-studio-unit-tests

• NUnit Pocket Reference by Bill Hamilton

• https://www.amazon.com/NUnit-Pocket-Reference-Running-OReilly/
dp/0596007396

• NUnit Releases at SourceForge

• https://sourceforge.net/projects/nunit/

• Why Did we Build xUnit 1.0

• https://xunit.net/docs/why-did-we-build-xunit-1.0

• xUnit documentation

• https://xunit.net/

• xUnit.NET 2.0 release note

• https://xunit.net/releases/2.0

https://www.amazon.com/Microsoft-Visual-Studio-2005-Unleashed/dp/0672328194
https://www.amazon.com/Microsoft-Visual-Studio-2005-Unleashed/dp/0672328194
https://github.com/microsoft/testfx
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/march/bugslayer-strengthening-visual-studio-unit-tests
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/march/bugslayer-strengthening-visual-studio-unit-tests
https://www.amazon.com/NUnit-Pocket-Reference-Running-OReilly/dp/0596007396
https://www.amazon.com/NUnit-Pocket-Reference-Running-OReilly/dp/0596007396
https://sourceforge.net/projects/nunit/
https://xunit.net/docs/why-did-we-build-xunit-1.0
https://xunit.net/
https://xunit.net/releases/2.0




12
Deploying and Publishing  

in App Stores

After we complete the development work, we want to publish our app in various app stores. Since 
.NET MAUI is a cross-platform framework, we can build the same source code for Android, iOS, 
macOS, and Windows. It is possible to deploy our app to a repository such as GitHub, but most users 
of these platforms use app stores instead. We need to know how to prepare our app for different app 
stores. This is the topic of this chapter. In this chapter, we will cover the preparation of the application 
packages before publishing.

We will cover the following topics in this chapter:

• Preparing application packages for publishing

• Automating the build process using GitHub Actions

Technical requirements
To test and debug the source code in this chapter, we need to install Visual Studio 2022 in both Windows 
and macOS environments. Please refer to the Development environment setup section in Chapter 1, 
Getting Started with .NET MAUI for the full details about environment setup.

We will build Windows and Android packages using Windows and build iOS and macOS packages 
using macOS.

The source code of this chapter is available in the following GitHub repository:

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-
Application-Development/tree/main/Chapter12

https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter12
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development/tree/main/Chapter12


Deploying and Publishing in App Stores336

Preparing application packages for publishing
In previous chapters, there is very little platform-specific knowledge required in the .NET MAUI 
development. However, we cannot avoid platform-specific information when we prepare to publish 
our app to individual app stores. In this chapter, we will introduce what we need to prepare the app 
for publishing and then we will introduce how to automate the process using GitHub Actions.

What to prepare for publishing

To prepare for publishing, we will focus on the work that we need to do before submitting the package 
to an app store. After the packages are loaded into your chosen app store, please refer to the documents 
in each app store about the actual publishing process.

In the preparation for publishing, we are trying to answer these questions:

• How to identify an app in app store

• How to  identify the app developers

• Which devices can the app support

To build and sign application packages on different platforms, there is platform-specific configuration 
involved. In .NET MAUI, the platform-specific information is included in the Visual Studio project file 
and the platform-specific configuration file. In the Visual Studio project file, conditional compilation 
is used to specify platform-specific information. We can refer to Table 12.1 for an overview of what 
we need to change for each platform.

Table 12.1: The build configuration

In Table 12.1, to identify an app, the ApplicationId and ApplicationVersion variables 
are defined in the Visual Studio project file. For each platform, there is a platform configuration file.



Preparing application packages for publishing 337

When distributing our app for Android, we generate a .apk file or a .aab file. The .apk file is 
the original Android package format, which can be used to install an app package on the device or 
emulator. The .aab file is used to submit the app to the Google Play Store. Before submission, we need 
to sign the package using Keystore. ApplicationId and ApplicationVersion are mapped 
to the package ID and version code in the Android configuration AndroidManifest.xml file.

When distributing our app for iOS or macOS, a .ipa file is generated for iOS. A .app or .pkg file 
is generated for macOS. To sign an iOS or a macOS package, we need a distribution certificate and a 
distribution profile. ApplicationId is mapped to the bundle id and ApplicationVersion 
is mapped to the bundle version in Info.plist.

When distributing our app for Windows, the MSIX package format is used. We will build the package 
in a .msix file extension. In Windows, a universally unique identifier (UUID) is used instead of 
ApplicationId. This UUID is generated as ApplicationGuid as an application identifier. 
ApplicationVersion is mapped to the Version attribute of the Identity tag in Package.
appxmanifest.

What is MSIX?
MSIX is a new Windows app package format that can be used for all Windows apps. Please 
refer to the Microsoft documentation to find out more information:

https://learn.microsoft.com/en-us/windows/msix/overview

In the subsequent sections, we will introduce how to generate release packages on each platform. We 
will build Windows and Android packages on Windows and, iOS and macOS packages on macOS. 
We will try to do it using both Visual Studio and the command line.

Publishing to Microsoft Store

We can build a .msix package for Microsoft Store using either Visual Studio or the command line 
on Windows.

In Visual Studio, we need to set the target framework as net6.0-windows10.0.19041.0 and set the 
build type to Release.

After that, we can right-click on the project node and select the Publish… menu item.

https://learn.microsoft.com/en-us/windows/msix/overview


Deploying and Publishing in App Stores338

As we can see in Figure 12.1, a window will appear with Select distribution method on it. We can 
select Microsoft Store under a new app name and click on the Next button.

Figure 12.1: Select distribution method

Before we move to the next step in Figure 12.2, we need an app name ready.

To create a new app name, we need to do it in Microsoft Store at the following URL:

http://developer.microsoft.com/dashboard

http://developer.microsoft.com/dashboard


Preparing application packages for publishing 339

Once we have an app name, we can associate it with our app. You can see how to do this in Figure 12.2.

Figure 12.2: Associating your app with Microsoft Store

After we click the Next button, Visual Studio will search for the app name in Microsoft Store for us. 
The app name created in Microsoft Store is shown in Figure 12.3.



Deploying and Publishing in App Stores340

Figure 12.3: Selecting an app name

After selecting the app name, click on the Next button. A screen to select and configure packages will 
appear, as shown in Figure 12.4.



Preparing application packages for publishing 341

Figure 12.4: Selecting and configuring packages

We can click on the drop-down menu under Publishing profile. A dialog will be shown, as we can 
see in Figure 12.4. After clicking the OK button in the dialog box, it will create a new MSIX publish 
profile. Once we have a publish profile, we can click on the Create button (which will now become 
active) to create the package. It will take a while to finish the build and package creation. Once it 
completes, we can see the following screen, as shown in Figure 12.5, and an MSIX package is now 
ready to be submitted.



Deploying and Publishing in App Stores342

Figure 12.5: An MSIX package

The location of the new package is shown in Figure 12.5. There is an option with which we can verify 
the package by running Windows App Certification Kit.

In the preceding steps, two files (as shown here) relating to the publication of the app will have been 
created in the project folder:

• Package.StoreAssociation.xml – this is a file to associate the app with Microsoft Store

• Properties\PublishProfiles\MSIX-win10-x86.pubxml – this is the publish profile



Preparing application packages for publishing 343

Both files may contain sensitive information so they should not be checked into the Git repository.

To integrate the build process in the CI/CD environment, we need to execute the build process using 
the command line. To build a .msix package using the command line, we can execute the following 
command from the project folder:

dotnet publish PassXYZ.Vault/PassXYZ.Vault.csproj -c Release -f 
net6.0-windows10.0.19041.0

Once we build the .msix package, we can upload it to Microsoft Store in the Packages section of 
the app submission.

Publishing to the Google Play Store

To prepare for the submission in the Google Play Store, you need to create a new app in the Google 
Play Console. To create a new app in the Google Play Console, you need a Google account.

To identify an app, every Android app has a unique application ID or package ID defined in the 
configuration file AndroidManifest.xml. This configuration file is generated by Visual Studio 
from the project file, and it can be found at Platforms/Android/AndroidManifest.xml. 
Let’s review AndroidManifest.xml of our app in Listing 12.1:

<?xml version="1.0" encoding="utf-8"?>

<manifest

  xmlns:android="http://schemas.android.com/apk/res/android"

  package="com.passxyz.vault2"                            ❶

  android:installLocation="auto"

  android:versionCode="1">                                ❷

  <application

android:allowBackup="true"

android:icon="@mipmap/appicon"

android:roundIcon="@mipmap/appicon_round"

android:supportsRtl="true"></application>

  <uses-permission

    android:name="android.permission.ACCESS_NETWORK_STATE" />

  <uses-permission android:name=

    "android.permission.INTERNET" />

</manifest>



Deploying and Publishing in App Stores344

Listing 12.1: AndroidManifest.xml (https://epa.ms/AndroidManifest12-1)

In our app, the application ID is "com.passxyz.vault2" ❶, which is generated from 
ApplicationId, and the version is the value of android:versionCode ❷, which is generated 
from ApplicationVersion.

Here is the declaration of the app identifier and version in the PassXYZ.Vault.csproj project file:

<!-- App Identifier -->

<ApplicationId>com.passxyz.vault2</ApplicationId>

<ApplicationIdGuid>8606B3B5-C03C-41D7-825F-B33718CF791C

  </ApplicationIdGuid>

<!-- Versions -->

<ApplicationDisplayVersion>1.0</ApplicationDisplayVersion>

<ApplicationVersion>1</ApplicationVersion>

To sign an Android package, we need to create a Keystore file. Please refer to the following Android 
document for information on how to create a Keystore file and sign an Android app:
https://developer.android.com/studio/publish/app-signing

Once we have a Keystore file and have prepared the preceding configuration, we need to set the target 
framework as net6.0-android and set the build type as Release in Visual Studio.

We can right-click now the project node and select Publish…. After that, the build will start and we 
can see an archive has been created, as shown in Figure 12.6.

Figure 12.6: Creating an archive for Android

https://developer.android.com/studio/publish/app-signing


Preparing application packages for publishing 345

Once the package is created, we can sign it by clicking the Distribute … button, as shown in Figure 12.6.

Figure 12.7: Selecting a channel

Once we click the Distribute … button, we need to select a distribution channel, as shown in Figure 12.7.

It is possible to sign and submit the package by selecting Google Play, but we will select Ad Hoc to 
sign it. We will submit the signed package to Google Play manually later.

Once we select Ad Hoc, we can see a different screen as shown in Figure 12.8.



Deploying and Publishing in App Stores346

Figure 12.8: Signing Identity using a Keystore file

As shown in Figure 12.8, we can click the + button to add a Keystore file. After that, we can click the 
Save As button to sign the package.

The signed .aab file can be submitted to the Google Play Store in the Google Play Console.

If you don’t have an existing Keystore file, you may want to follow the guide to creating a new one. 
The default location of Keystore files is at %USERPROFILE%\AppData\Local\Xamarin\Mono 
for Android\Keystore\.

To create the package from the command line, we can execute the following command in the project folder:

dotnet publish PassXYZ.Vault/PassXYZ.Vault.csproj -c Release -f 
net6.0-android



Preparing application packages for publishing 347

To learn how to upload a signed Android App Bundle to the Google Play Store, please refer to the 
following Android document:

https://developer.android.com/studio/publish/upload-bundle

Publishing to Apple’s App Store

We can introduce the submission of an iOS or macOS app in the App Store together since they have 
many similarities.

In iOS or macOS apps, bundler identifier and bundler version are used to identify an app. This 
information is stored in the Info.plist configuration file. The bundler identifier is generated 
from ApplicationId and the bundler version is generated from ApplicationVersion in 
the Visual Studio project file.

To sign the package, we need a signing certificate and a provisioning profile. To create a signing 
certificate and a provisioning profile, we can refer to the following document:

https://learn.microsoft.com/en-us/dotnet/maui/ios/deployment/provision

iOS apps can be distributed through the App Store only. The package for the submission is a file with 
the .ipa extension. macOS apps can also be distributed through the App Store, but the package 
itself can be installed directly.

Even though we can do some of the publishing steps in the Windows environment, we still need 
to connect to a network-accessible macOS computer. To reduce the complexity, we use a macOS 
environment for the build of both iOS and macOS apps. Before we build the packages, we need to 
update the Visual Studio project file to configure our own signing certificate and distribution profile:

<PropertyGroup Condition="$(TargetFramework.Contains('-ios')) 
and '$(Configuration)' == 'Release'">

  <RuntimeIdentifier>ios-arm64</RuntimeIdentifier>

  <CodesignKey>iPhone Distribution: Shugao Ye (W9WL9WPD24)

  </CodesignKey>

  <CodesignProvision>passxyz_2022</CodesignProvision>

</PropertyGroup>

<PropertyGroup Condition="$(TargetFramework.Contains('-

  maccatalyst')) and '$(Configuration)' == 'Release'">

  <CodesignEntitlement>Entitlements.plist

  </CodesignEntitlement>

  <CodesignKey>

    3rd Party Mac Developer Application: Shugao Ye

https://developer.android.com/studio/publish/upload-bundle
https://learn.microsoft.com/en-us/dotnet/maui/ios/deployment/provision


Deploying and Publishing in App Stores348

      (W9WL9WPD24)

  </CodesignKey>

  <CodesignProvision>passxyz.maccatalyst</CodesignProvision>

</PropertyGroup>

As we can see, we can use conditional configuration for both iOS and macOS builds. Different signing 
certificates and distribution profiles are used for iOS and macOS.

In Visual Studio for macOS, we can also configure signing certificates and distribution profiles in 
project settings for iOS, as shown in Figure 12.9. This setting is not supported for macOS yet at the 
moment, but you may find it is already available when you read this book.

Figure 12.9: The configuration bundle signing

If we are not sure whether the setting is correct or not, we can verify it using Xcode. We can create 
an app in Xcode using the same "com.passxyz.vault2"  bundler ID as our app. After that, we 
can check the configuration of Signing, as shown in Figure 12.10.



Preparing application packages for publishing 349

Figure 12.10: The iOS signing settings in Xcode

If there is any issue with the signing certificate or provisioning profile, we can see error messages 
reported by Xcode. Once the setting is correct in Xcode, the same setting can be used in Visual Studio 
project without any issues.

With all the configurations ready, we can build the .ipa file in the project folder using the 
following command:

dotnet publish PassXYZ.Vault/PassXYZ.Vault.csproj -c Release -f 
net6.0-ios /p:CreatePackage=true /p:ArchiveOnBuild=True

Once the preceding command executes successfully, an .ipa file is generated. We can submit this 
file to the App Store. There are three methods that can be used to upload a package to the App Store. 
Please refer to the following document to find out more details:

https://help.apple.com/app-store-connect/#/devb1c185036

From the preceding document, we know that we can use Xcode, altool, or Transporter to upload 
a package.

We will use the Transporter app here. After we sign in using the Transporter app, we can upload the 
package to the App Store, as shown in Figure 12.11.

https://help.apple.com/app-store-connect/#/devb1c185036


Deploying and Publishing in App Stores350

Figure 12.11: Uploading a package using the Transporter app

The building and uploading processes of a macOS package are similar to those for an iOS app. There 
are three different frameworks (AppKit, MacCatalyst, and SwiftUI) that can be used to build macOS 
apps. In .NET MAUI, MacCatalyst is used in the platform-specific implementation.

By default, App Sandbox is not enabled in MacCatalyst apps, so we need to enable it. To enable it in 
the macOS app, we need to add an Entitlements.plist file in the build configuration. We can 
review the Entitlements.plist file in Listing 12.2:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

  "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

  <key>com.apple.security.app-sandbox</key>

  <true/>



Preparing application packages for publishing 351

  <key>com.apple.security.files.user-selected.read-only

    </key>

  <true/>

  <key>com.apple.security.network.client</key>

  <true/>

</dict>

</plist>

Listing 12.2: Entitlements.plist (https://epa.ms/Entitlements12-2)

We cannot verify the configuration of the signing certificate and provisioning profile in Visual Studio 
for macOS at the moment, but we can verify it in Xcode, as shown in Figure 12.12.

Figure 12.12: The macOS app’s Signing settings in Xcode

With all configurations ready, we can build the package in our project folder using the following command:

dotnet publish PassXYZ.Vault/PassXYZ.Vault.csproj -c 
Release -f net6.0-maccatalyst  /p:CreatePackage=true 
/p:EnablePackageSigning=true"

After we build the package successfully, we can upload the .pkg file to the App Store using the 
Transporter app, as shown in Figure 12.13. We can see that we have uploaded both iOS and macOS 
packages to the App Store successfully.



Deploying and Publishing in App Stores352

Figure 12.13: Uploading the macOS app using the Transporter app

After we have uploaded packages to Microsoft Store, the Google Play Store, and the App Store, we 
can test the uploaded packages before the final release using the testing tools provided by the stores:

• The App Store – TestFlight can be used to test iOS/macOS apps before the production release

• The Google Play Store – Alpha or Beta testing can be set up before the production release

• Microsoft Store – Package flights can be used on Microsoft Store to test uploaded packages

We have learned the basic steps of how to prepare application packages for supported platforms. With 
all this in mind, we can explore how to set up the automated build of .NET MAUI app in a continuous 
integration and continuous delivery (CI/CD) environment such as GitHub Actions or Azure DevOps.

GitHub Actions
Since our source code is hosted in GitHub, we will use GitHub Actions as an example to introduce 
how to set up CI workflows for .NET MAUI development.



GitHub Actions 353

Understanding GitHub Actions

GitHub Actions is a CI/CD platform that can be used to support the automation of deployment. For 
.NET MAUI app development, our target is to build, test, and deploy our apps to app stores or specified 
publishing channels. In this section, we will focus on CI using GitHub Actions rather than both CI 
and CD. To deploy apps to various stores, there are many account-specific setup steps, please refer to 
the .NET MAUI document for the details:

https://learn.microsoft.com/en-us/dotnet/maui/deployment/

The GitHub Actions workflow is a process to automatically build and deploy the deliverables from a 
project. The workflow usually starts from an event such as a push or pull_request event or when 
an issue is submitted. Once a workflow is triggered, the defined jobs will start to perform certain tasks 
inside a runner. Each job consists of one or more steps that either run a script or an action.

In summary, GitHub Actions include events, runners, jobs/steps, actions, and runners.

Workflows

GitHub Actions workflows are defined by a YAML file in the .github/workflows directory. 
YAML is a superset of JSON and it is a better human-readable language. A repository can have one or 
multiple workflows to perform different jobs. Take a look at Figure 12.14 to understand the workflow 
defined in the PassXYZ.Vault project.

Figure 12.14: The workflow of Windows runner

As we can see in Figure 12.14, this is an example of how workflow performs Android and Windows 
builds. A workflow is triggered by a push or pull_request event, or manually. It runs inside a 
Windows runner to perform the builds. When the workflow is triggered, two jobs, Android Build 
and Windows Build, will be executed. Each job includes four steps to perform the build, as seen in 
Figure 12.14.

https://learn.microsoft.com/en-us/dotnet/maui/deployment/


Deploying and Publishing in App Stores354

In our project, we defined the two following workflows:

• passxyz-ci-macos.yml – This is a workflow to build iOS and macOS on a macOS runner

• passxyz-ci-windows.yml – This is a workflow to build Android and Windows on a 
Windows runner

We can see the YAML files in Listing 12.3 and Listing 12.4:

name: PassXYZ.Vault CI Build (Windows)

on:                                                      ①

  push:                                                  ②

    branches: [ master ]

    paths-ignore:

      - '**/*.md'

      - '**/*.gitignore'

      - '**/*.gitattributes'

  pull_request:                                          ③

    branches: [ master ]

  workflow_dispatch:                                     ④

permissions:

  contents: read

env:

  DOTNET_NOLOGO: true

  DOTNET_SKIP_FIRST_TIME_EXPERIENCE: true

  DOTNET_CLI_TELEMETRY_OPTOUT: true

  DOTNETVERSION: 6.0.400

  PROJECT_NAME: PassXYZ.Vault

jobs:                                                    ⑤

# MAUI Android Build

  build-android:                                         ⑥

    runs-on: windows-2022                                ⑦

    name: Android Build

    steps:                                               ⑧

      - name: Checkout

        uses: actions/checkout@v3                        ⑨

      - name: Restore Dependencies



GitHub Actions 355

        run: dotnet restore ${{env.PROJECT_NAME}}/$

          {{env.PROJECT_NAME}}.csproj

      - name: Build MAUI Android

        run: dotnet publish ${{env.PROJECT_NAME}}/$

          {{env.PROJECT_NAME}}.csproj -c Release -f net6.0-

            android --no-restore

      - name: Upload Android Artifact

        uses: actions/upload-artifact@v3

        with:

          name: passxyz-android-ci-build

          path: ${{env.PROJECT_NAME}}/bin/Release/net6.0-

            android/*Signed.a*

# MAUI Windows Build

  build-windows:

    runs-on: windows-2022

    name: Windows Build

    steps:

      - name: Checkout

        uses: actions/checkout@v3

      - name: Restore Dependencies

        run: dotnet restore ${{env.PROJECT_NAME}}

          /${{env.PROJECT_NAME}}.csproj

      - name: Build MAUI Windows

        run: dotnet publish ${{env.PROJECT_NAME}}/$

          {{env.PROJECT_NAME}}.csproj -c Release -f net6.0-

            windows10.0.19041.0 --no-restore

      - name: Upload Windows Artifact

        uses: actions/upload-artifact@v3

        with:

          name: passxyz-windows-ci-build

          path: ${{env.PROJECT_NAME}}/...

Listing 12.3: passxyz-ci-windows.yml (https://epa.ms/passxyz-ci-win-
dows12-3)

The YAML file in Listing 12.3 is a little long, but it explains what needs to be set up in a workflow. We 
will now analyze it step by step.



Deploying and Publishing in App Stores356

Events

The workflow is triggered by events that are defined after the on: keyword ①. In the preceding 
workflow, we defined the push ②, pull_request ③ and workflow_dispatch ④ events. 
For both push and pull_request, we monitor the events on the master branch. We also ignore 
no build related commits such as markdown files or configuration files. Please refer to the following 
GitHub documentation about events that can be used to trigger workflows for more information:

https://docs.github.com/en/actions/using-workflows/events-that-
trigger-workflows

Jobs

When a workflow is triggered, it starts to execute the defined jobs. Jobs are defined after the jobs: 
⑤ keyword. One or more jobs can be defined in a workflow. They are identified by a job ID, such as 
build-android ⑥. There are two jobs, build-android and build-windows, defined in 
Listing 12.3. Each job can define a name, a runner, and multiple steps.

Runners

A runner is the type of platform that runs the job. In our configuration, both Android and Windows 
jobs are executed using Windows runners. The runner is defined after the runs-on: ⑦ keyword. 
Please refer to GitHub Actions documentation about the configuration of runners. The runner that we 
use is windows-2022, which is the label of the runner image. In the configuration of the windows-
2022 image, Visual Studio 2022 and .NET MAUI are pre-installed so we can run the build without 
the installation of any dependencies. However, in the passxyz-ci-macos.yml workflow, we 
need to install .NET MAUI first before we can start the build.

Steps

Multiple steps can be defined in a job and they are defined after the steps: ⑧ keyword. In both 
Android and Windows builds, there are four steps: checkout, restore dependencies, build, and upload. 
Each step can run a script or an action. In the checkout step, a checkout action is used after the 
uses: ⑨ keyword. An action is a custom application in the GitHub Actions platform to perform a 
complex but frequent repeated task. Using actions, we can reuse code such as a component in object-
oriented programming. To use it, we can just specify the action name with an optional version number. 
In our script, we can specify the checkout action as actions/checkout@v3.

The source code of the checkout action is hosted on GitHub and can be found at the following site:

https://github.com/actions/checkout

https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://github.com/actions/checkout


GitHub Actions 357

In the restore and build steps, we can just run the following dotnet command directly after the 
run: syntax:

dotnet restore ${{env.PROJECT_NAME}}/${{env.PROJECT_NAME}}.
csproj

After the build is completed, we can upload the artifact using another upload-artifact action.

We have introduced the passxyz-ci-windows.yml workflow, which performs Android and 
Windows builds. Let us review the passxyz-ci-macos.yml workflow, which performs iOS and 
macOS builds, in Listing 12.4:

name: PassXYZ.Vault CI Build (MacOS)

on:

  push:

    branches: [ master ]

    paths-ignore:

      - '**/*.md'

      - '**/*.gitignore'

      - '**/*.gitattributes'

  pull_request:

    branches: [ master ]

  workflow_dispatch:

permissions:

  contents: read

env:

  DOTNET_NOLOGO: true

  DOTNET_SKIP_FIRST_TIME_EXPERIENCE: true

  DOTNET_CLI_TELEMETRY_OPTOUT: true

  DOTNETVERSION: 6.0.400

  PROJECT_NAME: PassXYZ.Vault

jobs:

# MAUI iOS Build

  build-ios:

    runs-on: macos-12                                     ❶

    name: iOS Build



Deploying and Publishing in App Stores358

    steps:

      - name: Checkout

        uses: actions/checkout@v3

      - name: Install .NET MAUI                           ❷

        shell: pwsh

        run: |

          & dotnet nuget locals all --clear

          & dotnet workload install maui --source

          https://aka.ms/dotnet6/nuget/index.json --source

            https://api.nuget.org/v3/index.json

          & dotnet workload install android ios maccatalyst

tvos macos maui wasm-tools maui-maccatalyst --source

          https://aka.ms/dotnet6/nuget/index.json --source

            https://api.nuget.org/v3/index.json

      - name: Restore Dependencies

        run: dotnet restore ${{env.PROJECT_NAME}}

          /${{env.PROJECT_NAME}}.csproj

      - name: Build MAUI iOS

        run: dotnet build ${{env.PROJECT_NAME}}

          /${{env.PROJECT_NAME}}.csproj -c Release -f

          net6.0-ios --no-restore /p:buildForSimulator=True

            /p:packageApp=True /p:ArchiveOnBuild=False

      - name: Upload iOS Artifact

        uses: actions/upload-artifact@v3

        with:

          name: passxyz-ios-ci-build

          path: ${{env.PROJECT_NAME}}/bin/Release/net6.0-

           ios/iossimulator-x64/**/*.app

# MAUI MacCatalyst Build

  build-mac:

    runs-on: macos-12

    name: MacCatalyst Build

    steps:

      - name: Checkout



GitHub Actions 359

        uses: actions/checkout@v3

      - name: Install .NET MAUI

        shell: pwsh

        run: |

          & dotnet nuget locals all --clear

          & dotnet workload install maui --source

           https://aka.ms/dotnet6/nuget/index.json --source

             https://api.nuget.org/v3/index.json

          & dotnet workload install android ios maccatalyst

       tvos macos maui wasm-tools maui-maccatalyst --source

          https://aka.ms/dotnet6/nuget/index.json --source

            https://api.nuget.org/v3/index.json

      - name: Restore Dependencies

        run: dotnet restore ${{env.PROJECT_NAME}}

          /${{env.PROJECT_NAME}}.csproj

      - name: Build MAUI MacCatalyst

        run: dotnet publish ${{env.PROJECT_NAME}}

          /${{env.PROJECT_NAME}}.csproj -c Release -f

          net6.0-maccatalyst --no-restore -p:BuildIpa=True

      - name: Upload MacCatalyst Artifact

        uses: actions/upload-artifact@v3

        with:

          name: passxyz-macos-ci-build

          path: ${{env.PROJECT_NAME}}/bin/Release/net6.0-

            maccatalyst/maccatalyst-x64/publish/*.pkg

Listing 12.4: passxyz-ci-macos.yml (https://epa.ms/passxyz-ci-macos12-4)

The workflow of the iOS and macOS build is similar to the workflow of the Android and Windows build. 
The difference is that the macos-12 ❶ runner is used here. Visual Studio for macOS is pre-installed 
in this runner, but .NET MAUI is not installed at the moment. We need to add an extra step to install 
.NET MAUI ❷ before the build. The rest of the steps are similar to a Windows or Android build.



Deploying and Publishing in App Stores360

We introduced the configuration of all builds in GitHub Actions. Let us check the build status on GitHub.

Figure 12.15: The Android and Windows build status

From Figure 12.15, we can see that both Android and Windows builds are completed successfully. 
The build artifacts can be downloaded from GitHub after the build.



GitHub Actions 361

Figure 12.16: The iOS and MacCatalyst build status

In Figure 12.16, we can see that both iOS and MacCatalyst builds are completed successfully.

With the successful builds in GitHub Actions, we have concluded the introduction of packaging our 
app for app store submission and automating build using GitHub Actions.



Deploying and Publishing in App Stores362

Summary
CI/CD are common practices in today’s development process. In this chapter, we introduced how 
to prepare the build and submit packages for various app stores. The process after the submission of 
build packages is not covered since they are platform and account-specific topics.

After we introduce the build process of each platform, we can automate the process in GitHub Actions. 
In the second part of this chapter, we introduced how to set up the build process in GitHub Actions.

With all the skills that you learned from this book, you should be able to develop your own .NET 
MAUI applications and be ready to submit your apps to supported app stores now.



Index

Symbols
.NET

versus Java  5-7
unit test frameworks  304
versus JavaScript  5-7

.NET Generic Host  27

.NET landscape
exploring  7

.NET MAUI  12
architecture  13
ContentPage  118
controls  70
development environment, setting up  15
Flyoutpage  118
improvement  13
installing, on macOS  17, 18, 19
installing, on Windows  16, 17
layouts  71
navigation mechanism  114
selecting, XAML versus Razor  15
TabbedPage  118
used, for developing cross-

platform applications  19
.NET MAUI application startup

platform entry point  156, 157

.NET MAUI Blazor app
migrating to  190, 191
startup code  187-190
versus React Native  182

.NET MAUI Blazor project
creating  182, 183
creating, with Visual Studio on 

Windows  184, 185
generating, with dotnet 

command line  183, 184
running  185, 186

.NET MAUI DI configuration  155-158

.NET MAUI document
implementation, pros and cons  182
reference link  353

.NET MAUI project
app startup and lifecycle management  27-29
creating, with dotnet command  27
creating, with Visual Studio  23-26
setting up  23

.NET Standard  8

A
Ahead-of-Time (AOT)  10
Android build

debugging  44, 45



Index364

Android Studio  182
Apple’s App Store

publishing to  347-52
application packages

preparation, for publishing  336, 337
AppName  236
app, signing

reference link  344
app startup and lifecycle management, 

.NET MAUI project
lifecycle override methods, 

consuming  32-35
states  29, 30
Window lifecycle events, 

subscribing to  30, 31
app, uploading  Play Console

reference link  347
ASP.NET built-in Razor components

used, for validating data  285, 286

B
backend services  4
Base Class Library (BCL)  6
base modal dialog component

creating  241-243
Binding class

reference link  93
Blazor  15, 176

dependency injection  203, 204
MVVM pattern  201-203
using, advantage  201

Blazor components
versus Razor components  177, 178

Blazor Hybrid
Blazor App  181
exploring  179, 180

Blazor Hybrid app  15, 176, 179

Blazorise
reference link  237

Blazor layout components
using  214-217

Blazor Server  176, 177
Blazor WebAssembly (Wasm)  177, 178
BlazorWebView

setup  208, 209
BootstrapBlazor

reference link  237
built-in MS.DI DI service

constructor injection  158, 159
DI configuration  155-158
lifetime management  153, 154
property injection  159, 160
usage  151, 152

bUnit  305

C
C#  176
camel case  235
cascading values and parameters

communicating with  253-255
child content rendering  247-249
class fixtures

used, for sharing context 
between test  312-314

client-side routing  208
BlazorWebView, setup  208, 209
Router, setup  209, 210

collection fixtures
used, for sharing context 

between test  315-317
Common Language Infrastructure (CLI)  7
Common Language Runtime (CLR)  6, 66
Common Type System (CTS)  6



Index 365

component parameters
ConfirmDialog  246
defining  244
ModalDialog  245

constructor
used, for sharing context 

between test  310-312
context menu

Dropdown component, creating  277-281
continuous integration and continuous 

delivery (CI/CD)  352
controls, .NET MAUI  70

Editor  70
Entry  71
Image  70
Label  70

Create, Read, Update, Delete, and List 
(CRUDL) operations  135, 136

cross-platform applications
developing, with .NET MAUI  19

cross-platform technologies  4, 5
backend services  4
languages and frameworks versus 

Microsoft solutions  5
native applications  4
overview  3
web application  4

CRUD operations
fields  266-271
implementing  262
item, adding  262, 263
item, deleting  263-266
item, editing  263-266

CRUD operations, on database
item, adding  163-168
item, deleting  168-171
item, editing  168- 171
performing  163

CSS styles  204-206
custom font icons

displaying  40-43
setting  38
setup  38, 39
using, advantages  38

D
database

connecting to  160-162
CRUD operations, performing  163
initialization  162

data binding  90-94, 243
BindingContext property  93
collections  104-111
components  92
notifications, modifying in 

viewmodels  96-98
properties  90
SetBinding method  93

data binding, modes  94, 95
OneTime binding  95
OneWay binding  95
OneWayToSource binding  95
TwoWay binding  95

data model
code efficiency, improving  136
Command interface  140-142
enhanced design  134
improving  98, 99, 133
KPCLib  99, 100
login process, improving  137-139
MVVM pattern  134, 135
password entries and groups, processing 

with IDataStore interface  135
PassXYZLib  102
services  134, 135



Index366

updating  103
use cases  133
users, processing with IUserService 

interface  136
data service

improving  98, 99
updating  103, 104

Data Transfer Objects (DTOs)  88
data validation, with ASP.NET 

built-in Razor components
built-in components, using  286, 287
EditForm component, using  287
EditFormDialog component, 

creating  288-299
dependency injection (DI)  145, 149

built-in MS.DI DI service, using  151, 152
DependencyService  149, 150
in Blazor  203, 204
using  149

Dependency Inversion Principle 
(DIP)  104, 145, 147

DependencyService  149
KPCLib package  150
PassXYZLib package  150
PassXYZ.Vault  150
registration  150
resolution  150

design principles  146
Don’t Repeat Yourself (DRY)  146
Keep It Simple, Stupid (KISS)  146
SOLID design principles  147
types, exploring  146
using  147, 148
You Aren’t Gonna Need It (YAGNI)  147

Document Object Model (DOM)  176
Don’t Repeat Yourself (DRY)  146
dotnet command

.NET MAUI project, creating with  27

dotnet command line
used, for generating .NET MAUI 

Blazor project  183, 184
Dropdown component

creating, for context menu  277-281

E
EditForm component

using  287, 288
EditFormDialog component

creating  288-299
Extensible Application Markup 

Language (XAML)  11, 15

F
flyout  119

items  120
menu items  120-122

G
GitHub Actions  352

events  356
jobs  356
runner  356
steps   356-361
workflows  353, 355

Google Play Store
publishing to  343-347

H
Havit.Blazor

reference link  237
hierarchical navigation  114



Index 367

I
IDataStore interface  135

test cases, creating to test  307-309
INavigation interface  114
Interface Segregation Principle (ISP)  147
Intermediate Language (IL)  177
iOS

debugging  45, 46

J
Java

versus JavaScript  5-7
versus .NET  5, 6, 7

Java Virtual Machine (JVM)  5
JUnit  304
Just-in-Time (JIT)  10

K
KeePass  19
KeePass database format, use cases

AboutPage  99
ItemDetailPage  99
ItemsPage  99
LoginPage  98
NewItemPage  99

KeePassLib  99
Keep It Simple, Stupid (KISS)  146
KPCLib  99

L
languages and frameworks

versus Microsoft solutions  5
layout

applying, to component  218, 219

nesting  220
layouts, .NET MAUI  71

AbsoluteLayout  74
FlexLayout  73
Grid  72
StackLayout  71, 72

lifetime management, MS.DI  153, 154
Liskov Substitution Principle (LSP)  147
list view

implementing  222-228
ListView component

creating  282-284
using  284, 285

localization  81
.resx file, creating  81, 82
of text  83-85

M
macOS

.NET MAUI, installing  17-19
debugging  45, 46

MainLayout  218
master-detail UI design

ItemDetailPage  74-76
ItemsPage  76-80
markup extensions  67, 68
navigation  74
side-by-side approach  69
stacked approach  69, 70

MauiApp  157
MauiAppBuilder  157
MauiProgram  157
Microsoft solutions

versus languages and frameworks  5
Microsoft Store

publishing to  337-343
mixed-mode AOT compilation  177



Index368

mobile development
Xamarin, using  9, 10

modal navigation  114
Model-View-Controller (MVC) pattern  88

versus Model-View-ViewModel 
(MVVM) pattern  89

Model-View-Presenter (MVP)  88
Model-View-Update (MVU)  13
Model-View-ViewModel (MVVM) 

pattern  87, 88
in Blazor  201, 202, 203
in PassXYZ.Vault  89, 90
versus Model-View-Controller 

(MVC) pattern  89
Model-View-ViewModel project

scaffolding  47, 48
Shell template, reusing from 

Xamarin.Forms  49-54
Visual Studio project template  54-56

Mono  7, 8
MS.DI DI service. See  built-in 

MS.DI DI service
MSIX

reference link  337

N
native application  4
Navbar component

creating  274-277
navigation elements

Add button, adding  228-230
Back button, adding  228-230
implementing  220, 221
list view, implementing  222-228

navigation implementation
hierarchical navigation  114

INavigation interface  114
modal navigation  114
NavigationPage  115
navigation stack, manipulating  116
navigation stack, using  115, 116

NavigationManager
navigating with  213, 214

NavigationPage  115
navigation stack

manipulating  116
page, inserting  116
page, removing  117

nested component  246, 247
child content rendering  247-249

NET Framework  7
NuGet package  237
NUnit   304

O
object-oriented programming (OOP)  146
OnAfterRenderAsync method  258, 260
OnAfterRender method  258-261
OnInitializedAsync method  257
OnInitialized method  257
OnParametersSetAsync method  257
OnParametersSet method  257
Open/Closed Principle (OCP)  147
Open Iconic icons  226

P
PageLayout  220
pascal case  235
password database  160
password manager app

building  19
PassXYZLib  102



Index 369

PassXYZ.Vault  19
Plain Old CLR Objects (POCOs)  88
pop action  115
portable class libraries (PCLs)  8
Progressive Web App (PWA)   178
publishing

preparation  336, 337
push action  115
PwEntry

abstracting  101
properties  101

PwGroup
abstracting  101
properties  101

R
Razor class library  237

creating  237-239
static assets, using  239

Razor component lifecycle  255, 256
methods  256
OnAfterRenderAsync method  258-260
OnAfterRender method  258-261
OnInitializedAsync method  257
OnInitialized method  257
OnParametersSetAsync method  257
OnParametersSet method  257
SetParametersAsync method  256
ShouldRender method  258

Razor components  177,  234, 235
creating  194, 274
inheritance  236
using, to redesign login page  194-201
versus Blazor components  177, 178

Razor component, with bUnit
project configuration, modifying  318
Razor pages, testing  327-332

RenderFragment delegate, using  323-326
test case, creating  319, 320
test cases, creating in Razor files  320-323
testing  317

Razor files
test cases, creating  320-323

Razor Syntax  191
code block  191
directive attributes  193
directives  193
explicit Razor expressions  192
expression, encoding  192
implicit Razor expressions  191

Razor templates  320, 322
React Native

cons  182
platform-specific implementation  181, 182
pros  182
versus .NET MAUI Blazor  182

remote procedure calls (RPCs)  176
RenderFragment delegate

using  323-326
resources configuration  36

app icon  37
custom font icons, setting  38
splash screen  37

reusable Razor components
base modal dialog component, 

creating  241-243
cascading values and parameters, 

communicating with  253-255
component parameters, defining  244
creating  239-241
data binding  243
nested component  246, 247
two-way data binding  250

route parameters
using, to pass data  211, 213



Index370

Router
setup  209, 210

routes
defining  210, 211

S
ServiceCollection configuration

AddScoped method  153
AddSingleton method  153
AddTransient method  153

SetParametersAsync method  256, 260
Shell

features  118
flyout  119
tabs  122
using  117, 118

Shell navigation  125
absolute routes, registering  125
data, passing to pages  127-132
relative routes, registering  125-127

ShouldRender method  258
SignalR  176
single-page application (SPA)  4
Single Responsibility Principle (SRP)  147
snake case  235
SOLID design principles  147

Dependency Inversion Principle (DIP)  147
Interface Segregation Principle (ISP)  147
Liskov Substitution Principle (LSP)  147
Open/Closed Principle (OCP)  147
Single Responsibility Principle (SRP)  147

StackLayout  71, 72
HorizontalStackLayout  72
VerticalStackLayout  72

static assets
using, in Razor class library  239

T
tabs  122

creating  124
using  122, 123

templated components
using  281, 282

TestFlight  352
title bar

UI elements  229
two-way data binding  250

component parameters, binding 
with  250-253

U
unit testing, in .NET  304

context, sharing between tests  309
context, sharing with class fixtures  312-314
context, sharing with collection 

fixtures  315-317
context, sharing with constructor  310- 312
test cases, creating to test IDataStore 

interface  307-309
unit test project, setting up  305-307

UpdateFieldAsync() event handler
key parameter  270
value parameter  270

user interface design
comparing, on platforms  11, 12

V
Visual Studio

.NET MAUI project, creating with  23-26
used, for creating .NET MAUI Blazor 

project on Windows  184, 185
Visual Studio Community 

download link  16



Index 371

W
web application  4
WebAssembly (Wasm)  178
Windows

.NET MAUI Blazor project, creating 
with Visual Studio   184, 185

.NET MAUI, installing  16, 17
Windows build

debugging  44
Windows Runtime (WinRT)  8

X
Xamarin

using, for mobile development  9, 10
Xamarin.Essentials  10

examples of functionalities  11
Xamarin.Forms  10

features  12
Shell template, reusing from  49-54

XAML  191
markup extensions  66

XAML page
creating  58, 59

XAML syntax  60
attribute syntax  62
element syntax  60, 61
XAML namespaces  62-66
XML namespaces  62-66

Xcode  182, 348
Ximian  7
xUnit  304

Y
You Aren’t Gonna Need It (YAGNI)  147





Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packt.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of 
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.



Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

  

Enterprise Application Development with C# 10 and .NET 6

Suneel Kumar Kunani | Ravindra Akella | Arun Kumar Tamirisa | Bhupesh Guptha Muthiyalu

ISBN:  978-1-80323-297-3

• Design enterprise apps by making the most of the latest features of .NET 6

• Discover different layers of an app, such as the data layer, API layer, and web layer

• Explore end-to-end architecture by implementing an enterprise web app using .NET and C# 
10 and deploying it on Azure

• Focus on the core concepts of web application development and implement them in .NET 6

https://www.packtpub.com/product/enterprise-application-development-with-c-10-and-net-6-second-edition/9781803232973
https://www.packtpub.com/product/enterprise-application-development-with-c-10-and-net-6-second-edition/9781803232973


375Other Books You May Enjoy

High-Performance Programming in C# and .NET

Jason Alls

ISBN:  978-1-80056-471-8

• Use correct types and collections to enhance application performance

• Profile, benchmark, and identify performance issues with the codebase

• Explore how to best perform queries on LINQ to improve an application’s performance

• Effectively utilize a number of CPUs and cores through asynchronous programming

• Build responsive user interfaces with WinForms, WPF, MAUI, and WinUI.

https://www.packtpub.com/product/high-performance-programming-in-c-and-net/9781800564718
https://www.packtpub.com/product/high-performance-programming-in-c-and-net/9781800564718


376

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.



377

Hi!

I am Roger Ye, author of .NET MAUI Cross-Platform Application Development. I really hope you enjoyed 
reading this book and found it useful for increasing your productivity and efficiency.

It would really help me (and other potential readers!) if you could leave a review on Amazon sharing 
your thoughts on this book. 

Go to the link below to leave your review:

https://packt.link/r/180056922X

Your review will help us to understand what’s worked well in this book, and what could be improved 
upon for future editions, so it really is appreciated.

Best wishes

 

https://packt.link/r/180056922X


378

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? 
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781800569225

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://download.packt.com/free-ebook/9781800569225



	Cover
	Title Page
	Copyright and credits
	Contributors
	Table of Contents
	Preface
	Part 1: 
Exploring .NET MAUI
	Chapter 1: Getting Started with .NET MAUI
	An overview of cross-platform technologies
	Native applications
	Web applications
	Backend services
	Cross-platform technologies
	A comparison of .NET, Java, and JavaScript

	Exploring the .NET landscape
	.NET Framework
	Mono
	.NET Core
	.NET Standard and portable class libraries

	Using Xamarin for mobile development
	Xamarin.Forms
	Xamarin.Essentials

	Moving to .NET MAUI
	.NET MAUI Blazor apps
	Choosing XAML versus Razor in .NET MAUI

	Development environment setup
	Installing .NET MAUI on Windows
	Installing .NET MAUI on macOS

	What you will learn in this book
	The app that we will build in this book
	Summary
	Further reading

	Chapter 2: Building Our First .NET 
MAUI App
	Technical requirements
	Managing the source code in this book
	Setting up a new .NET MAUI project
	Creating a new project using Visual Studio
	Creating a new project using the dotnet command

	App startup and lifecycle
	Lifecycle management

	Configuring the resources
	App icon
	Splash screen
	Setting custom font icons

	Building and debugging
	Windows
	Android
	iOS and macOS

	Scaffolding a Model-View-ViewModel project
	Migrating and reusing a Shell template from Xamarin.Forms
	Visual Studio project template

	Summary

	Chapter 3: User Interface Design 
with XAML
	Technical requirements
	Creating a XAML page
	XAML syntax
	Element
	Attribute
	XML namespaces and XAML namespaces

	XAML markup extensions
	Master-detail UI design
	Side-by-side
	Stacked
	Controls in .NET MAUI
	Layouts in .NET MAUI
	Navigation in the master-detail UI design

	Supporting multiple languages – localization
	Creating a .resx file
	Localizing text

	Summary
	Further reading

	Chapter 4: Exploring MVVM and 
Data Binding
	Technical requirements
	Understanding MVVM and MVC
	MVVM in PassXYZ.Vault

	Data binding
	Binding mode
	Changing notifications in viewmodels

	Improving the data model and service
	KPCLib
	PassXYZLib
	Updating the model
	Updating the service

	Binding to collections
	Summary
	Further reading

	Chapter 5: Navigation using .NET MAUI Shell and NavigationPage
	Technical requirements
	Implementing navigation
	INavigation interface and NavigationPage
	Using the navigation stack
	Manipulating the navigation stack

	Using Shell
	Flyout
	Tabs
	Shell navigation

	Improving our model
	Understanding the data model and its services
	Improving the login process
	The Command interface

	Summary

	Chapter 6: Introducing Dependency Injection and Platform-Specific Services
	Technical requirements
	A quick review of design principles
	Exploring types of design principles
	Using design principles

	Using DI
	Dependency Service
	Using built-in MS.DI DI service

	Connecting to the database
	Initializing the database
	Performing CRUD operations

	Summary
	Further reading

	Part 2: 
Implementing .NET 
MAUI Blazor
	Chapter 7: Introducing Blazor Hybrid 
App Development
	Technical requirements
	What is Blazor?
	Learning about Blazor Server
	Understanding Blazor Wasm
	Exploring Blazor Hybrid

	Creating a new .NET MAUI Blazor project
	Generating a .NET MAUI Blazor project with the dotnet command line
	Creating a .NET MAUI Blazor project using Visual Studio on Windows
	Running the new project
	The startup code of the .NET MAUI Blazor app

	Migrating to a .NET MAUI Blazor app
	Understanding Razor syntax
	Code blocks in Razor
	Implicit Razor expressions
	Explicit Razor expressions
	Expression encoding
	Directives
	Directive attributes

	Creating a Razor component
	Redesigning the login page using a Razor component
	The Model-View-ViewModel (MVVM) pattern in Blazor
	Dependency injection in Blazor
	CSS isolation

	Summary

	Chapter 8: Understanding the 
Blazor Layout and Routing
	Technical requirements
	Understanding client-side routing
	Setup of BlazorWebView
	Setup of Router
	Defining routes

	Using Blazor layout components
	Applying a layout to a component
	Nesting layouts

	Implementing navigation elements
	Implementing a list view
	Adding a new item and navigating back

	Summary

	Chapter 9: Implementing Blazor Components
	Technical requirements
	Understanding Razor components
	Inheritance

	Creating a Razor class library
	Using static assets in the Razor class library

	Creating reusable Razor components
	Creating a base modal dialog component
	Data binding
	Component parameters
	Nested components
	Two-way data binding
	Communicating with cascading values and parameters

	Understanding the component lifecycle
	SetParametersAsync
	OnInitialized and OnInitializedAsync
	OnParametersSet and OnParametersSetAsync
	ShouldRender
	OnAfterRender and OnAfterRenderAsync

	Implementing CRUD operations
	CRUD operations of items
	CRUD operations of fields

	Summary

	Chapter 10: Advanced Topics in Creating Razor Components
	Technical requirements
	Creating more Razor components
	Creating the Navbar component
	Creating a Dropdown component for the context menu

	Using templated components
	Creating a ListView component
	Using the ListView component

	Built-in components and validation
	Using built-in components
	Using the EditForm component
	Creating an EditFormDialog component

	Summary
	Further reading

	Part 3: 
Testing and Deployment
	Chapter 11: Developing Unit Tests
	Technical requirements
	Unit testing in .NET
	Setting up the unit test project
	Creating test cases to test the IDataStore interface
	Sharing context between tests

	Razor component testing using bUnit
	Changing project configuration for bUnit
	Creating a bUnit test case
	Creating test cases in Razor files
	Using the RenderFragment delegate
	Testing Razor pages

	Summary
	Further reading

	Chapter 12: Deploying and Publishing 
in App Stores
	Technical requirements
	Preparing application packages for publishing
	What to prepare for publishing
	Publishing to Microsoft Store
	Publishing to the Google Play Store
	Publishing to Apple’s App Store

	GitHub Actions
	Understanding GitHub Actions

	Summary

	Index
	Other Books You May Enjoy



