


About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for
EPUB	and	its	many	features	varies	across	reading	devices	and	applications.	Use
your	device	or	app	settings	to	customize	the	presentation	to	your	liking.	Settings
that	you	can	customize	often	include	font,	font	size,	single	or	double	column,
landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For
additional	information	about	the	settings	and	features	on	your	reading	device	or
app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize
the	presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape
mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting
code	and	configurations	in	the	reflowable	text	format,	we	have	included	images
of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,	where
the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you
will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-
fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the	Back	button
on	your	device	or	app.





	

Clean	Architecture
A	CRAFTSMAN’S	GUIDE	TO	SOFTWARE	STRUCTURE

AND	DESIGN

	

Robert	C.	Martin	

Boston	•	Columbus	•	Indianapolis	•	New	York	•	San	Francisco	•	Amsterdam	•
Cape	Town	Dubai	•	London	•	Madrid	•	Milan	•	Munich	•	Paris	•	Montreal	•
Toronto	•	Delhi	•	Mexico	City	São	Paulo	•	Sydney	•	Hong	Kong	•	Seoul	•

Singapore	•	Taipei	•	Tokyo



Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but
make	no	expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility
for	errors	or	omissions.	No	liability	is	assumed	for	incidental	or	consequential
damages	in	connection	with	or	arising	out	of	the	use	of	the	information	or
programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales
opportunities	(which	may	include	electronic	versions;	custom	cover	designs;	and
content	particular	to	your	business,	training	goals,	marketing	focus,	or	branding
interests),	please	contact	our	corporate	sales	department	at
corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact
governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearson.com.

Visit	us	on	the	Web:	informit.com

Library	of	Congress	Control	Number:	2017945537

Copyright	©	2018	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is
protected	by	copyright,	and	permission	must	be	obtained	from	the	publisher
prior	to	any	prohibited	reproduction,	storage	in	a	retrieval	system,	or
transmission	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	likewise.	For	information	regarding	permissions,
request	forms	and	the	appropriate	contacts	within	the	Pearson	Education	Global
Rights	&	Permissions	Department,	please	visit
www.pearsoned.com/permissions/.

ISBN-13:	978-0-13-449416-6
ISBN-10:	0-13-449416-4

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearsoned.com/permissions/


1	17



This	book	is	dedicated	to	my	lovely	wife,	my	four	spectacular	children,	and	their
families,	including	my	quiver	full	of	five	grandchildren—who	are	the	dessert	of

my	life.



CONTENTS

Foreword
Preface
Acknowledgments
About	the	Author

PART	I	Introduction

Chapter	1	What	Is	Design	and	Architecture?
The	Goal?
Case	Study
Conclusion

Chapter	2	A	Tale	of	Two	Values
Behavior
Architecture
The	Greater	Value
Eisenhower’s	Matrix
Fight	for	the	Architecture

PART	II	Starting	with	the	Bricks:	Programming	Paradigms

Chapter	3	Paradigm	Overview
Structured	Programming
Object-Oriented	Programming
Functional	Programming
Food	for	Thought



Conclusion

Chapter	4	Structured	Programming
Proof
A	Harmful	Proclamation
Functional	Decomposition
No	Formal	Proofs
Science	to	the	Rescue
Tests
Conclusion

Chapter	5	Object-Oriented	Programming
Encapsulation?
Inheritance?
Polymorphism?
Conclusion

Chapter	6	Functional	Programming
Squares	of	Integers
Immutability	and	Architecture
Segregation	of	Mutability
Event	Sourcing
Conclusion

PART	III	Design	Principles

Chapter	7	SRP:	The	Single	Responsibility	Principle
Symptom	1:	Accidental	Duplication
Symptom	2:	Merges
Solutions
Conclusion

Chapter	8	OCP:	The	Open-Closed	Principle
A	Thought	Experiment
Directional	Control
Information	Hiding
Conclusion



Chapter	9	LSP:	The	Liskov	Substitution	Principle
Guiding	the	Use	of	Inheritance
The	Square/Rectangle	Problem
LSP	and	Architecture
Example	LSP	Violation
Conclusion

Chapter	10	ISP:	The	Interface	Segregation	Principle
ISP	and	Language
ISP	and	Architecture
Conclusion

Chapter	11	DIP:	The	Dependency	Inversion	Principle
Stable	Abstractions
Factories
Concrete	Components
Conclusion

PART	IV	Component	Principles

Chapter	12	Components
A	Brief	History	of	Components
Relocatability
Linkers
Conclusion

Chapter	13	Component	Cohesion
The	Reuse/Release	Equivalence	Principle
The	Common	Closure	Principle
The	Common	Reuse	Principle
The	Tension	Diagram	for	Component	Cohesion
Conclusion

Chapter	14	Component	Coupling
The	Acyclic	Dependencies	Principle
Top-Down	Design
The	Stable	Dependencies	Principle



The	Stable	Abstractions	Principle
Conclusion

PART	V	Architecture

Chapter	15	What	Is	Architecture?
Development
Deployment
Operation
Maintenance
Keeping	Options	Open
Device	Independence
Junk	Mail
Physical	Addressing
Conclusion

Chapter	16	Independence
Use	Cases
Operation
Development
Deployment
Leaving	Options	Open
Decoupling	Layers
Decoupling	Use	Cases
Decoupling	Mode
Independent	Develop-ability
Independent	Deployability
Duplication
Decoupling	Modes	(Again)
Conclusion

Chapter	17	Boundaries:	Drawing	Lines
A	Couple	of	Sad	Stories
FitNesse
Which	Lines	Do	You	Draw,	and	When	Do	You	Draw	Them?
What	About	Input	and	Output?
Plugin	Architecture
The	Plugin	Argument



Conclusion

Chapter	18	Boundary	Anatomy
Boundary	Crossing
The	Dreaded	Monolith
Deployment	Components
Threads
Local	Processes
Services
Conclusion

Chapter	19	Policy	and	Level
Level
Conclusion

Chapter	20	Business	Rules
Entities
Use	Cases
Request	and	Response	Models
Conclusion

Chapter	21	Screaming	Architecture
The	Theme	of	an	Architecture
The	Purpose	of	an	Architecture
But	What	About	the	Web?
Frameworks	Are	Tools,	Not	Ways	of	Life
Testable	Architectures
Conclusion

Chapter	22	The	Clean	Architecture
The	Dependency	Rule
A	Typical	Scenario
Conclusion

Chapter	23	Presenters	and	Humble	Objects
The	Humble	Object	Pattern
Presenters	and	Views



Testing	and	Architecture
Database	Gateways
Data	Mappers
Service	Listeners
Conclusion

Chapter	24	Partial	Boundaries
Skip	the	Last	Step
One-Dimensional	Boundaries
Facades
Conclusion

Chapter	25	Layers	and	Boundaries
Hunt	the	Wumpus
Clean	Architecture?
Crossing	the	Streams
Splitting	the	Streams
Conclusion

Chapter	26	The	Main	Component
The	Ultimate	Detail
Conclusion

Chapter	27	Services:	Great	and	Small
Service	Architecture?
Service	Benefits?
The	Kitty	Problem
Objects	to	the	Rescue
Component-Based	Services
Cross-Cutting	Concerns
Conclusion

Chapter	28	The	Test	Boundary
Tests	as	System	Components
Design	for	Testability
The	Testing	API
Conclusion



Chapter	29	Clean	Embedded	Architecture
App-titude	Test
The	Target-Hardware	Bottleneck
Conclusion

PART	VI	Details

Chapter	30	The	Database	Is	a	Detail
Relational	Databases
Why	Are	Database	Systems	So	Prevalent?
What	If	There	Were	No	Disk?
Details
But	What	about	Performance?
Anecdote
Conclusion

Chapter	31	The	Web	Is	a	Detail
The	Endless	Pendulum
The	Upshot
Conclusion

Chapter	32	Frameworks	Are	Details
Framework	Authors
Asymmetric	Marriage
The	Risks
The	Solution
I	Now	Pronounce	You	…
Conclusion

Chapter	33	Case	Study:	Video	Sales
The	Product
Use	Case	Analysis
Component	Architecture
Dependency	Management
Conclusion

Chapter	34	The	Missing	Chapter



Package	by	Layer
Package	by	Feature
Ports	and	Adapters
Package	by	Component
The	Devil	Is	in	the	Implementation	Details
Organization	versus	Encapsulation
Other	Decoupling	Modes
Conclusion:	The	Missing	Advice

PART	VII	Appendix

Appendix	A	Architecture	Archaeology

Index



FOREWORD

What	do	we	talk	about	when	we	talk	about	architecture?

As	with	any	metaphor,	describing	software	through	the	lens	of	architecture	can
hide	as	much	as	it	can	reveal.	It	can	both	promise	more	than	it	can	deliver	and
deliver	more	than	it	promises.

The	obvious	appeal	of	architecture	is	structure,	and	structure	is	something	that
dominates	the	paradigms	and	discussions	of	software	development—
components,	classes,	functions,	modules,	layers,	and	services,	micro	or	macro.
But	the	gross	structure	of	so	many	software	systems	often	defies	either	belief	or
understanding—Enterprise	Soviet	schemes	destined	for	legacy,	improbable
Jenga	towers	reaching	toward	the	cloud,	archaeological	layers	buried	in	a	big-
ball-of-mud	slide.	It’s	not	obvious	that	software	structure	obeys	our	intuition	the
way	building	structure	does.

Buildings	have	an	obvious	physical	structure,	whether	rooted	in	stone	or
concrete,	whether	arching	high	or	sprawling	wide,	whether	large	or	small,
whether	magnificent	or	mundane.	Their	structures	have	little	choice	but	to
respect	the	physics	of	gravity	and	their	materials.	On	the	other	hand—except	in
its	sense	of	seriousness—software	has	little	time	for	gravity.	And	what	is
software	made	of?	Unlike	buildings,	which	may	be	made	of	bricks,	concrete,
wood,	steel,	and	glass,	software	is	made	of	software.	Large	software	constructs
are	made	from	smaller	software	components,	which	are	in	turn	made	of	smaller
software	components	still,	and	so	on.	It’s	coding	turtles	all	the	way	down.

When	we	talk	about	software	architecture,	software	is	recursive	and	fractal	in
nature,	etched	and	sketched	in	code.	Everything	is	details.	Interlocking	levels	of



detail	also	contribute	to	a	building’s	architecture,	but	it	doesn’t	make	sense	to
talk	about	physical	scale	in	software.	Software	has	structure—many	structures
and	many	kinds	of	structures—but	its	variety	eclipses	the	range	of	physical
structure	found	in	buildings.	You	can	even	argue	quite	convincingly	that	there	is
more	design	activity	and	focus	in	software	than	in	building	architecture—in	this
sense,	it’s	not	unreasonable	to	consider	software	architecture	more	architectural
than	building	architecture!

But	physical	scale	is	something	humans	understand	and	look	for	in	the	world.
Although	appealing	and	visually	obvious,	the	boxes	on	a	PowerPoint	diagram
are	not	a	software	system’s	architecture.	There’s	no	doubt	they	represent	a
particular	view	of	an	architecture,	but	to	mistake	boxes	for	the	big	picture—for
the	architecture—is	to	miss	the	big	picture	and	the	architecture:	Software
architecture	doesn’t	look	like	anything.	A	particular	visualization	is	a	choice,	not
a	given.	It	is	a	choice	founded	on	a	further	set	of	choices:	what	to	include;	what
to	exclude;	what	to	emphasize	by	shape	or	color;	what	to	de-emphasize	through
uniformity	or	omission.	There	is	nothing	natural	or	intrinsic	about	one	view	over
another.

Although	it	might	not	make	sense	to	talk	about	physics	and	physical	scale	in
software	architecture,	we	do	appreciate	and	care	about	certain	physical
constraints.	Processor	speed	and	network	bandwidth	can	deliver	a	harsh	verdict
on	a	system’s	performance.	Memory	and	storage	can	limit	the	ambitions	of	any
code	base.	Software	may	be	such	stuff	as	dreams	are	made	on,	but	it	runs	in	the
physical	world.

This	is	the	monstrosity	in	love,	lady,	that	the	will	is	infinite,	and	the	execution	confined;	that	the
desire	is	boundless,	and	the	act	a	slave	to	limit.

—William	Shakespeare

The	physical	world	is	where	we	and	our	companies	and	our	economies	live.	This
gives	us	another	calibration	we	can	understand	software	architecture	by,	other
less	physical	forces	and	quantities	through	which	we	can	talk	and	reason.

Architecture	represents	the	significant	design	decisions	that	shape	a	system,	where	significant	is
measured	by	cost	of	change.

—Grady	Booch

Time,	money,	and	effort	give	us	a	sense	of	scale	to	sort	between	the	large	and	the
small,	to	distinguish	the	architectural	stuff	from	the	rest.	This	measure	also	tells
us	how	we	can	determine	whether	an	architecture	is	good	or	not:	Not	only	does	a
good	architecture	meet	the	needs	of	its	users,	developers,	and	owners	at	a	given



point	in	time,	but	it	also	meets	them	over	time.
If	you	think	good	architecture	is	expensive,	try	bad	architecture.

—Brian	Foote	and	Joseph	Yoder

The	kinds	of	changes	a	system’s	development	typically	experiences	should	not
be	the	changes	that	are	costly,	that	are	hard	to	make,	that	take	managed	projects
of	their	own	rather	than	being	folded	into	the	daily	and	weekly	flow	of	work.

That	point	leads	us	to	a	not-so-small	physics-related	problem:	time	travel.	How
do	we	know	what	those	typical	changes	will	be	so	that	we	can	shape	those
significant	decisions	around	them?	How	do	we	reduce	future	development	effort
and	cost	without	crystal	balls	and	time	machines?

Architecture	is	the	decisions	that	you	wish	you	could	get	right	early	in	a	project,	but	that	you	are
not	necessarily	more	likely	to	get	them	right	than	any	other.

—Ralph	Johnson

Understanding	the	past	is	hard	enough	as	it	is;	our	grasp	of	the	present	is
slippery	at	best;	predicting	the	future	is	nontrivial.

This	is	where	the	road	forks	many	ways.

Down	the	darkest	path	comes	the	idea	that	strong	and	stable	architecture	comes
from	authority	and	rigidity.	If	change	is	expensive,	change	is	eliminated—its
causes	subdued	or	headed	off	into	a	bureaucratic	ditch.	The	architect’s	mandate
is	total	and	totalitarian,	with	the	architecture	becoming	a	dystopia	for	its
developers	and	a	constant	source	of	frustration	for	all.

Down	another	path	comes	a	strong	smell	of	speculative	generality.	A	route	filled
with	hard-coded	guesswork,	countless	parameters,	tombs	of	dead	code,	and	more
accidental	complexity	than	you	can	shake	a	maintenance	budget	at.

The	path	we	are	most	interested	is	the	cleanest	one.	It	recognizes	the	softness	of
software	and	aims	to	preserve	it	as	a	first-class	property	of	the	system.	It
recognizes	that	we	operate	with	incomplete	knowledge,	but	it	also	understands
that,	as	humans,	operating	with	incomplete	knowledge	is	something	we	do,
something	we’re	good	at.	It	plays	more	to	our	strengths	than	to	our	weaknesses.
We	create	things	and	we	discover	things.	We	ask	questions	and	we	run
experiments.	A	good	architecture	comes	from	understanding	it	more	as	a	journey
than	as	a	destination,	more	as	an	ongoing	process	of	enquiry	than	as	a	frozen
artifact.



Architecture	is	a	hypothesis,	that	needs	to	be	proven	by	implementation	and	measurement.
—Tom	Gilb

To	walk	this	path	requires	care	and	attention,	thought	and	observation,	practice
and	principle.	This	might	at	first	sound	slow,	but	it’s	all	in	the	way	that	you	walk.

The	only	way	to	go	fast,	is	to	go	well.
—Robert	C.	Martin

Enjoy	the	journey.
—Kevlin	Henney
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PREFACE

The	title	of	this	book	is	Clean	Architecture.	That’s	an	audacious	name.	Some
would	even	call	it	arrogant.	So	why	did	I	choose	that	title,	and	why	did	I	write
this	book?

I	wrote	my	very	first	line	of	code	in	1964,	at	the	age	of	12.	The	year	is	now
2016,	so	I	have	been	writing	code	for	more	than	half	a	century.	In	that	time,	I
have	learned	a	few	things	about	how	to	structure	software	systems—things	that	I
believe	others	would	likely	find	valuable.

I	learned	these	things	by	building	many	systems,	both	large	and	small.	I	have
built	small	embedded	systems	and	large	batch	processing	systems.	I	have	built
real-time	systems	and	web	systems.	I	have	built	console	apps,	GUI	apps,	process
control	apps,	games,	accounting	systems,	telecommunications	systems,	design
tools,	drawing	apps,	and	many,	many	others.

I	have	built	single-threaded	apps,	multithreaded	apps,	apps	with	few	heavy-
weight	processes,	apps	with	many	light-weight	processes,	multiprocessor	apps,
database	apps,	mathematical	apps,	computational	geometry	apps,	and	many,
many	others.

I’ve	built	a	lot	of	apps.	I’ve	built	a	lot	of	systems.	And	from	them	all,	and	by
taking	them	all	into	consideration,	I’ve	learned	something	startling.

The	architecture	rules	are	the	same!

This	is	startling	because	the	systems	that	I	have	built	have	all	been	so	radically
different.	Why	should	such	different	systems	all	share	similar	rules	of
architecture?	My	conclusion	is	that	the	rules	of	software	architecture	are



independent	of	every	other	variable.

This	is	even	more	startling	when	you	consider	the	change	that	has	taken	place	in
hardware	over	the	same	half-century.	I	started	programming	on	machines	the
size	of	kitchen	refrigerators	that	had	half-megahertz	cycle	times,	4K	of	core
memory,	32K	of	disk	memory,	and	a	10	character	per	second	teletype	interface.	I
am	writing	this	preface	on	a	bus	while	touring	in	South	Africa.	I	am	using	a
MacBook	with	four	i7	cores	running	at	2.8	gigahertz	each.	It	has	16	gigabytes	of
RAM,	a	terabyte	of	SSD,	and	a	2880×1800	retina	display	capable	of	showing
extremely	high-definition	video.	The	difference	in	computational	power	is
staggering.	Any	reasonable	analysis	will	show	that	this	MacBook	is	at	least	1022
more	powerful	than	those	early	computers	that	I	started	using	half	a	century	ago.

Twenty-two	orders	of	magnitude	is	a	very	large	number.	It	is	the	number	of
angstroms	from	Earth	to	Alpha-Centuri.	It	is	the	number	of	electrons	in	the
change	in	your	pocket	or	purse.	And	yet	that	number—that	number	at	least—is
the	computational	power	increase	that	I	have	experienced	in	my	own	lifetime.

And	with	all	that	vast	change	in	computational	power,	what	has	been	the	effect
on	the	software	I	write?	It’s	gotten	bigger	certainly.	I	used	to	think	2000	lines
was	a	big	program.	After	all,	it	was	a	full	box	of	cards	that	weighed	10	pounds.
Now,	however,	a	program	isn’t	really	big	until	it	exceeds	100,000	lines.

The	software	has	also	gotten	much	more	performant.	We	can	do	things	today
that	we	could	scarcely	dream	about	in	the	1960s.	The	Forbin	Project,	The	Moon
Is	a	Harsh	Mistress,	and	2001:	A	Space	Odyssey	all	tried	to	imagine	our	current
future,	but	missed	the	mark	rather	significantly.	They	all	imagined	huge
machines	that	gained	sentience.	What	we	have	instead	are	impossibly	small
machines	that	are	still	…	just	machines.{xx}

And	there	is	one	thing	more	about	the	software	we	have	now,	compared	to	the
software	from	back	then:	It’s	made	of	the	same	stuff.	It’s	made	of	if	statements,
assignment	statements,	and	while	loops.

Oh,	you	might	object	and	say	that	we’ve	got	much	better	languages	and	superior
paradigms.	After	all,	we	program	in	Java,	or	C#,	or	Ruby,	and	we	use	object-
oriented	design.	True—and	yet	the	code	is	still	just	an	assemblage	of	sequence,
selection,	and	iteration,	just	as	it	was	back	in	the	1960s	and	1950s.



When	you	really	look	closely	at	the	practice	of	programming	computers,	you
realize	that	very	little	has	changed	in	50	years.	The	languages	have	gotten	a	little
better.	The	tools	have	gotten	fantastically	better.	But	the	basic	building	blocks	of
a	computer	program	have	not	changed.

If	I	took	a	computer	programmer	from	1966	forward	in	time	to	2016	and	put
her1	in	front	of	my	MacBook	running	IntelliJ	and	showed	her	Java,	she	might
need	24	hours	to	recover	from	the	shock.	But	then	she	would	be	able	to	write	the
code.	Java	just	isn’t	that	different	from	C,	or	even	from	Fortran.

And	if	I	transported	you	back	to	1966	and	showed	you	how	to	write	and	edit
PDP-8	code	by	punching	paper	tape	on	a	10	character	per	second	teletype,	you
might	need	24	hours	to	recover	from	the	disappointment.	But	then	you	would	be
able	to	write	the	code.	The	code	just	hasn’t	changed	that	much.

That’s	the	secret:	This	changelessness	of	the	code	is	the	reason	that	the	rules	of
software	architecture	are	so	consistent	across	system	types.	The	rules	of	software
architecture	are	the	rules	of	ordering	and	assembling	the	building	blocks	of
programs.	And	since	those	building	blocks	are	universal	and	haven’t	changed,
the	rules	for	ordering	them	are	likewise	universal	and	changeless.

Younger	programmers	might	think	this	is	nonsense.	They	might	insist	that
everything	is	new	and	different	nowadays,	that	the	rules	of	the	past	are	past	and
gone.	If	that	is	what	they	think,	they	are	sadly	mistaken.	The	rules	have	not
changed.	Despite	all	the	new	languages,	and	all	the	new	frameworks,	and	all	the
paradigms,	the	rules	are	the	same	now	as	they	were	when	Alan	Turing	wrote	the
first	machine	code	in	1946.

But	one	thing	has	changed:	Back	then,	we	didn’t	know	what	the	rules	were.
Consequently,	we	broke	them,	over	and	over	again.	Now,	with	half	a	century	of
experience	behind	us,	we	have	a	grasp	of	those	rules.

And	it	is	those	rules—those	timeless,	changeless,	rules—that	this	book	is	all
about.

Register	your	copy	of	Clean	Architecture	on	the	InformIT	site	for	convenient
access	to	updates	and/or	corrections	as	they	become	available.	To	start	the
registration	process,	go	to	informit.com/register	and	log	in	or	create	an

http://informit.com/register


account.	Enter	the	product	ISBN	(9780134494166)	and	click	Submit.	Look
on	the	Registered	Products	tab	for	an	Access	Bonus	Content	link	next	to	this
product,	and	follow	that	link	to	access	the	bonus	materials.

1.	And	she	very	likely	would	be	female	since,	back	then,	women	made	up	a	large	fraction	of	programmers.
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I
INTRODUCTION

It	doesn’t	take	a	huge	amount	of	knowledge	and	skill	to	get	a	program	working.
Kids	in	high	school	do	it	all	the	time.	Young	men	and	women	in	college	start
billion-dollar	businesses	based	on	scrabbling	together	a	few	lines	of	PHP	or
Ruby.	Hoards	of	junior	programmers	in	cube	farms	around	the	world	slog
through	massive	requirements	documents	held	in	huge	issue	tracking	systems	to
get	their	systems	to	“work”	by	the	sheer	brute	force	of	will.	The	code	they
produce	may	not	be	pretty;	but	it	works.	It	works	because	getting	something	to
work—once—just	isn’t	that	hard.

Getting	it	right	is	another	matter	entirely.	Getting	software	right	is	hard.	It	takes
knowledge	and	skills	that	most	young	programmers	haven’t	yet	acquired.	It
requires	thought	and	insight	that	most	programmers	don’t	take	the	time	to
develop.	It	requires	a	level	of	discipline	and	dedication	that	most	programmers
never	dreamed	they’d	need.	Mostly,	it	takes	a	passion	for	the	craft	and	the	desire
to	be	a	professional.

And	when	you	get	software	right,	something	magical	happens:	You	don’t	need
hordes	of	programmers	to	keep	it	working.	You	don’t	need	massive	requirements
documents	and	huge	issue	tracking	systems.	You	don’t	need	global	cube	farms
and	24/7	programming.

When	software	is	done	right,	it	requires	a	fraction	of	the	human	resources	to
create	and	maintain.	Changes	are	simple	and	rapid.	Defects	are	few	and	far
between.	Effort	is	minimized,	and	functionality	and	flexibility	are	maximized.



Yes,	this	vision	sounds	a	bit	utopian.	But	I’ve	been	there;	I’ve	seen	it	happen.
I’ve	worked	in	projects	where	the	design	and	architecture	of	the	system	made	it
easy	to	write	and	easy	to	maintain.	I’ve	experienced	projects	that	required	a
fraction	of	the	anticipated	human	resources.	I’ve	worked	on	systems	that	had
extremely	low	defect	rates.	I’ve	seen	the	extraordinary	effect	that	good	software
architecture	can	have	on	a	system,	a	project,	and	a	team.	I’ve	been	to	the
promised	land.

But	don’t	take	my	word	for	it.	Look	at	your	own	experience.	Have	you
experienced	the	opposite?	Have	you	worked	on	systems	that	are	so
interconnected	and	intricately	coupled	that	every	change,	regardless	of	how
trivial,	takes	weeks	and	involves	huge	risks?	Have	you	experienced	the
impedance	of	bad	code	and	rotten	design?	Has	the	design	of	the	systems	you’ve
worked	on	had	a	huge	negative	effect	on	the	morale	of	the	team,	the	trust	of	the
customers,	and	the	patience	of	the	managers?	Have	you	seen	teams,	departments,
and	even	companies	that	have	been	brought	down	by	the	rotten	structure	of	their
software?	Have	you	been	to	programming	hell?

I	have—and	to	some	extent,	most	of	the	rest	of	us	have,	too.	It	is	far	more
common	to	fight	your	way	through	terrible	software	designs	than	it	is	to	enjoy
the	pleasure	of	working	with	a	good	one.



1
WHAT	IS	DESIGN	AND
ARCHITECTURE?

There	has	been	a	lot	of	confusion	about	design	and	architecture	over	the	years.
What	is	design?	What	is	architecture?	What	are	the	differences	between	the	two?

One	of	the	goals	of	this	book	is	to	cut	through	all	that	confusion	and	to	define,
once	and	for	all,	what	design	and	architecture	are.	For	starters,	I’ll	assert	that
there	is	no	difference	between	them.	None	at	all.

The	word	“architecture”	is	often	used	in	the	context	of	something	at	a	high	level
that	is	divorced	from	the	lower-level	details,	whereas	“design”	more	often	seems
to	imply	structures	and	decisions	at	a	lower	level.	But	this	usage	is	nonsensical



when	you	look	at	what	a	real	architect	does.

Consider	the	architect	who	designed	my	new	home.	Does	this	home	have	an
architecture?	Of	course	it	does.	And	what	is	that	architecture?	Well,	it	is	the
shape	of	the	home,	the	outward	appearance,	the	elevations,	and	the	layout	of	the
spaces	and	rooms.	But	as	I	look	through	the	diagrams	that	my	architect
produced,	I	see	an	immense	number	of	low-level	details.	I	see	where	every
outlet,	light	switch,	and	light	will	be	placed.	I	see	which	switches	control	which
lights.	I	see	where	the	furnace	is	placed,	and	the	size	and	placement	of	the	water
heater	and	the	sump	pump.	I	see	detailed	depictions	of	how	the	walls,	roofs,	and
foundations	will	be	constructed.

In	short,	I	see	all	the	little	details	that	support	all	the	high-level	decisions.	I	also
see	that	those	low-level	details	and	high-level	decisions	are	part	of	the	whole
design	of	the	house.

And	so	it	is	with	software	design.	The	low-level	details	and	the	high-level
structure	are	all	part	of	the	same	whole.	They	form	a	continuous	fabric	that
defines	the	shape	of	the	system.	You	can’t	have	one	without	the	other;	indeed,	no
clear	dividing	line	separates	them.	There	is	simply	a	continuum	of	decisions
from	the	highest	to	the	lowest	levels.

THE	GOAL?
And	the	goal	of	those	decisions?	The	goal	of	good	software	design?	That	goal	is
nothing	less	than	my	utopian	description:

The	goal	of	software	architecture	is	to	minimize	the	human	resources	required	to	build	and
maintain	the	required	system.

The	measure	of	design	quality	is	simply	the	measure	of	the	effort	required	to
meet	the	needs	of	the	customer.	If	that	effort	is	low,	and	stays	low	throughout	the
lifetime	of	the	system,	the	design	is	good.	If	that	effort	grows	with	each	new
release,	the	design	is	bad.	It’s	as	simple	as	that.

CASE	STUDY
As	an	example,	consider	the	following	case	study.	It	includes	real	data	from	a



real	company	that	wishes	to	remain	anonymous.

First,	let’s	look	at	the	growth	of	the	engineering	staff.	I’m	sure	you’ll	agree	that
this	trend	is	very	encouraging.	Growth	like	that	shown	in	Figure	1.1	must	be	an
indication	of	significant	success!

Figure	1.1	Growth	of	the	engineering	staff

Reproduced	with	permission	from	a	slide	presentation	by	Jason	Gorman

Now	let’s	look	at	the	company’s	productivity	over	the	same	time	period,	as
measured	by	simple	lines	of	code	(Figure	1.2).



Figure	1.2	Productivity	over	the	same	period	of	time

Clearly	something	is	going	wrong	here.	Even	though	every	release	is	supported
by	an	ever-increasing	number	of	developers,	the	growth	of	the	code	looks	like	it
is	approaching	an	asymptote.

Now	here’s	the	really	scary	graph:	Figure	1.3	shows	how	the	cost	per	line	of
code	has	changed	over	time.

These	trends	aren’t	sustainable.	It	doesn’t	matter	how	profitable	the	company
might	be	at	the	moment:	Those	curves	will	catastrophically	drain	the	profit	from
the	business	model	and	drive	the	company	into	a	stall,	if	not	into	a	downright
collapse.

What	caused	this	remarkable	change	in	productivity?	Why	was	the	code	40
times	more	expensive	to	produce	in	release	8	as	opposed	to	release	1?



Figure	1.3	Cost	per	line	of	code	over	time

THE	SIGNATURE	OF	A	MESS

What	you	are	looking	at	is	the	signature	of	a	mess.	When	systems	are	thrown
together	in	a	hurry,	when	the	sheer	number	of	programmers	is	the	sole	driver	of
output,	and	when	little	or	no	thought	is	given	to	the	cleanliness	of	the	code	or	the
structure	of	the	design,	then	you	can	bank	on	riding	this	curve	to	its	ugly	end.

Figure	1.4	shows	what	this	curve	looks	like	to	the	developers.	They	started	out	at
nearly	100%	productivity,	but	with	each	release	their	productivity	declined.	By
the	fourth	release,	it	was	clear	that	their	productivity	was	going	to	bottom	out	in
an	asymptotic	approach	to	zero.



Figure	1.4	Productivity	by	release

From	the	developers’	point	of	view,	this	is	tremendously	frustrating,	because
everyone	is	working	hard.	Nobody	has	decreased	their	effort.

And	yet,	despite	all	their	heroics,	overtime,	and	dedication,	they	simply	aren’t
getting	much	of	anything	done	anymore.	All	their	effort	has	been	diverted	away
from	features	and	is	now	consumed	with	managing	the	mess.	Their	job,	such	as
it	is,	has	changed	into	moving	the	mess	from	one	place	to	the	next,	and	the	next,
and	the	next,	so	that	they	can	add	one	more	meager	little	feature.

THE	EXECUTIVE	VIEW

If	you	think	that’s	bad,	imagine	what	this	picture	looks	like	to	the	executives!
Consider	Figure	1.5,	which	depicts	monthly	development	payroll	for	the	same
period.



Figure	1.5	Monthly	development	payroll	by	release

Release	1	was	delivered	with	a	monthly	payroll	of	a	few	hundred	thousand
dollars.	The	second	release	cost	a	few	hundred	thousand	more.	By	the	eighth
release	monthly	payroll	was	$20	million,	and	climbing.

Just	this	chart	alone	is	scary.	Clearly	something	startling	is	happening.	One
hopes	that	revenues	are	outpacing	costs	and	therefore	justifying	the	expense.	But
no	matter	how	you	look	at	this	curve,	it’s	cause	for	concern.

But	now	compare	the	curve	in	Figure	1.5	with	the	lines	of	code	written	per
release	in	Figure	1.2.	That	initial	few	hundred	thousand	dollars	per	month
bought	a	lot	of	functionality—but	the	final	$20	million	bought	almost	nothing!
Any	CFO	would	look	at	these	two	graphs	and	know	that	immediate	action	is
necessary	to	stave	off	disaster.

But	which	action	can	be	taken?	What	has	gone	wrong?	What	has	caused	this
incredible	decline	in	productivity?	What	can	executives	do,	other	than	to	stamp
their	feet	and	rage	at	the	developers?

WHAT	WENT	WRONG?

Nearly	2600	years	ago,	Aesop	told	the	story	of	the	Tortoise	and	the	Hare.	The
moral	of	that	story	has	been	stated	many	times	in	many	different	ways:

•	“Slow	and	steady	wins	the	race.”



•	“The	race	is	not	to	the	swift,	nor	the	battle	to	the	strong.”
•	“The	more	haste,	the	less	speed.”

The	story	itself	illustrates	the	foolishness	of	overconfidence.	The	Hare,	so
confident	in	its	intrinsic	speed,	does	not	take	the	race	seriously,	and	so	naps
while	the	Tortoise	crosses	the	finish	line.

Modern	developers	are	in	a	similar	race,	and	exhibit	a	similar	overconfidence.
Oh,	they	don’t	sleep—far	from	it.	Most	modern	developers	work	their	butts	off.
But	a	part	of	their	brain	does	sleep—the	part	that	knows	that	good,	clean,	well-
designed	code	matters.

These	developers	buy	into	a	familiar	lie:	“We	can	clean	it	up	later;	we	just	have
to	get	to	market	first!”	Of	course,	things	never	do	get	cleaned	up	later,	because
market	pressures	never	abate.	Getting	to	market	first	simply	means	that	you’ve
now	got	a	horde	of	competitors	on	your	tail,	and	you	have	to	stay	ahead	of	them
by	running	as	fast	as	you	can.

And	so	the	developers	never	switch	modes.	They	can’t	go	back	and	clean	things
up	because	they’ve	got	to	get	the	next	feature	done,	and	the	next,	and	the	next,
and	the	next.	And	so	the	mess	builds,	and	productivity	continues	its	asymptotic
approach	toward	zero.

Just	as	the	Hare	was	overconfident	in	its	speed,	so	the	developers	are
overconfident	in	their	ability	to	remain	productive.	But	the	creeping	mess	of
code	that	saps	their	productivity	never	sleeps	and	never	relents.	If	given	its	way,
it	will	reduce	productivity	to	zero	in	a	matter	of	months.

The	bigger	lie	that	developers	buy	into	is	the	notion	that	writing	messy	code
makes	them	go	fast	in	the	short	term,	and	just	slows	them	down	in	the	long	term.
Developers	who	accept	this	lie	exhibit	the	hare’s	overconfidence	in	their	ability
to	switch	modes	from	making	messes	to	cleaning	up	messes	sometime	in	the
future,	but	they	also	make	a	simple	error	of	fact.	The	fact	is	that	making	messes
is	always	slower	than	staying	clean,	no	matter	which	time	scale	you	are	using.

Consider	the	results	of	a	remarkable	experiment	performed	by	Jason	Gorman
depicted	in	Figure	1.6.	Jason	conducted	this	test	over	a	period	of	six	days.	Each
day	he	completed	a	simple	program	to	convert	integers	into	Roman	numerals.
He	knew	his	work	was	complete	when	his	predefined	set	of	acceptance	tests



passed.	Each	day	the	task	took	a	little	less	than	30	minutes.	Jason	used	a	well-
known	cleanliness	discipline	named	test-driven	development	(TDD)	on	the	first,
third,	and	fifth	days.	On	the	other	three	days,	he	wrote	the	code	without	that
discipline.

Figure	1.6	Time	to	completion	by	iterations	and	use/non-use	of	TDD

First,	notice	the	learning	curve	apparent	in	Figure	1.6.	Work	on	the	latter	days	is
completed	more	quickly	than	the	former	days.	Notice	also	that	work	on	the	TDD
days	proceeded	approximately	10%	faster	than	work	on	the	non-TDD	days,	and
that	even	the	slowest	TDD	day	was	faster	than	the	fastest	non-TDD	day.

Some	folks	might	look	at	that	result	and	think	it’s	a	remarkable	outcome.	But	to
those	who	haven’t	been	deluded	by	the	Hare’s	overconfidence,	the	result	is
expected,	because	they	know	this	simple	truth	of	software	development:

The	only	way	to	go	fast,	is	to	go	well.

And	that’s	the	answer	to	the	executive’s	dilemma.	The	only	way	to	reverse	the
decline	in	productivity	and	the	increase	in	cost	is	to	get	the	developers	to	stop
thinking	like	the	overconfident	Hare	and	start	taking	responsibility	for	the	mess
that	they’ve	made.

The	developers	may	think	that	the	answer	is	to	start	over	from	scratch	and
redesign	the	whole	system—but	that’s	just	the	Hare	talking	again.	The	same
overconfidence	that	led	to	the	mess	is	now	telling	them	that	they	can	build	it
better	if	only	they	can	start	the	race	over.	The	reality	is	less	rosy:



Their	overconfidence	will	drive	the	redesign	into	the	same	mess	as	the	original	project.

CONCLUSION
In	every	case,	the	best	option	is	for	the	development	organization	to	recognize
and	avoid	its	own	overconfidence	and	to	start	taking	the	quality	of	its	software
architecture	seriously.

To	take	software	architecture	seriously,	you	need	to	know	what	good	software
architecture	is.	To	build	a	system	with	a	design	and	an	architecture	that	minimize
effort	and	maximize	productivity,	you	need	to	know	which	attributes	of	system
architecture	lead	to	that	end.

That’s	what	this	book	is	about.	It	describes	what	good	clean	architectures	and
designs	look	like,	so	that	software	developers	can	build	systems	that	will	have
long	profitable	lifetimes.



2
A	TALE	OF	TWO	VALUES

Every	software	system	provides	two	different	values	to	the	stakeholders:
behavior	and	structure.	Software	developers	are	responsible	for	ensuring	that
both	those	values	remain	high.	Unfortunately,	they	often	focus	on	one	to	the
exclusion	of	the	other.	Even	more	unfortunately,	they	often	focus	on	the	lesser	of
the	two	values,	leaving	the	software	system	eventually	valueless.

BEHAVIOR
The	first	value	of	software	is	its	behavior.	Programmers	are	hired	to	make
machines	behave	in	a	way	that	makes	or	saves	money	for	the	stakeholders.	We
do	this	by	helping	the	stakeholders	develop	a	functional	specification,	or



requirements	document.	Then	we	write	the	code	that	causes	the	stakeholder’s
machines	to	satisfy	those	requirements.

When	the	machine	violates	those	requirements,	programmers	get	their	debuggers
out	and	fix	the	problem.

Many	programmers	believe	that	is	the	entirety	of	their	job.	They	believe	their	job
is	to	make	the	machine	implement	the	requirements	and	to	fix	any	bugs.	They
are	sadly	mistaken.

ARCHITECTURE
The	second	value	of	software	has	to	do	with	the	word	“software”—a	compound
word	composed	of	“soft”	and	“ware.”	The	word	“ware”	means	“product”;	the
word	“soft”…	Well,	that’s	where	the	second	value	lies.

Software	was	invented	to	be	“soft.”	It	was	intended	to	be	a	way	to	easily	change
the	behavior	of	machines.	If	we’d	wanted	the	behavior	of	machines	to	be	hard	to
change,	we	would	have	called	it	hardware.

To	fulfill	its	purpose,	software	must	be	soft—that	is,	it	must	be	easy	to	change.
When	the	stakeholders	change	their	minds	about	a	feature,	that	change	should	be
simple	and	easy	to	make.	The	difficulty	in	making	such	a	change	should	be
proportional	only	to	the	scope	of	the	change,	and	not	to	the	shape	of	the	change.

It	is	this	difference	between	scope	and	shape	that	often	drives	the	growth	in
software	development	costs.	It	is	the	reason	that	costs	grow	out	of	proportion	to
the	size	of	the	requested	changes.	It	is	the	reason	that	the	first	year	of
development	is	much	cheaper	than	the	second,	and	the	second	year	is	much
cheaper	than	the	third.

From	the	stakeholders’	point	of	view,	they	are	simply	providing	a	stream	of
changes	of	roughly	similar	scope.	From	the	developers’	point	of	view,	the
stakeholders	are	giving	them	a	stream	of	jigsaw	puzzle	pieces	that	they	must	fit
into	a	puzzle	of	ever-increasing	complexity.	Each	new	request	is	harder	to	fit
than	the	last,	because	the	shape	of	the	system	does	not	match	the	shape	of	the
request.

I’m	using	the	word	“shape”	here	in	a	unconventional	way,	but	I	think	the



metaphor	is	apt.	Software	developers	often	feel	as	if	they	are	forced	to	jam
square	pegs	into	round	holes.

The	problem,	of	course,	is	the	architecture	of	the	system.	The	more	this
architecture	prefers	one	shape	over	another,	the	more	likely	new	features	will	be
harder	and	harder	to	fit	into	that	structure.	Therefore	architectures	should	be	as
shape	agnostic	are	practical.

THE	GREATER	VALUE
Function	or	architecture?	Which	of	these	two	provides	the	greater	value?	Is	it
more	important	for	the	software	system	to	work,	or	is	it	more	important	for	the
software	system	to	be	easy	to	change?

If	you	ask	the	business	managers,	they’ll	often	say	that	it’s	more	important	for
the	software	system	to	work.	Developers,	in	turn,	often	go	along	with	this
attitude.	But	it’s	the	wrong	attitude.	I	can	prove	that	it	is	wrong	with	the	simple
logical	tool	of	examining	the	extremes.

•	If	you	give	me	a	program	that	works	perfectly	but	is	impossible	to	change,	then
it	won’t	work	when	the	requirements	change,	and	I	won’t	be	able	to	make	it
work.	Therefore	the	program	will	become	useless.

•	If	you	give	me	a	program	that	does	not	work	but	is	easy	to	change,	then	I	can
make	it	work,	and	keep	it	working	as	requirements	change.	Therefore	the
program	will	remain	continually	useful.

You	may	not	find	this	argument	convincing.	After	all,	there’s	no	such	thing	as	a
program	that	is	impossible	to	change.	However,	there	are	systems	that	are
practically	impossible	to	change,	because	the	cost	of	change	exceeds	the	benefit
of	change.	Many	systems	reach	that	point	in	some	of	their	features	or
configurations.

If	you	ask	the	business	managers	if	they	want	to	be	able	to	make	changes,	they’ll
say	that	of	course	they	do,	but	may	then	qualify	their	answer	by	noting	that	the
current	functionality	is	more	important	than	any	later	flexibility.	In	contrast,	if
the	business	managers	ask	you	for	a	change,	and	your	estimated	costs	for	that
change	are	unaffordably	high,	the	business	managers	will	likely	be	furious	that
you	allowed	the	system	to	get	to	the	point	where	the	change	was	impractical.



EISENHOWER’S	MATRIX
Consider	President	Dwight	D.	Eisenhower’s	matrix	of	importance	versus
urgency	(Figure	2.1).	Of	this	matrix,	Eisenhower	said:

I	have	two	kinds	of	problems,	the	urgent	and	the	important.	The	urgent	are	not	important,	and	the
important	are	never	urgent.1

Figure	2.1	Eisenhower	matrix

There	is	a	great	deal	of	truth	to	this	old	adage.	Those	things	that	are	urgent	are
rarely	of	great	importance,	and	those	things	that	are	important	are	seldom	of
great	urgency.

The	first	value	of	software—behavior—is	urgent	but	not	always	particularly
important.

The	second	value	of	software—architecture—is	important	but	never	particularly
urgent.

Of	course,	some	things	are	both	urgent	and	important.	Other	things	are	not
urgent	and	not	important.	Ultimately,	we	can	arrange	these	four	couplets	into
priorities:

1.	Urgent	and	important
2.	Not	urgent	and	important



3.	Urgent	and	not	important
4.	Not	urgent	and	not	important

Note	that	the	architecture	of	the	code—the	important	stuff—is	in	the	top	two
positions	of	this	list,	whereas	the	behavior	of	the	code	occupies	the	first	and	third
positions.

The	mistake	that	business	managers	and	developers	often	make	is	to	elevate
items	in	position	3	to	position	1.	In	other	words,	they	fail	to	separate	those
features	that	are	urgent	but	not	important	from	those	features	that	truly	are	urgent
and	important.	This	failure	then	leads	to	ignoring	the	important	architecture	of
the	system	in	favor	of	the	unimportant	features	of	the	system.

The	dilemma	for	software	developers	is	that	business	managers	are	not	equipped
to	evaluate	the	importance	of	architecture.	That’s	what	software	developers	were
hired	to	do.	Therefore	it	is	the	responsibility	of	the	software	development	team
to	assert	the	importance	of	architecture	over	the	urgency	of	features.

FIGHT	FOR	THE	ARCHITECTURE
Fulfilling	this	responsibility	means	wading	into	a	fight—or	perhaps	a	better
word	is	“struggle.”	Frankly,	that’s	always	the	way	these	things	are	done.	The
development	team	has	to	struggle	for	what	they	believe	to	be	best	for	the
company,	and	so	do	the	management	team,	and	the	marketing	team,	and	the	sales
team,	and	the	operations	team.	It’s	always	a	struggle.

Effective	software	development	teams	tackle	that	struggle	head	on.	They
unabashedly	squabble	with	all	the	other	stakeholders	as	equals.	Remember,	as	a
software	developer,	you	are	a	stakeholder.	You	have	a	stake	in	the	software	that
you	need	to	safeguard.	That’s	part	of	your	role,	and	part	of	your	duty.	And	it’s	a
big	part	of	why	you	were	hired.

This	challenge	is	doubly	important	if	you	are	a	software	architect.	Software
architects	are,	by	virtue	of	their	job	description,	more	focused	on	the	structure	of
the	system	than	on	its	features	and	functions.	Architects	create	an	architecture
that	allows	those	features	and	functions	to	be	easily	developed,	easily	modified,
and	easily	extended.



Just	remember:	If	architecture	comes	last,	then	the	system	will	become	ever
more	costly	to	develop,	and	eventually	change	will	become	practically
impossible	for	part	or	all	of	the	system.	If	that	is	allowed	to	happen,	it	means	the
software	development	team	did	not	fight	hard	enough	for	what	they	knew	was
necessary.

1.	From	a	speech	at	Northwestern	University	in	1954.



II
STARTING	WITH	THE	BRICKS:
PROGRAMMING	PARADIGMS

Software	architecture	begins	with	the	code—and	so	we	will	begin	our	discussion
of	architecture	by	looking	at	what	we’ve	learned	about	code	since	code	was	first
written.

In	1938,	Alan	Turing	laid	the	foundations	of	what	was	to	become	computer
programming.	He	was	not	the	first	to	conceive	of	a	programmable	machine,	but
he	was	the	first	to	understand	that	programs	were	simply	data.	By	1945,	Turing
was	writing	real	programs	on	real	computers	in	code	that	we	would	recognize	(if
we	squinted	enough).	Those	programs	used	loops,	branches,	assignment,
subroutines,	stacks,	and	other	familiar	structures.	Turing’s	language	was	binary.

Since	those	days,	a	number	of	revolutions	in	programming	have	occurred.	One
revolution	with	which	we	are	all	very	familiar	is	the	revolution	of	languages.
First,	in	the	late	1940s,	came	assemblers.	These	“languages”	relieved	the
programmers	of	the	drudgery	of	translating	their	programs	into	binary.	In	1951,
Grace	Hopper	invented	A0,	the	first	compiler.	In	fact,	she	coined	the	term
compiler.	Fortran	was	invented	in	1953	(the	year	after	I	was	born).	What
followed	was	an	unceasing	flood	of	new	programming	languages—COBOL,
PL/1,	SNOBOL,	C,	Pascal,	C++,	Java,	ad	infinitum.

Another,	probably	more	significant,	revolution	was	in	programming	paradigms.
Paradigms	are	ways	of	programming,	relatively	unrelated	to	languages.	A
paradigm	tells	you	which	programming	structures	to	use,	and	when	to	use	them.



To	date,	there	have	been	three	such	paradigms.	For	reasons	we	shall	discuss
later,	there	are	unlikely	to	be	any	others.



3
PARADIGM	OVERVIEW

The	three	paradigms	included	in	this	overview	chapter	are	structured
programming,	object-orient	programming,	and	functional	programming.

STRUCTURED	PROGRAMMING
The	first	paradigm	to	be	adopted	(but	not	the	first	to	be	invented)	was	structured
programming,	which	was	discovered	by	Edsger	Wybe	Dijkstra	in	1968.	Dijkstra
showed	that	the	use	of	unrestrained	jumps	(goto	statements)	is	harmful	to
program	structure.	As	we’ll	see	in	the	chapters	that	follow,	he	replaced	those
jumps	with	the	more	familiar	if/then/else	and	do/while/until	constructs.



We	can	summarize	the	structured	programming	paradigm	as	follows:

Structured	programming	imposes	discipline	on	direct	transfer	of	control.

OBJECT-ORIENTED	PROGRAMMING
The	second	paradigm	to	be	adopted	was	actually	discovered	two	years	earlier,	in
1966,	by	Ole	Johan	Dahl	and	Kristen	Nygaard.	These	two	programmers	noticed
that	the	function	call	stack	frame	in	the	ALGOL	language	could	be	moved	to	a
heap,	thereby	allowing	local	variables	declared	by	a	function	to	exist	long	after
the	function	returned.	The	function	became	a	constructor	for	a	class,	the	local
variables	became	instance	variables,	and	the	nested	functions	became	methods.
This	led	inevitably	to	the	discovery	of	polymorphism	through	the	disciplined	use
of	function	pointers.

We	can	summarize	the	object-oriented	programming	paradigm	as	follows:

Object-oriented	programming	imposes	discipline	on	indirect	transfer	of	control.

FUNCTIONAL	PROGRAMMING
The	third	paradigm,	which	has	only	recently	begun	to	be	adopted,	was	the	first	to
be	invented.	Indeed,	its	invention	predates	computer	programming	itself.
Functional	programming	is	the	direct	result	of	the	work	of	Alonzo	Church,	who
in	1936	invented	l-calculus	while	pursuing	the	same	mathematical	problem	that
was	motivating	Alan	Turing	at	the	same	time.	His	l-calculus	is	the	foundation	of
the	LISP	language,	invented	in	1958	by	John	McCarthy.	A	foundational	notion
of	l-calculus	is	immutability—that	is,	the	notion	that	the	values	of	symbols	do
not	change.	This	effectively	means	that	a	functional	language	has	no	assignment
statement.	Most	functional	languages	do,	in	fact,	have	some	means	to	alter	the
value	of	a	variable,	but	only	under	very	strict	discipline.

We	can	summarize	the	functional	programming	paradigm	as	follows:

Functional	programming	imposes	discipline	upon	assignment.

FOOD	FOR	THOUGHT



Notice	the	pattern	that	I’ve	quite	deliberately	set	up	in	introducing	these	three
programming	paradigms:	Each	of	the	paradigms	removes	capabilities	from	the
programmer.	None	of	them	adds	new	capabilities.	Each	imposes	some	kind	of
extra	discipline	that	is	negative	in	its	intent.	The	paradigms	tell	us	what	not	to
do,	more	than	they	tell	us	what	to	do.

Another	way	to	look	at	this	issue	is	to	recognize	that	each	paradigm	takes
something	away	from	us.	The	three	paradigms	together	remove	goto	statements,
function	pointers,	and	assignment.	Is	there	anything	left	to	take	away?

Probably	not.	Thus	these	three	paradigms	are	likely	to	be	the	only	three	we	will
see—at	least	the	only	three	that	are	negative.	Further	evidence	that	there	are	no
more	such	paradigms	is	that	they	were	all	discovered	within	the	ten	years
between	1958	and	1968.	In	the	many	decades	that	have	followed,	no	new
paradigms	have	been	added.

CONCLUSION
What	does	this	history	lesson	on	paradigms	have	to	do	with	architecture?
Everything.	We	use	polymorphism	as	the	mechanism	to	cross	architectural
boundaries;	we	use	functional	programming	to	impose	discipline	on	the	location
of	and	access	to	data;	and	we	use	structured	programming	as	the	algorithmic
foundation	of	our	modules.

Notice	how	well	those	three	align	with	the	three	big	concerns	of	architecture:
function,	separation	of	components,	and	data	management.



4
STRUCTURED	PROGRAMMING

Edsger	Wybe	Dijkstra	was	born	in	Rotterdam	in	1930.	He	survived	the	bombing
of	Rotterdam	during	World	War	II,	along	with	the	German	occupation	of	the
Netherlands,	and	in	1948	graduated	from	high	school	with	the	highest	possible
marks	in	math,	physics,	chemistry,	and	biology.	In	March	1952,	at	the	age	of	21
(and	just	9	months	before	I	was	born),	Dijkstra	took	a	job	with	the	Mathematical
Center	of	Amsterdam	as	the	Netherlands’	very	first	programmer.

In	1955,	having	been	a	programmer	for	three	years,	and	while	still	a	student,
Dijkstra	concluded	that	the	intellectual	challenge	of	programming	was	greater
than	the	intellectual	challenge	of	theoretical	physics.	As	a	result,	he	chose
programming	as	his	long-term	career.



In	1957,	Dijkstra	married	Maria	Debets.	At	the	time,	you	had	to	state	your
profession	as	part	of	the	marriage	rites	in	the	Netherlands.	The	Dutch	authorities
were	unwilling	to	accept	“programmer”	as	Dijkstra’s	profession;	they	had	never
heard	of	such	a	profession.	To	satisfy	them,	Dijkstra	settled	for	“theoretical
physicist”	as	his	job	title.

As	part	of	deciding	to	make	programming	his	career,	Dijkstra	conferred	with	his
boss,	Adriaan	van	Wijngaarden.	Dijkstra	was	concerned	that	no	one	had
identified	a	discipline,	or	science,	of	programming,	and	that	he	would	therefore
not	be	taken	seriously.	His	boss	replied	that	Dijkstra	might	very	well	be	one	of
the	people	who	would	discover	such	disciplines,	thereby	evolving	software	into
a	science.

Dijkstra	started	his	career	in	the	era	of	vacuum	tubes,	when	computers	were
huge,	fragile,	slow,	unreliable,	and	(by	today’s	standards)	extremely	limited.	In
those	early	years,	programs	were	written	in	binary,	or	in	very	crude	assembly
language.	Input	took	the	physical	form	of	paper	tape	or	punched	cards.	The
edit/compile/test	loop	was	hours—if	not	days—long.

It	was	in	this	primitive	environment	that	Dijkstra	made	his	great	discoveries.

PROOF
The	problem	that	Dijkstra	recognized,	early	on,	was	that	programming	is	hard,
and	that	programmers	don’t	do	it	very	well.	A	program	of	any	complexity
contains	too	many	details	for	a	human	brain	to	manage	without	help.
Overlooking	just	one	small	detail	results	in	programs	that	may	seem	to	work,	but
fail	in	surprising	ways.

Dijkstra’s	solution	was	to	apply	the	mathematical	discipline	of	proof.	His	vision
was	the	construction	of	a	Euclidian	hierarchy	of	postulates,	theorems,
corollaries,	and	lemmas.	Dijkstra	thought	that	programmers	could	use	that
hierarchy	the	way	mathematicians	do.	In	other	words,	programmers	would	use
proven	structures,	and	tie	them	together	with	code	that	they	would	then	prove
correct	themselves.

Of	course,	to	get	this	going,	Dijkstra	realized	that	he	would	have	to	demonstrate
the	technique	for	writing	basic	proofs	of	simple	algorithms.	This	he	found	to	be



quite	challenging.

During	his	investigation,	Dijkstra	discovered	that	certain	uses	of	goto	statements
prevent	modules	from	being	decomposed	recursively	into	smaller	and	smaller
units,	thereby	preventing	use	of	the	divide-and-conquer	approach	necessary	for
reasonable	proofs.

Other	uses	of	goto,	however,	did	not	have	this	problem.	Dijkstra	realized	that
these	“good”	uses	of	goto	corresponded	to	simple	selection	and	iteration	control
structures	such	as	if/then/else	and	do/while.	Modules	that	used	only	those
kinds	of	control	structures	could	be	recursively	subdivided	into	provable	units.

Dijkstra	knew	that	those	control	structures,	when	combined	with	sequential
execution,	were	special.	They	had	been	identified	two	years	before	by	Böhm	and
Jacopini,	who	proved	that	all	programs	can	be	constructed	from	just	three
structures:	sequence,	selection,	and	iteration.

This	discovery	was	remarkable:	The	very	control	structures	that	made	a	module
provable	were	the	same	minimum	set	of	control	structures	from	which	all
programs	can	be	built.	Thus	structured	programming	was	born.

Dijkstra	showed	that	sequential	statements	could	be	proved	correct	through
simple	enumeration.	The	technique	mathematically	traced	the	inputs	of	the
sequence	to	the	outputs	of	the	sequence.	This	approach	was	no	different	from
any	normal	mathematical	proof.

Dijkstra	tackled	selection	through	reapplication	of	enumeration.	Each	path
through	the	selection	was	enumerated.	If	both	paths	eventually	produced
appropriate	mathematical	results,	then	the	proof	was	solid.

Iteration	was	a	bit	different.	To	prove	an	iteration	correct,	Dijkstra	had	to	use
induction.	He	proved	the	case	for	1	by	enumeration.	Then	he	proved	the	case
that	if	N	was	assumed	correct,	N	+	1	was	correct,	again	by	enumeration.	He	also
proved	the	starting	and	ending	criteria	of	the	iteration	by	enumeration.

Such	proofs	were	laborious	and	complex—but	they	were	proofs.	With	their
development,	the	idea	that	a	Euclidean	hierarchy	of	theorems	could	be
constructed	seemed	reachable.



A	HARMFUL	PROCLAMATION
In	1968,	Dijkstra	wrote	a	letter	to	the	editor	of	CACM,	which	was	published	in
the	March	issue.	The	title	of	this	letter	was	“Go	To	Statement	Considered
Harmful.”	The	article	outlined	his	position	on	the	three	control	structures.

And	the	programming	world	caught	fire.	Back	then	we	didn’t	have	an	Internet,
so	people	couldn’t	post	nasty	memes	of	Dijkstra,	and	they	couldn’t	flame	him
online.	But	they	could,	and	they	did,	write	letters	to	the	editors	of	many
published	journals.

Those	letters	weren’t	necessarily	all	polite.	Some	were	intensely	negative;	others
voiced	strong	support	for	his	position.	And	so	the	battle	was	joined,	ultimately	to
last	about	a	decade.

Eventually	the	argument	petered	out.	The	reason	was	simple:	Dijkstra	had	won.
As	computer	languages	evolved,	the	goto	statement	moved	ever	rearward,	until
it	all	but	disappeared.	Most	modern	languages	do	not	have	a	goto	statement—
and,	of	course,	LISP	never	did.

Nowadays	we	are	all	structured	programmers,	though	not	necessarily	by	choice.
It’s	just	that	our	languages	don’t	give	us	the	option	to	use	undisciplined	direct
transfer	of	control.

Some	may	point	to	named	breaks	in	Java	or	exceptions	as	goto	analogs.	In	fact,
these	structures	are	not	the	utterly	unrestricted	transfers	of	control	that	older
languages	like	Fortran	or	COBOL	once	had.	Indeed,	even	languages	that	still
support	the	goto	keyword	often	restrict	the	target	to	within	the	scope	of	the
current	function.

FUNCTIONAL	DECOMPOSITION
Structured	programming	allows	modules	to	be	recursively	decomposed	into
provable	units,	which	in	turn	means	that	modules	can	be	functionally
decomposed.	That	is,	you	can	take	a	large-scale	problem	statement	and
decompose	it	into	high-level	functions.	Each	of	those	functions	can	then	be
decomposed	into	lower-level	functions,	ad	infinitum.	Moreover,	each	of	those
decomposed	functions	can	be	represented	using	the	restricted	control	structures



of	structured	programming.

Building	on	this	foundation,	disciplines	such	as	structured	analysis	and
structured	design	became	popular	in	the	late	1970s	and	throughout	the	1980s.
Men	like	Ed	Yourdon,	Larry	Constantine,	Tom	DeMarco,	and	Meilir	Page-Jones
promoted	and	popularized	these	techniques	throughout	that	period.	By	following
these	disciplines,	programmers	could	break	down	large	proposed	systems	into
modules	and	components	that	could	be	further	broken	down	into	tiny	provable
functions.

NO	FORMAL	PROOFS
But	the	proofs	never	came.	The	Euclidean	hierarchy	of	theorems	was	never	built.
And	programmers	at	large	never	saw	the	benefits	of	working	through	the
laborious	process	of	formally	proving	each	and	every	little	function	correct.	In
the	end,	Dijkstra’s	dream	faded	and	died.	Few	of	today’s	programmers	believe
that	formal	proofs	are	an	appropriate	way	to	produce	high-quality	software.

Of	course,	formal,	Euclidian	style,	mathematical	proofs	are	not	the	only	strategy
for	proving	something	correct.	Another	highly	successful	strategy	is	the
scientific	method.

SCIENCE	TO	THE	RESCUE
Science	is	fundamentally	different	from	mathematics,	in	that	scientific	theories
and	laws	cannot	be	proven	correct.	I	cannot	prove	to	you	that	Newton’s	second
law	of	motion,	F	=	ma,	or	law	of	gravity,	F	=	Gm1m2/r2,	are	correct.	I	can
demonstrate	these	laws	to	you,	and	I	can	make	measurements	that	show	them
correct	to	many	decimal	places,	but	I	cannot	prove	them	in	the	sense	of	a
mathematical	proof.	No	matter	how	many	experiments	I	conduct	or	how	much
empirical	evidence	I	gather,	there	is	always	the	chance	that	some	experiment	will
show	that	those	laws	of	motion	and	gravity	are	incorrect.

That	is	the	nature	of	scientific	theories	and	laws:	They	are	falsifiable	but	not
provable.

And	yet	we	bet	our	lives	on	these	laws	every	day.	Every	time	you	get	into	a	car,



you	bet	your	life	that	F	=	ma	is	a	reliable	description	of	the	way	the	world
works.	Every	time	you	take	a	step,	you	bet	your	health	and	safety	that	F	=
Gm1m2/r2	is	correct.

Science	does	not	work	by	proving	statements	true,	but	rather	by	proving
statements	false.	Those	statements	that	we	cannot	prove	false,	after	much	effort,
we	deem	to	be	true	enough	for	our	purposes.

Of	course,	not	all	statements	are	provable.	The	statement	“This	is	a	lie”	is	neither
true	nor	false.	It	is	one	of	the	simplest	examples	of	a	statement	that	is	not
provable.

Ultimately,	we	can	say	that	mathematics	is	the	discipline	of	proving	provable
statements	true.	Science,	in	contrast,	is	the	discipline	of	proving	provable
statements	false.

TESTS
Dijkstra	once	said,	“Testing	shows	the	presence,	not	the	absence,	of	bugs.”	In
other	words,	a	program	can	be	proven	incorrect	by	a	test,	but	it	cannot	be	proven
correct.	All	that	tests	can	do,	after	sufficient	testing	effort,	is	allow	us	to	deem	a
program	to	be	correct	enough	for	our	purposes.

The	implications	of	this	fact	are	stunning.	Software	development	is	not	a
mathematical	endeavor,	even	though	it	seems	to	manipulate	mathematical
constructs.	Rather,	software	is	like	a	science.	We	show	correctness	by	failing	to
prove	incorrectness,	despite	our	best	efforts.

Such	proofs	of	incorrectness	can	be	applied	only	to	provable	programs.	A
program	that	is	not	provable—due	to	unrestrained	use	of	goto,	for	example—
cannot	be	deemed	correct	no	matter	how	many	tests	are	applied	to	it.

Structured	programming	forces	us	to	recursively	decompose	a	program	into	a	set
of	small	provable	functions.	We	can	then	use	tests	to	try	to	prove	those	small
provable	functions	incorrect.	If	such	tests	fail	to	prove	incorrectness,	then	we
deem	the	functions	to	be	correct	enough	for	our	purposes.



CONCLUSION
It	is	this	ability	to	create	falsifiable	units	of	programming	that	makes	structured
programming	valuable	today.	This	is	the	reason	that	modern	languages	do	not
typically	support	unrestrained	goto	statements.	Moreover,	at	the	architectural
level,	this	is	why	we	still	consider	functional	decomposition	to	be	one	of	our	best
practices.

At	every	level,	from	the	smallest	function	to	the	largest	component,	software	is
like	a	science	and,	therefore,	is	driven	by	falsifiability.	Software	architects	strive
to	define	modules,	components,	and	services	that	are	easily	falsifiable	(testable).
To	do	so,	they	employ	restrictive	disciplines	similar	to	structured	programming,
albeit	at	a	much	higher	level.

It	is	those	restrictive	disciplines	that	we	will	study	in	some	detail	in	the	chapters
to	come.



5
OBJECT-ORIENTED	PROGRAMMING

As	we	will	see,	the	basis	of	a	good	architecture	is	the	understanding	and
application	of	the	principles	of	object-oriented	design	(OO).	But	just	what	is
OO?

One	answer	to	this	question	is	“The	combination	of	data	and	function.”
Although	often	cited,	this	is	a	very	unsatisfying	answer	because	it	implies	that
o.f()	is	somehow	different	from	f(o).	This	is	absurd.	Programmers	were
passing	data	structures	into	functions	long	before	1966,	when	Dahl	and	Nygaard
moved	the	function	call	stack	frame	to	the	heap	and	invented	OO.

Another	common	answer	to	this	question	is	“A	way	to	model	the	real	world.”
This	is	an	evasive	answer	at	best.	What	does	“modeling	the	real	world”	actually



mean,	and	why	is	it	something	we	would	want	to	do?	Perhaps	this	statement	is
intended	to	imply	that	OO	makes	software	easier	to	understand	because	it	has	a
closer	relationship	to	the	real	world—but	even	that	statement	is	evasive	and	too
loosely	defined.	It	does	not	tell	us	what	OO	is.

Some	folks	fall	back	on	three	magic	words	to	explain	the	nature	of	OO:
encapsulation,	inheritance,	and	polymorphism.	The	implication	is	that	OO	is	the
proper	admixture	of	these	three	things,	or	at	least	that	an	OO	language	must
support	these	three	things.

Let’s	examine	each	of	these	concepts	in	turn.

ENCAPSULATION?
The	reason	encapsulation	is	cited	as	part	of	the	definition	of	OO	is	that	OO
languages	provide	easy	and	effective	encapsulation	of	data	and	function.	As	a
result,	a	line	can	be	drawn	around	a	cohesive	set	of	data	and	functions.	Outside
of	that	line,	the	data	is	hidden	and	only	some	of	the	functions	are	known.	We	see
this	concept	in	action	as	the	private	data	members	and	the	public	member
functions	of	a	class.

This	idea	is	certainly	not	unique	to	OO.	Indeed,	we	had	perfect	encapsulation	in
C.	Consider	this	simple	C	program:

Click	here	to	view	code	image

point.h

struct	Point;

struct	Point*	makePoint(double	x,	double	y);

double	distance	(struct	Point	*p1,	struct	Point	*p2);

Click	here	to	view	code	image

point.c

#include	"point.h"

#include	<stdlib.h>

#include	<math.h>

struct	Point	{

double	x,y;

};



struct	Point*	makepoint(double	x,	double	y)	{

struct	Point*	p	=	malloc(sizeof(struct	Point));

p->x	=	x;

p->y	=	y;

return	p;

}

double	distance(struct	Point*	p1,	struct	Point*	p2)	{

double	dx	=	p1->x	-	p2->x;

double	dy	=	p1->y	-	p2->y;

return	sqrt(dx*dx+dy*dy);

}

The	users	of	point.h	have	no	access	whatsoever	to	the	members	of	struct
Point.	They	can	call	the	makePoint()	function,	and	the	distance()	function,
but	they	have	absolutely	no	knowledge	of	the	implementation	of	either	the	Point
data	structure	or	the	functions.

This	is	perfect	encapsulation—in	a	non-OO	language.	C	programmers	used	to	do
this	kind	of	thing	all	the	time.	We	would	forward	declare	data	structures	and
functions	in	header	files,	and	then	implement	them	in	implementation	files.	Our
users	never	had	access	to	the	elements	in	those	implementation	files.

But	then	came	OO	in	the	form	of	C++—and	the	perfect	encapsulation	of	C	was
broken.

The	C++	compiler,	for	technical	reasons,1	needed	the	member	variables	of	a
class	to	be	declared	in	the	header	file	of	that	class.	So	our	Point	program
changed	to	look	like	this:

Click	here	to	view	code	image

point.h

class	Point	{

public:

Point(double	x,	double	y);

double	distance(const	Point&	p)	const;

private:

double	x;

double	y;

};

Click	here	to	view	code	image



point.cc

#include	"point.h"

#include	<math.h>

Point::Point(double	x,	double	y)

:	x(x),	y(y)

{}

double	Point::distance(const	Point&	p)	const	{

double	dx	=	x-p.x;

double	dy	=	y-p.y;

return	sqrt(dx*dx	+	dy*dy);

}

Clients	of	the	header	file	point.h	know	about	the	member	variables	x	and	y!
The	compiler	will	prevent	access	to	them,	but	the	client	still	knows	they	exist.
For	example,	if	those	member	names	are	changed,	the	point.cc	file	must	be
recompiled!	Encapsulation	has	been	broken.

Indeed,	the	way	encapsulation	is	partially	repaired	is	by	introducing	the	public,
private,	and	protected	keywords	into	the	language.	This,	however,	was	a	hack
necessitated	by	the	technical	need	for	the	compiler	to	see	those	variables	in	the
header	file.

Java	and	C#	simply	abolished	the	header/implementation	split	altogether,
thereby	weakening	encapsulation	even	more.	In	these	languages,	it	is	impossible
to	separate	the	declaration	and	definition	of	a	class.

For	these	reasons,	it	is	difficult	to	accept	that	OO	depends	on	strong
encapsulation.	Indeed,	many	OO	languages2	have	little	or	no	enforced
encapsulation.

OO	certainly	does	depend	on	the	idea	that	programmers	are	well-behaved
enough	to	not	circumvent	encapsulated	data.	Even	so,	the	languages	that	claim	to
provide	OO	have	only	weakened	the	once	perfect	encapsulation	we	enjoyed	with
C.

INHERITANCE?
If	OO	languages	did	not	give	us	better	encapsulation,	then	they	certainly	gave	us



inheritance.

Well—sort	of.	Inheritance	is	simply	the	redeclaration	of	a	group	of	variables	and
functions	within	an	enclosing	scope.	This	is	something	C	programmers3	were
able	to	do	manually	long	before	there	was	an	OO	language.

Consider	this	addition	to	our	original	point.h	C	program:

Click	here	to	view	code	image

namedPoint.h

struct	NamedPoint;

struct	NamedPoint*	makeNamedPoint(double	x,	double	y,	char*	name);

void	setName(struct	NamedPoint*	np,	char*	name);

char*	getName(struct	NamedPoint*	np);

Click	here	to	view	code	image

namedPoint.c

#include	"namedPoint.h"

#include	<stdlib.h>

struct	NamedPoint	{

double	x,y;

char*	name;

};

struct	NamedPoint*	makeNamedPoint(double	x,	double	y,	char*	name)	{

struct	NamedPoint*	p	=	malloc(sizeof(struct	NamedPoint));

p->x	=	x;

p->y	=	y;

p->name	=	name;

return	p;

}

void	setName(struct	NamedPoint*	np,	char*	name)	{

np->name	=	name;

}

char*	getName(struct	NamedPoint*	np)	{

return	np->name;

}

Click	here	to	view	code	image

main.c



#include	"point.h"

#include	"namedPoint.h"

#include	<stdio.h>

int	main(int	ac,	char**	av)	{

struct	NamedPoint*	origin	=	makeNamedPoint(0.0,	0.0,	"origin");

struct	NamedPoint*	upperRight	=	makeNamedPoint	(1.0,	1.0,	"upperRight");

printf("distance=%f\n",

distance(

(struct	Point*)	origin,	

(struct	Point*)	upperRight));

}

If	you	look	carefully	at	the	main	program,	you’ll	see	that	the	NamedPoint	data
structure	acts	as	though	it	is	a	derivative	of	the	Point	data	structure.	This	is
because	the	order	of	the	first	two	fields	in	NamedPoint	is	the	same	as	Point.	In
short,	NamedPoint	can	masquerade	as	Point	because	NamedPoint	is	a	pure
superset	of	Point	and	maintains	the	ordering	of	the	members	that	correspond	to
Point.

This	kind	of	trickery	was	a	common	practice4	of	programmers	prior	to	the
advent	of	OO.	In	fact,	such	trickery	is	how	C++	implements	single	inheritance.

Thus	we	might	say	that	we	had	a	kind	of	inheritance	long	before	OO	languages
were	invented.	That	statement	wouldn’t	quite	be	true,	though.	We	had	a	trick,	but
it’s	not	nearly	as	convenient	as	true	inheritance.	Moreover,	multiple	inheritance
is	a	considerably	more	difficult	to	achieve	by	such	trickery.

Note	also	that	in	main.c,	I	was	forced	to	cast	the	NamedPoint	arguments	to
Point.	In	a	real	OO	language,	such	upcasting	would	be	implicit.

It’s	fair	to	say	that	while	OO	languages	did	not	give	us	something	completely
brand	new,	it	did	make	the	masquerading	of	data	structures	significantly	more
convenient.

To	recap:	We	can	award	no	point	to	OO	for	encapsulation,	and	perhaps	a	half-
point	for	inheritance.	So	far,	that’s	not	such	a	great	score.

But	there’s	one	more	attribute	to	consider.

POLYMORPHISM?



Did	we	have	polymorphic	behavior	before	OO	languages?	Of	course	we	did.
Consider	this	simple	C	copy	program.

Click	here	to	view	code	image

#include	<stdio.h>

void	copy()	{

int	c;

while	((c=getchar())	!=	EOF)

putchar(c);

}

The	function	getchar()	reads	from	STDIN.	But	which	device	is	STDIN?	The
putchar()	function	writes	to	STDOUT.	But	which	device	is	that?	These	functions
are	polymorphic—their	behavior	depends	on	the	type	of	STDIN	and	STDOUT.

It’s	as	though	STDIN	and	STDOUT	are	Java-style	interfaces	that	have
implementations	for	each	device.	Of	course,	there	are	no	interfaces	in	the
example	C	program—so	how	does	the	call	to	getchar()	actually	get	delivered
to	the	device	driver	that	reads	the	character?

The	answer	to	that	question	is	pretty	straightforward.	The	UNIX	operating
system	requires	that	every	IO	device	driver	provide	five	standard	functions:5
open,	close,	read,	write,	and	seek.	The	signatures	of	those	functions	must	be
identical	for	every	IO	driver.

The	FILE	data	structure	contains	five	pointers	to	functions.	In	our	example,	it
might	look	like	this:

Click	here	to	view	code	image

struct	FILE	{

void	(*open)(char*	name,	int	mode);

void	(*close)();

int	(*read)();

void	(*write)(char);

void	(*seek)(long	index,	int	mode);

};

The	IO	driver	for	the	console	will	define	those	functions	and	load	up	a	FILE	data
structure	with	their	addresses—something	like	this:



Click	here	to	view	code	image

#include	"file.h"

void	open(char*	name,	int	mode)	{/*...*/}

void	close()	{/*...*/};

int	read()	{int	c;/*...*/	return	c;}

void	write(char	c)	{/*...*/}

void	seek(long	index,	int	mode)	{/*...*/}

struct	FILE	console	=	{open,	close,	read,	write,	seek};

Now	if	STDIN	is	defined	as	a	FILE*,	and	if	it	points	to	the	console	data	structure,
then	getchar()	might	be	implemented	this	way:

Click	here	to	view	code	image

extern	struct	FILE*	STDIN;

int	getchar()	{

return	STDIN->read();

}

In	other	words,	getchar()	simply	calls	the	function	pointed	to	by	the	read
pointer	of	the	FILE	data	structure	pointed	to	by	STDIN.

This	simple	trick	is	the	basis	for	all	polymorphism	in	OO.	In	C++,	for	example,
every	virtual	function	within	a	class	has	a	pointer	in	a	table	called	a	vtable,	and
all	calls	to	virtual	functions	go	through	that	table.	Constructors	of	derivatives
simply	load	their	versions	of	those	functions	into	the	vtable	of	the	object	being
created.

The	bottom	line	is	that	polymorphism	is	an	application	of	pointers	to	functions.
Programmers	have	been	using	pointers	to	functions	to	achieve	polymorphic
behavior	since	Von	Neumann	architectures	were	first	implemented	in	the	late
1940s.	In	other	words,	OO	has	provided	nothing	new.

Ah,	but	that’s	not	quite	correct.	OO	languages	may	not	have	given	us
polymorphism,	but	they	have	made	it	much	safer	and	much	more	convenient.

The	problem	with	explicitly	using	pointers	to	functions	to	create	polymorphic
behavior	is	that	pointers	to	functions	are	dangerous.	Such	use	is	driven	by	a	set
of	manual	conventions.	You	have	to	remember	to	follow	the	convention	to



initialize	those	pointers.	You	have	to	remember	to	follow	the	convention	to	call
all	your	functions	through	those	pointers.	If	any	programmer	fails	to	remember
these	conventions,	the	resulting	bug	can	be	devilishly	hard	to	track	down	and
eliminate.

OO	languages	eliminate	these	conventions	and,	therefore,	these	dangers.	Using
an	OO	language	makes	polymorphism	trivial.	That	fact	provides	an	enormous
power	that	old	C	programmers	could	only	dream	of.	On	this	basis,	we	can
conclude	that	OO	imposes	discipline	on	indirect	transfer	of	control.

THE	POWER	OF	POLYMORPHISM

What’s	so	great	about	polymorphism?	To	better	appreciate	its	charms,	let’s
reconsider	the	example	copy	program.	What	happens	to	that	program	if	a	new	IO
device	is	created?	Suppose	we	want	to	use	the	copy	program	to	copy	data	from	a
handwriting	recognition	device	to	a	speech	synthesizer	device:	How	do	we	need
to	change	the	copy	program	to	get	it	to	work	with	those	new	devices?

We	don’t	need	any	changes	at	all!	Indeed,	we	don’t	even	need	to	recompile	the
copy	program.	Why?	Because	the	source	code	of	the	copy	program	does	not
depend	on	the	source	code	of	the	IO	drivers.	As	long	as	those	IO	drivers
implement	the	five	standard	functions	defined	by	FILE,	the	copy	program	will	be
happy	to	use	them.

In	short,	the	IO	devices	have	become	plugins	to	the	copy	program.

Why	did	the	UNIX	operating	system	make	IO	devices	plugins?	Because	we
learned,	in	the	late	1950s,	that	our	programs	should	be	device	independent.
Why?	Because	we	wrote	lots	of	programs	that	were	device	dependent,	only	to
discover	that	we	really	wanted	those	programs	to	do	the	same	job	but	use	a
different	device.

For	example,	we	often	wrote	programs	that	read	input	data	from	decks	of	cards,6
and	then	punched	new	decks	of	cards	as	output.	Later,	our	customers	stopped
giving	us	decks	of	cards	and	started	giving	us	reels	of	magnetic	tape.	This	was
very	inconvenient,	because	it	meant	rewriting	large	portions	of	the	original
program.	It	would	be	very	convenient	if	the	same	program	worked
interchangeably	with	cards	or	tape.



The	plugin	architecture	was	invented	to	support	this	kind	of	IO	device
independence,	and	has	been	implemented	in	almost	every	operating	system	since
its	introduction.	Even	so,	most	programmers	did	not	extend	the	idea	to	their	own
programs,	because	using	pointers	to	functions	was	dangerous.

OO	allows	the	plugin	architecture	to	be	used	anywhere,	for	anything.

DEPENDENCY	INVERSION

Imagine	what	software	was	like	before	a	safe	and	convenient	mechanism	for
polymorphism	was	available.	In	the	typical	calling	tree,	main	functions	called
high-level	functions,	which	called	mid-level	functions,	which	called	low-level
functions.	In	that	calling	tree,	however,	source	code	dependencies	inexorably
followed	the	flow	of	control	(Figure	5.1).

Figure	5.1	Source	code	dependencies	versus	flow	of	control

For	main	to	call	one	of	the	high-level	functions,	it	had	to	mention	the	name	of
the	module	that	contained	that	function	In	C,	this	was	a	#include.	In	Java,	it	was
an	import	statement.	In	C#,	it	was	a	using	statement.	Indeed,	every	caller	was
forced	to	mention	the	name	of	the	module	that	contained	the	callee.

This	requirement	presented	the	software	architect	with	few,	if	any,	options.	The
flow	of	control	was	dictated	by	the	behavior	of	the	system,	and	the	source	code
dependencies	were	dictated	by	that	flow	of	control.



When	polymorphism	is	brought	into	play,	however,	something	very	different	can
happen	(Figure	5.2).

Figure	5.2	Dependency	inversion

In	Figure	5.2,	module	HL1	calls	the	F()	function	in	module	ML1.	The	fact	that	it
calls	this	function	through	an	interface	is	a	source	code	contrivance.	At	runtime,
the	interface	doesn’t	exist.	HL1	simply	calls	F()	within	ML1.7

Note,	however,	that	the	source	code	dependency	(the	inheritance	relationship)
between	ML1	and	the	interface	I	points	in	the	opposite	direction	compared	to	the
flow	of	control.	This	is	called	dependency	inversion,	and	its	implications	for	the
software	architect	are	profound.

The	fact	that	OO	languages	provide	safe	and	convenient	polymorphism	means
that	any	source	code	dependency,	no	matter	where	it	is,	can	be	inverted.

Now	look	back	at	that	calling	tree	in	Figure	5.1,	and	its	many	source	code
dependencies.	Any	of	those	source	code	dependencies	can	be	turned	around	by
inserting	an	interface	between	them.

With	this	approach,	software	architects	working	in	systems	written	in	OO
languages	have	absolute	control	over	the	direction	of	all	source	code
dependencies	in	the	system.	They	are	not	constrained	to	align	those
dependencies	with	the	flow	of	control.	No	matter	which	module	does	the	calling
and	which	module	is	called,	the	software	architect	can	point	the	source	code



dependency	in	either	direction.

That	is	power!	That	is	the	power	that	OO	provides.	That’s	what	OO	is	really	all
about—at	least	from	the	architect’s	point	of	view.

What	can	you	do	with	that	power?	As	an	example,	you	can	rearrange	the	source
code	dependencies	of	your	system	so	that	the	database	and	the	user	interface
(UI)	depend	on	the	business	rules	(Figure	5.3),	rather	than	the	other	way	around.

Figure	5.3	The	database	and	the	user	interface	depend	on	the	business	rules

This	means	that	the	UI	and	the	database	can	be	plugins	to	the	business	rules.	It
means	that	the	source	code	of	the	business	rules	never	mentions	the	UI	or	the
database.

As	a	consequence,	the	business	rules,	the	UI,	and	the	database	can	be	compiled
into	three	separate	components	or	deployment	units	(e.g.,	jar	files,	DLLs,	or
Gem	files)	that	have	the	same	dependencies	as	the	source	code.	The	component
containing	the	business	rules	will	not	depend	on	the	components	containing	the
UI	and	database.

In	turn,	the	business	rules	can	be	deployed	independently	of	the	UI	and	the
database.	Changes	to	the	UI	or	the	database	need	not	have	any	effect	on	the
business	rules.	Those	components	can	be	deployed	separately	and	independently.

In	short,	when	the	source	code	in	a	component	changes,	only	that	component
needs	to	be	redeployed.	This	is	independent	deployability.

If	the	modules	in	your	system	can	be	deployed	independently,	then	they	can	be
developed	independently	by	different	teams.	That’s	independent	developability.

CONCLUSION



What	is	OO?	There	are	many	opinions	and	many	answers	to	this	question.	To	the
software	architect,	however,	the	answer	is	clear:	OO	is	the	ability,	through	the
use	of	polymorphism,	to	gain	absolute	control	over	every	source	code
dependency	in	the	system.	It	allows	the	architect	to	create	a	plugin	architecture,
in	which	modules	that	contain	high-level	policies	are	independent	of	modules
that	contain	low-level	details.	The	low-level	details	are	relegated	to	plugin
modules	that	can	be	deployed	and	developed	independently	from	the	modules
that	contain	high-level	policies.

1.	The	C++	compiler	needs	to	know	the	size	of	the	instances	of	each	class.
2.	For	example,	Smalltalk,	Python,	JavaScript,	Lua,	and	Ruby.
3.	Not	just	C	programmers:	Most	languages	of	that	era	had	the	capability	to	masquerade	one	data	structure
as	another.

4.	Indeed	it	still	is.
5.	UNIX	systems	vary;	this	is	just	an	example.
6.	Punched	cards—IBM	Hollerith	cards,	80	columns	wide.	I’m	sure	many	of	you	have	never	even	seen	one
of	these,	but	they	were	commonplace	in	the	1950s,	1960s,	and	even	1970s.

7.	Albeit	indirectly.



6
FUNCTIONAL	PROGRAMMING

In	many	ways,	the	concepts	of	functional	programming	predate	programming
itself.	This	paradigm	is	strongly	based	on	the	l-calculus	invented	by	Alonzo
Church	in	the	1930s.

SQUARES	OF	INTEGERS
To	explain	what	functional	programming	is,	it’s	best	to	examine	some	examples.
Let’s	investigate	a	simple	problem:	printing	the	squares	of	the	first	25	integers.

In	a	language	like	Java,	we	might	write	the	following:



Click	here	to	view	code	image

public	class	Squint	{

public	static	void	main(String	args[])	{

for	(int	i=0;	i<25;	i++)

System.out.println(i*i);

}

}

In	a	language	like	Clojure,	which	is	a	derivative	of	Lisp,	and	is	functional,	we
might	implement	this	same	program	as	follows:

Click	here	to	view	code	image

(println	(take	25	(map	(fn	[x]	(*	x	x))	(range))))

If	you	don’t	know	Lisp,	then	this	might	look	a	little	strange.	So	let	me	reformat	it
a	bit	and	add	some	comments.

Click	here	to	view	code	image

(println	;___________________	Print

(take	25	;_________________	the	first	25

(map	(fn	[x]	(*	x	x))	;__	squares

(range))))	;___________	of	Integers

It	should	be	clear	that	println,	take,	map,	and	range	are	all	functions.	In	Lisp,
you	call	a	function	by	putting	it	in	parentheses.	For	example,	(range)	calls	the
range	function.

The	expression	(fn	[x]	(*	x	x))	is	an	anonymous	function	that	calls	the
multiply	function,	passing	its	input	argument	in	twice.	In	other	words,	it
computes	the	square	of	its	input.

Looking	at	the	whole	thing	again,	it’s	best	to	start	with	the	innermost	function
call.

•	The	range	function	returns	a	never-ending	list	of	integers	starting	with	0.
•	This	list	is	passed	into	the	map	function,	which	calls	the	anonymous	squaring
function	on	each	element,	producing	a	new	never-ending	list	of	all	the	squares.

•	The	list	of	squares	is	passed	into	the	take	function,	which	returns	a	new	list
with	only	the	first	25	elements.



•	The	println	function	prints	its	input,	which	is	a	list	of	the	first	25	squares	of
integers.

If	you	find	yourself	terrified	by	the	concept	of	never-ending	lists,	don’t	worry.
Only	the	first	25	elements	of	those	never-ending	lists	are	actually	created.	That’s
because	no	element	of	a	never-ending	list	is	evaluated	until	it	is	accessed.

If	you	found	all	of	that	confusing,	then	you	can	look	forward	to	a	glorious	time
learning	all	about	Clojure	and	functional	programming.	It	is	not	my	goal	to	teach
you	about	these	topics	here.

Instead,	my	goal	here	is	to	point	out	something	very	dramatic	about	the
difference	between	the	Clojure	and	Java	programs.	The	Java	program	uses	a
mutable	variable—a	variable	that	changes	state	during	the	execution	of	the
program.	That	variable	is	i—the	loop	control	variable.	No	such	mutable	variable
exists	in	the	Clojure	program.	In	the	Clojure	program,	variables	like	x	are
initialized,	but	they	are	never	modified.

This	leads	us	to	a	surprising	statement:	Variables	in	functional	languages	do	not
vary.

IMMUTABILITY	AND	ARCHITECTURE
Why	is	this	point	important	as	an	architectural	consideration?	Why	would	an
architect	be	concerned	with	the	mutability	of	variables?	The	answer	is	absurdly
simple:	All	race	conditions,	deadlock	conditions,	and	concurrent	update
problems	are	due	to	mutable	variables.	You	cannot	have	a	race	condition	or	a
concurrent	update	problem	if	no	variable	is	ever	updated.	You	cannot	have
deadlocks	without	mutable	locks.

In	other	words,	all	the	problems	that	we	face	in	concurrent	applications—all	the
problems	we	face	in	applications	that	require	multiple	threads,	and	multiple
processors—cannot	happen	if	there	are	no	mutable	variables.

As	an	architect,	you	should	be	very	interested	in	issues	of	concurrency.	You	want
to	make	sure	that	the	systems	you	design	will	be	robust	in	the	presence	of
multiple	threads	and	processors.	The	question	you	must	be	asking	yourself,	then,
is	whether	immutability	is	practicable.



The	answer	to	that	question	is	affirmative,	if	you	have	infinite	storage	and
infinite	processor	speed.	Lacking	those	infinite	resources,	the	answer	is	a	bit
more	nuanced.	Yes,	immutability	can	be	practicable,	if	certain	compromises	are
made.

Let’s	look	at	some	of	those	compromises.

SEGREGATION	OF	MUTABILITY
One	of	the	most	common	compromises	in	regard	to	immutability	is	to	segregate
the	application,	or	the	services	within	the	application,	into	mutable	and
immutable	components.	The	immutable	components	perform	their	tasks	in	a
purely	functional	way,	without	using	any	mutable	variables.	The	immutable
components	communicate	with	one	or	more	other	components	that	are	not
purely	functional,	and	allow	for	the	state	of	variables	to	be	mutated	(Figure	6.1).

Figure	6.1	Mutating	state	and	transactional	memory

Since	mutating	state	exposes	those	components	to	all	the	problems	of
concurrency,	it	is	common	practice	to	use	some	kind	of	transactional	memory	to
protect	the	mutable	variables	from	concurrent	updates	and	race	conditions.

Transactional	memory	simply	treats	variables	in	memory	the	same	way	a
database	treats	records	on	disk.1	It	protects	those	variables	with	a	transaction-	or
retry-based	scheme.



A	simple	example	of	this	approach	is	Clojure’s	atom	facility:

Click	here	to	view	code	image

(def	counter	(atom	0))	;	initialize	counter	to	0

(swap!	counter	inc)	;	safely	increment	counter.

In	this	code,	the	counter	variable	is	defined	as	an	atom.	In	Clojure,	an	atom	is	a
special	kind	of	variable	whose	value	is	allowed	to	mutate	under	very	disciplined
conditions	that	are	enforced	by	the	swap!	function.

The	swap!	function,	shown	in	the	preceding	code,	takes	two	arguments:	the	atom
to	be	mutated,	and	a	function	that	computes	the	new	value	to	be	stored	in	the
atom.	In	our	example	code,	the	counter	atom	will	be	changed	to	the	value
computed	by	the	inc	function,	which	simply	increments	its	argument.

The	strategy	used	by	swap!	is	a	traditional	compare	and	swap	algorithm.	The
value	of	counter	is	read	and	passed	to	inc.	When	inc	returns,	the	value	of
counter	is	locked	and	compared	to	the	value	that	was	passed	to	inc.	If	the	value
is	the	same,	then	the	value	returned	by	inc	is	stored	in	counter	and	the	lock	is
released.	Otherwise,	the	lock	is	released,	and	the	strategy	is	retried	from	the
beginning.

The	atom	facility	is	adequate	for	simple	applications.	Unfortunately,	it	cannot
completely	safeguard	against	concurrent	updates	and	deadlocks	when	multiple
dependent	variables	come	into	play.	In	those	instances,	more	elaborate	facilities
can	be	used.

The	point	is	that	well-structured	applications	will	be	segregated	into	those
components	that	do	not	mutate	variables	and	those	that	do.	This	kind	of
segregation	is	supported	by	the	use	of	appropriate	disciplines	to	protect	those
mutated	variables.

Architects	would	be	wise	to	push	as	much	processing	as	possible	into	the
immutable	components,	and	to	drive	as	much	code	as	possible	out	of	those
components	that	must	allow	mutation.

EVENT	SOURCING



The	limits	of	storage	and	processing	power	have	been	rapidly	receding	from
view.	Nowadays	it	is	common	for	processors	to	execute	billions	of	instructions
per	second	and	to	have	billions	of	bytes	of	RAM.	The	more	memory	we	have,
and	the	faster	our	machines	are,	the	less	we	need	mutable	state.

As	a	simple	example,	imagine	a	banking	application	that	maintains	the	account
balances	of	its	customers.	It	mutates	those	balances	when	deposit	and
withdrawal	transactions	are	executed.

Now	imagine	that	instead	of	storing	the	account	balances,	we	store	only	the
transactions.	Whenever	anyone	wants	to	know	the	balance	of	an	account,	we
simply	add	up	all	the	transactions	for	that	account,	from	the	beginning	of	time.
This	scheme	requires	no	mutable	variables.

Obviously,	this	approach	sounds	absurd.	Over	time,	the	number	of	transactions
would	grow	without	bound,	and	the	processing	power	required	to	compute	the
totals	would	become	intolerable.	To	make	this	scheme	work	forever,	we	would
need	infinite	storage	and	infinite	processing	power.

But	perhaps	we	don’t	have	to	make	the	scheme	work	forever.	And	perhaps	we
have	enough	storage	and	enough	processing	power	to	make	the	scheme	work	for
the	reasonable	lifetime	of	the	application.

This	is	the	idea	behind	event	sourcing.2	Event	sourcing	is	a	strategy	wherein	we
store	the	transactions,	but	not	the	state.	When	state	is	required,	we	simply	apply
all	the	transactions	from	the	beginning	of	time.

Of	course,	we	can	take	shortcuts.	For	example,	we	can	compute	and	save	the
state	every	midnight.	Then,	when	the	state	information	is	required,	we	need
compute	only	the	transactions	since	midnight.

Now	consider	the	data	storage	required	for	this	scheme:	We	would	need	a	lot	of
it.	Realistically,	offline	data	storage	has	been	growing	so	fast	that	we	now
consider	trillions	of	bytes	to	be	small—so	we	have	a	lot	of	it.

More	importantly,	nothing	ever	gets	deleted	or	updated	from	such	a	data	store.
As	a	consequence,	our	applications	are	not	CRUD;	they	are	just	CR.	Also,
because	neither	updates	nor	deletions	occur	in	the	data	store,	there	cannot	be	any
concurrent	update	issues.



If	we	have	enough	storage	and	enough	processor	power,	we	can	make	our
applications	entirely	immutable—and,	therefore,	entirely	functional.

If	this	still	sounds	absurd,	it	might	help	if	you	remembered	that	this	is	precisely
the	way	your	source	code	control	system	works.

CONCLUSION
To	summarize:

•	Structured	programming	is	discipline	imposed	upon	direct	transfer	of	control.
•	Object-oriented	programming	is	discipline	imposed	upon	indirect	transfer	of
control.

•	Functional	programming	is	discipline	imposed	upon	variable	assignment.

Each	of	these	three	paradigms	has	taken	something	away	from	us.	Each	restricts
some	aspect	of	the	way	we	write	code.	None	of	them	has	added	to	our	power	or
our	capabilities.

What	we	have	learned	over	the	last	half-century	is	what	not	to	do.

With	that	realization,	we	have	to	face	an	unwelcome	fact:	Software	is	not	a
rapidly	advancing	technology.	The	rules	of	software	are	the	same	today	as	they
were	in	1946,	when	Alan	Turing	wrote	the	very	first	code	that	would	execute	in
an	electronic	computer.	The	tools	have	changed,	and	the	hardware	has	changed,
but	the	essence	of	software	remains	the	same.

Software—the	stuff	of	computer	programs—is	composed	of	sequence,	selection,
iteration,	and	indirection.	Nothing	more.	Nothing	less.

1.	I	know...	What’s	a	disk?
2.	Thanks	to	Greg	Young	for	teaching	me	about	this	concept.



III
DESIGN	PRINCIPLES

Good	software	systems	begin	with	clean	code.	On	the	one	hand,	if	the	bricks
aren’t	well	made,	the	architecture	of	the	building	doesn’t	matter	much.	On	the
other	hand,	you	can	make	a	substantial	mess	with	well-made	bricks.	This	is
where	the	SOLID	principles	come	in.

The	SOLID	principles	tell	us	how	to	arrange	our	functions	and	data	structures
into	classes,	and	how	those	classes	should	be	interconnected.	The	use	of	the
word	“class”	does	not	imply	that	these	principles	are	applicable	only	to	object-
oriented	software.	A	class	is	simply	a	coupled	grouping	of	functions	and	data.
Every	software	system	has	such	groupings,	whether	they	are	called	classes	or
not.	The	SOLID	principles	apply	to	those	groupings.



The	goal	of	the	principles	is	the	creation	of	mid-level	software	structures	that:

•	Tolerate	change,
•	Are	easy	to	understand,	and
•	Are	the	basis	of	components	that	can	be	used	in	many	software	systems.

The	term	“mid-level”	refers	to	the	fact	that	these	principles	are	applied	by
programmers	working	at	the	module	level.	They	are	applied	just	above	the	level
of	the	code	and	help	to	define	the	kinds	of	software	structures	used	within
modules	and	components.

Just	as	it	is	possible	to	create	a	substantial	mess	with	well-made	bricks,	so	it	is
also	possible	to	create	a	system-wide	mess	with	well-designed	mid-level
components.	For	this	reason,	once	we	have	covered	the	SOLID	principles,	we
will	move	on	to	their	counterparts	in	the	component	world,	and	then	to	the
principles	of	high-level	architecture.

The	history	of	the	SOLID	principles	is	long.	I	began	to	assemble	them	in	the	late
1980s	while	debating	software	design	principles	with	others	on	USENET	(an
early	kind	of	Facebook).	Over	the	years,	the	principles	have	shifted	and	changed.
Some	were	deleted.	Others	were	merged.	Still	others	were	added.	The	final
grouping	stabilized	in	the	early	2000s,	although	I	presented	them	in	a	different
order.

In	2004	or	thereabouts,	Michael	Feathers	sent	me	an	email	saying	that	if	I
rearranged	the	principles,	their	first	words	would	spell	the	word	SOLID—and
thus	the	SOLID	principles	were	born.

The	chapters	that	follow	describe	each	principle	more	thoroughly.	Here	is	the
executive	summary:

•	SRP:	The	Single	Responsibility	Principle
An	active	corollary	to	Conway’s	law:	The	best	structure	for	a	software	system
is	heavily	influenced	by	the	social	structure	of	the	organization	that	uses	it	so
that	each	software	module	has	one,	and	only	one,	reason	to	change.

•	OCP:	The	Open-Closed	Principle
Bertrand	Meyer	made	this	principle	famous	in	the	1980s.	The	gist	is	that	for
software	systems	to	be	easy	to	change,	they	must	be	designed	to	allow	the



behavior	of	those	systems	to	be	changed	by	adding	new	code,	rather	than
changing	existing	code.

•	LSP:	The	Liskov	Substitution	Principle
Barbara	Liskov’s	famous	definition	of	subtypes,	from	1988.	In	short,	this
principle	says	that	to	build	software	systems	from	interchangeable	parts,	those
parts	must	adhere	to	a	contract	that	allows	those	parts	to	be	substituted	one	for
another.

•	ISP:	The	Interface	Segregation	Principle
This	principle	advises	software	designers	to	avoid	depending	on	things	that
they	don’t	use.

•	DIP:	The	Dependency	Inversion	Principle
The	code	that	implements	high-level	policy	should	not	depend	on	the	code	that
implements	low-level	details.	Rather,	details	should	depend	on	policies.

These	principles	have	been	described	in	detail	in	many	different	publications1
over	the	years.	The	chapters	that	follow	will	focus	on	the	architectural
implications	of	these	principles	instead	of	repeating	those	detailed	discussions.	If
you	are	not	already	familiar	with	these	principles,	what	follows	is	insufficient	to
understand	them	in	detail	and	you	would	be	well	advised	to	study	them	in	the
footnoted	documents.

1.	For	example,	Agile	Software	Development,	Principles,	Patterns,	and	Practices,	Robert	C.	Martin,	Prentice
Hall,	2002,	http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod,	and
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)	(or	just	google	SOLID).

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)


7
SRP:	THE	SINGLE	RESPONSIBILITY

PRINCIPLE

Of	all	the	SOLID	principles,	the	Single	Responsibility	Principle	(SRP)	might	be
the	least	well	understood.	That’s	likely	because	it	has	a	particularly	inappropriate
name.	It	is	too	easy	for	programmers	to	hear	the	name	and	then	assume	that	it
means	that	every	module	should	do	just	one	thing.

Make	no	mistake,	there	is	a	principle	like	that.	A	function	should	do	one,	and
only	one,	thing.	We	use	that	principle	when	we	are	refactoring	large	functions
into	smaller	functions;	we	use	it	at	the	lowest	levels.	But	it	is	not	one	of	the
SOLID	principles—it	is	not	the	SRP.



Historically,	the	SRP	has	been	described	this	way:

A	module	should	have	one,	and	only	one,	reason	to	change.

Software	systems	are	changed	to	satisfy	users	and	stakeholders;	those	users	and
stakeholders	are	the	“reason	to	change”	that	the	principle	is	talking	about.
Indeed,	we	can	rephrase	the	principle	to	say	this:

A	module	should	be	responsible	to	one,	and	only	one,	user	or	stakeholder.

Unfortunately,	the	words	“user”	and	“stakeholder”	aren’t	really	the	right	words
to	use	here.	There	will	likely	be	more	than	one	user	or	stakeholder	who	wants
the	system	changed	in	the	same	way.	Instead,	we’re	really	referring	to	a	group—
one	or	more	people	who	require	that	change.	We’ll	refer	to	that	group	as	an
actor.

Thus	the	final	version	of	the	SRP	is:

A	module	should	be	responsible	to	one,	and	only	one,	actor.

Now,	what	do	we	mean	by	the	word	“module”?	The	simplest	definition	is	just	a
source	file.	Most	of	the	time	that	definition	works	fine.	Some	languages	and
development	environments,	though,	don’t	use	source	files	to	contain	their	code.
In	those	cases	a	module	is	just	a	cohesive	set	of	functions	and	data	structures.

That	word	“cohesive”	implies	the	SRP.	Cohesion	is	the	force	that	binds	together
the	code	responsible	to	a	single	actor.

Perhaps	the	best	way	to	understand	this	principle	is	by	looking	at	the	symptoms
of	violating	it.

SYMPTOM	1:	ACCIDENTAL
DUPLICATION
My	favorite	example	is	the	Employee	class	from	a	payroll	application.	It	has
three	methods:	calculatePay(),	reportHours(),	and	save()	(Figure	7.1).



Figure	7.1	The	Employee	class

This	class	violates	the	SRP	because	those	three	methods	are	responsible	to	three
very	different	actors.

•	The	calculatePay()	method	is	specified	by	the	accounting	department,	which
reports	to	the	CFO.

•	The	reportHours()	method	is	specified	and	used	by	the	human	resources
department,	which	reports	to	the	COO.

•	The	save()	method	is	specified	by	the	database	administrators	(DBAs),	who
report	to	the	CTO.

By	putting	the	source	code	for	these	three	methods	into	a	single	Employee	class,
the	developers	have	coupled	each	of	these	actors	to	the	others.	This	coupling	can
cause	the	actions	of	the	CFO’s	team	to	affect	something	that	the	COO’s	team
depends	on.

For	example,	suppose	that	the	calculatePay()	function	and	the	reportHours()
function	share	a	common	algorithm	for	calculating	non-overtime	hours.	Suppose
also	that	the	developers,	who	are	careful	not	to	duplicate	code,	put	that	algorithm
into	a	function	named	regularHours()	(Figure	7.2).



Figure	7.2	Shared	algorithm

Now	suppose	that	the	CFO’s	team	decides	that	the	way	non-overtime	hours	are
calculated	needs	to	be	tweaked.	In	contrast,	the	COO’s	team	in	HR	does	not
want	that	particular	tweak	because	they	use	non-overtime	hours	for	a	different
purpose.

A	developer	is	tasked	to	make	the	change,	and	sees	the	convenient
regularHours()	function	called	by	the	calculatePay()	method.	Unfortunately,
that	developer	does	not	notice	that	the	function	is	also	called	by	the
reportHours()	function.

The	developer	makes	the	required	change	and	carefully	tests	it.	The	CFO’s	team
validates	that	the	new	function	works	as	desired,	and	the	system	is	deployed.

Of	course,	the	COO’s	team	doesn’t	know	that	this	is	happening.	The	HR
personnel	continue	to	use	the	reports	generated	by	the	reportHours()	function
—but	now	they	contain	incorrect	numbers.	Eventually	the	problem	is
discovered,	and	the	COO	is	livid	because	the	bad	data	has	cost	his	budget
millions	of	dollars.

We’ve	all	seen	things	like	this	happen.	These	problems	occur	because	we	put
code	that	different	actors	depend	on	into	close	proximity.	The	SRP	says	to
separate	the	code	that	different	actors	depend	on.

SYMPTOM	2:	MERGES



It’s	not	hard	to	imagine	that	merges	will	be	common	in	source	files	that	contain
many	different	methods.	This	situation	is	especially	likely	if	those	methods	are
responsible	to	different	actors.

For	example,	suppose	that	the	CTO’s	team	of	DBAs	decides	that	there	should	be
a	simple	schema	change	to	the	Employee	table	of	the	database.	Suppose	also	that
the	COO’s	team	of	HR	clerks	decides	that	they	need	a	change	in	the	format	of
the	hours	report.

Two	different	developers,	possibly	from	two	different	teams,	check	out	the
Employee	class	and	begin	to	make	changes.	Unfortunately	their	changes	collide.
The	result	is	a	merge.

I	probably	don’t	need	to	tell	you	that	merges	are	risky	affairs.	Our	tools	are
pretty	good	nowadays,	but	no	tool	can	deal	with	every	merge	case.	In	the	end,
there	is	always	risk.

In	our	example,	the	merge	puts	both	the	CTO	and	the	COO	at	risk.	It’s	not
inconceivable	that	the	CFO	could	be	affected	as	well.

There	are	many	other	symptoms	that	we	could	investigate,	but	they	all	involve
multiple	people	changing	the	same	source	file	for	different	reasons.

Once	again,	the	way	to	avoid	this	problem	is	to	separate	code	that	supports
different	actors.

SOLUTIONS
There	are	many	different	solutions	to	this	problem.	Each	moves	the	functions
into	different	classes.

Perhaps	the	most	obvious	way	to	solve	the	problem	is	to	separate	the	data	from
the	functions.	The	three	classes	share	access	to	EmployeeData,	which	is	a	simple
data	structure	with	no	methods	(Figure	7.3).	Each	class	holds	only	the	source
code	necessary	for	its	particular	function.	The	three	classes	are	not	allowed	to
know	about	each	other.	Thus	any	accidental	duplication	is	avoided.



Figure	7.3	The	three	classes	do	not	know	about	each	other

The	downside	of	this	solution	is	that	the	developers	now	have	three	classes	that
they	have	to	instantiate	and	track.	A	common	solution	to	this	dilemma	is	to	use
the	Facade	pattern	(Figure	7.4).

Figure	7.4	The	Facade	pattern

The	EmployeeFacade	contains	very	little	code.	It	is	responsible	for	instantiating
and	delegating	to	the	classes	with	the	functions.

Some	developers	prefer	to	keep	the	most	important	business	rules	closer	to	the
data.	This	can	be	done	by	keeping	the	most	important	method	in	the	original
Employee	class	and	then	using	that	class	as	a	Facade	for	the	lesser	functions
(Figure	7.5).



Figure	7.5	The	most	important	method	is	kept	in	the	original	Employee	class	and	used	as	a	Facade	for	the
lesser	functions

You	might	object	to	these	solutions	on	the	basis	that	every	class	would	contain
just	one	function.	This	is	hardly	the	case.	The	number	of	functions	required	to
calculate	pay,	generate	a	report,	or	save	the	data	is	likely	to	be	large	in	each	case.
Each	of	those	classes	would	have	many	private	methods	in	them.

Each	of	the	classes	that	contain	such	a	family	of	methods	is	a	scope.	Outside	of
that	scope,	no	one	knows	that	the	private	members	of	the	family	exist.

CONCLUSION
The	Single	Responsibility	Principle	is	about	functions	and	classes—but	it
reappears	in	a	different	form	at	two	more	levels.	At	the	level	of	components,	it
becomes	the	Common	Closure	Principle.	At	the	architectural	level,	it	becomes
the	Axis	of	Change	responsible	for	the	creation	of	Architectural	Boundaries.
We’ll	be	studying	all	of	these	ideas	in	the	chapters	to	come.



8
OCP:	THE	OPEN-CLOSED	PRINCIPLE

The	Open-Closed	Principle	(OCP)	was	coined	in	1988	by	Bertrand	Meyer.1	It
says:

A	software	artifact	should	be	open	for	extension	but	closed	for	modification.

In	other	words,	the	behavior	of	a	software	artifact	ought	to	be	extendible,
without	having	to	modify	that	artifact.

This,	of	course,	is	the	most	fundamental	reason	that	we	study	software
architecture.	Clearly,	if	simple	extensions	to	the	requirements	force	massive
changes	to	the	software,	then	the	architects	of	that	software	system	have	engaged
in	a	spectacular	failure.



Most	students	of	software	design	recognize	the	OCP	as	a	principle	that	guides
them	in	the	design	of	classes	and	modules.	But	the	principle	takes	on	even
greater	significance	when	we	consider	the	level	of	architectural	components.

A	thought	experiment	will	make	this	clear.

A	THOUGHT	EXPERIMENT
Imagine,	for	a	moment,	that	we	have	a	system	that	displays	a	financial	summary
on	a	web	page.	The	data	on	the	page	is	scrollable,	and	negative	numbers	are
rendered	in	red.

Now	imagine	that	the	stakeholders	ask	that	this	same	information	be	turned	into
a	report	to	be	printed	on	a	black-and-white	printer.	The	report	should	be	properly
paginated,	with	appropriate	page	headers,	page	footers,	and	column	labels.
Negative	numbers	should	be	surrounded	by	parentheses.

Clearly,	some	new	code	must	be	written.	But	how	much	old	code	will	have	to
change?

A	good	software	architecture	would	reduce	the	amount	of	changed	code	to	the
barest	minimum.	Ideally,	zero.

How?	By	properly	separating	the	things	that	change	for	different	reasons	(the
Single	Responsibility	Principle),	and	then	organizing	the	dependencies	between
those	things	properly	(the	Dependency	Inversion	Principle).

By	applying	the	SRP,	we	might	come	up	with	the	data-flow	view	shown	in
Figure	8.1.	Some	analysis	procedure	inspects	the	financial	data	and	produces
reportable	data,	which	is	then	formatted	appropriately	by	the	two	reporter
processes.



Figure	8.1	Applying	the	SRP

The	essential	insight	here	is	that	generating	the	report	involves	two	separate
responsibilities:	the	calculation	of	the	reported	data,	and	the	presentation	of	that
data	into	a	web-	and	printer-friendly	form.

Having	made	this	separation,	we	need	to	organize	the	source	code	dependencies
to	ensure	that	changes	to	one	of	those	responsibilities	do	not	cause	changes	in
the	other.	Also,	the	new	organization	should	ensure	that	the	behavior	can	be
extended	without	undo	modification.

We	accomplish	this	by	partitioning	the	processes	into	classes,	and	separating
those	classes	into	components,	as	shown	by	the	double	lines	in	the	diagram	in
Figure	8.2.	In	this	figure,	the	component	at	the	upper	left	is	the	Controller.	At
the	upper	right,	we	have	the	Interactor.	At	the	lower	right,	there	is	the	Database.
Finally,	at	the	lower	left,	there	are	four	components	that	represent	the	Presenters
and	the	Views.



Figure	8.2	Partitioning	the	processes	into	classes	and	separating	the	classes	into	components

Classes	marked	with	<I>	are	interfaces;	those	marked	with	<DS>	are	data
structures.	Open	arrowheads	are	using	relationships.	Closed	arrowheads	are
implements	or	inheritance	relationships.

The	first	thing	to	notice	is	that	all	the	dependencies	are	source	code
dependencies.	An	arrow	pointing	from	class	A	to	class	B	means	that	the	source
code	of	class	A	mentions	the	name	of	class	B,	but	class	B	mentions	nothing
about	class	A.	Thus,	in	Figure	8.2,	FinancialDataMapper	knows	about
FinancialDataGateway	through	an	implements	relationship,	but
FinancialGateway	knows	nothing	at	all	about	FinancialDataMapper.

The	next	thing	to	notice	is	that	each	double	line	is	crossed	in	one	direction	only.
This	means	that	all	component	relationships	are	unidirectional,	as	shown	in	the



component	graph	in	Figure	8.3.	These	arrows	point	toward	the	components	that
we	want	to	protect	from	change.

Figure	8.3	The	component	relationships	are	unidirectional

Let	me	say	that	again:	If	component	A	should	be	protected	from	changes	in
component	B,	then	component	B	should	depend	on	component	A.

We	want	to	protect	the	Controller	from	changes	in	the	Presenters.	We	want	to
protect	the	Presenters	from	changes	in	the	Views.	We	want	to	protect	the
Interactor	from	changes	in—well,	anything.

The	Interactor	is	in	the	position	that	best	conforms	to	the	OCP.	Changes	to	the
Database,	or	the	Controller,	or	the	Presenters,	or	the	Views,	will	have	no	impact
on	the	Interactor.

Why	should	the	Interactor	hold	such	a	privileged	position?	Because	it	contains
the	business	rules.	The	Interactor	contains	the	highest-level	policies	of	the
application.	All	the	other	components	are	dealing	with	peripheral	concerns.	The
Interactor	deals	with	the	central	concern.

Even	though	the	Controller	is	peripheral	to	the	Interactor,	it	is	nevertheless
central	to	the	Presenters	and	Views.	And	while	the	Presenters	might	be
peripheral	to	the	Controller,	they	are	central	to	the	Views.

Notice	how	this	creates	a	hierarchy	of	protection	based	on	the	notion	of	“level.”



Interactors	are	the	highest-level	concept,	so	they	are	the	most	protected.	Views
are	among	the	lowest-level	concepts,	so	they	are	the	least	protected.	Presenters
are	higher	level	than	Views,	but	lower	level	than	the	Controller	or	the	Interactor.

This	is	how	the	OCP	works	at	the	architectural	level.	Architects	separate
functionality	based	on	how,	why,	and	when	it	changes,	and	then	organize	that
separated	functionality	into	a	hierarchy	of	components.	Higher-level	components
in	that	hierarchy	are	protected	from	the	changes	made	to	lower-level
components.

DIRECTIONAL	CONTROL
If	you	recoiled	in	horror	from	the	class	design	shown	earlier,	look	again.	Much
of	the	complexity	in	that	diagram	was	intended	to	make	sure	that	the
dependencies	between	the	components	pointed	in	the	correct	direction.

For	example,	the	FinancialDataGateway	interface	between	the
FinancialReportGenerator	and	the	FinancialDataMapper	exists	to	invert	the
dependency	that	would	otherwise	have	pointed	from	the	Interactor	component	to
the	Database	component.	The	same	is	true	of	the	FinancialReportPresenter
interface,	and	the	two	View	interfaces.

INFORMATION	HIDING
The	FinancialReportRequester	interface	serves	a	different	purpose.	It	is	there
to	protect	the	FinancialReportController	from	knowing	too	much	about	the
internals	of	the	Interactor.	If	that	interface	were	not	there,	then	the	Controller
would	have	transitive	dependencies	on	the	FinancialEntities.

Transitive	dependencies	are	a	violation	of	the	general	principle	that	software
entities	should	not	depend	on	things	they	don’t	directly	use.	We’ll	encounter	that
principle	again	when	we	talk	about	the	Interface	Segregation	Principle	and	the
Common	Reuse	Principle.

So,	even	though	our	first	priority	is	to	protect	the	Interactor	from	changes	to	the
Controller,	we	also	want	to	protect	the	Controller	from	changes	to	the	Interactor
by	hiding	the	internals	of	the	Interactor.



CONCLUSION
The	OCP	is	one	of	the	driving	forces	behind	the	architecture	of	systems.	The
goal	is	to	make	the	system	easy	to	extend	without	incurring	a	high	impact	of
change.	This	goal	is	accomplished	by	partitioning	the	system	into	components,
and	arranging	those	components	into	a	dependency	hierarchy	that	protects
higher-level	components	from	changes	in	lower-level	components.

1.	Bertrand	Meyer.	Object	Oriented	Software	Construction,	Prentice	Hall,	1988,	p.	23.
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LSP:	THE	LISKOV	SUBSTITUTION

PRINCIPLE

In	1988,	Barbara	Liskov	wrote	the	following	as	a	way	of	defining	subtypes.

What	is	wanted	here	is	something	like	the	following	substitution	property:	If	for	each	object	o1	of
type	S	there	is	an	object	o2	of	type	T	such	that	for	all	programs	P	defined	in	terms	of	T,	the
behavior	of	P	is	unchanged	when	o1	is	substituted	for	o2	then	S	is	a	subtype	of	T.1

To	understand	this	idea,	which	is	known	as	the	Liskov	Substitution	Principle
(LSP),	let’s	look	at	some	examples.



GUIDING	THE	USE	OF	INHERITANCE
Imagine	that	we	have	a	class	named	License,	as	shown	in	Figure	9.1.	This	class
has	a	method	named	calcFee(),	which	is	called	by	the	Billing	application.
There	are	two	“subtypes”	of	License:	PersonalLicense	and	BusinessLicense.
They	use	different	algorithms	to	calculate	the	license	fee.

Figure	9.1	License,	and	its	derivatives,	conform	to	LSP

This	design	conforms	to	the	LSP	because	the	behavior	of	the	Billing
application	does	not	depend,	in	any	way,	on	which	of	the	two	subtypes	it	uses.
Both	of	the	subtypes	are	substitutable	for	the	License	type.

THE	SQUARE/RECTANGLE	PROBLEM
The	canonical	example	of	a	violation	of	the	LSP	is	the	famed	(or	infamous,
depending	on	your	perspective)	square/rectangle	problem	(Figure	9.2).



Figure	9.2	The	infamous	square/rectangle	problem

In	this	example,	Square	is	not	a	proper	subtype	of	Rectangle	because	the	height
and	width	of	the	Rectangle	are	independently	mutable;	in	contrast,	the	height
and	width	of	the	Square	must	change	together.	Since	the	User	believes	it	is
communicating	with	a	Rectangle,	it	could	easily	get	confused.	The	following
code	shows	why:

Click	here	to	view	code	image

Rectangle	r	=	…

r.setW(5);

r.setH(2);

assert(r.area()	==	10);

If	the	…	code	produced	a	Square,	then	the	assertion	would	fail.

The	only	way	to	defend	against	this	kind	of	LSP	violation	is	to	add	mechanisms
to	the	User	(such	as	an	if	statement)	that	detects	whether	the	Rectangle	is,	in
fact,	a	Square.	Since	the	behavior	of	the	User	depends	on	the	types	it	uses,	those
types	are	not	substitutable.

LSP	AND	ARCHITECTURE



In	the	early	years	of	the	object-oriented	revolution,	we	thought	of	the	LSP	as	a
way	to	guide	the	use	of	inheritance,	as	shown	in	the	previous	sections.	However,
over	the	years	the	LSP	has	morphed	into	a	broader	principle	of	software	design
that	pertains	to	interfaces	and	implementations.

The	interfaces	in	question	can	be	of	many	forms.	We	might	have	a	Java-style
interface,	implemented	by	several	classes.	Or	we	might	have	several	Ruby
classes	that	share	the	same	method	signatures.	Or	we	might	have	a	set	of
services	that	all	respond	to	the	same	REST	interface.

In	all	of	these	situations,	and	more,	the	LSP	is	applicable	because	there	are	users
who	depend	on	well-defined	interfaces,	and	on	the	substitutability	of	the
implementations	of	those	interfaces.

The	best	way	to	understand	the	LSP	from	an	architectural	viewpoint	is	to	look	at
what	happens	to	the	architecture	of	a	system	when	the	principle	is	violated.

EXAMPLE	LSP	VIOLATION
Assume	that	we	are	building	an	aggregator	for	many	taxi	dispatch	services.
Customers	use	our	website	to	find	the	most	appropriate	taxi	to	use,	regardless	of
taxi	company.	Once	the	customer	makes	a	decision,	our	system	dispatches	the
chosen	taxi	by	using	a	restful	service.

Now	assume	that	the	URI	for	the	restful	dispatch	service	is	part	of	the
information	contained	in	the	driver	database.	Once	our	system	has	chosen	a
driver	appropriate	for	the	customer,	it	gets	that	URI	from	the	driver	record	and
then	uses	it	to	dispatch	the	driver.

Suppose	Driver	Bob	has	a	dispatch	URI	that	looks	like	this:

Click	here	to	view	code	image

purplecab.com/driver/Bob

Our	system	will	append	the	dispatch	information	onto	this	URI	and	send	it	with
a	PUT,	as	follows:

Click	here	to	view	code	image

http://purplecab.com/driver/Bob


purplecab.com/driver/Bob	

/pickupAddress/24	Maple	St.

/pickupTime/153

/destination/ORD

Clearly,	this	means	that	all	the	dispatch	services,	for	all	the	different	companies,
must	conform	to	the	same	REST	interface.	They	must	treat	the	pickupAddress,
pickupTime,	and	destination	fields	identically.

Now	suppose	the	Acme	taxi	company	hired	some	programmers	who	didn’t	read
the	spec	very	carefully.	They	abbreviated	the	destination	field	to	just	dest.	Acme
is	the	largest	taxi	company	in	our	area,	and	Acme’s	CEO’s	ex-wife	is	our	CEO’s
new	wife,	and	…	Well,	you	get	the	picture.	What	would	happen	to	the
architecture	of	our	system?

Obviously,	we	would	need	to	add	a	special	case.	The	dispatch	request	for	any
Acme	driver	would	have	to	be	constructed	using	a	different	set	of	rules	from	all
the	other	drivers.

The	simplest	way	to	accomplish	this	goal	would	be	to	add	an	if	statement	to	the
module	that	constructed	the	dispatch	command:

Click	here	to	view	code	image

if	(driver.getDispatchUri().startsWith("acme.com"))…

But,	of	course,	no	architect	worth	his	or	her	salt	would	allow	such	a	construction
to	exist	in	the	system.	Putting	the	word	“acme”	into	the	code	itself	creates	an
opportunity	for	all	kinds	of	horrible	and	mysterious	errors,	not	to	mention
security	breaches.

For	example,	what	if	Acme	became	even	more	successful	and	bought	the	Purple
Taxi	company.	What	if	the	merged	company	maintained	the	separate	brands	and
the	separate	websites,	but	unified	all	of	the	original	companies’	systems?	Would
we	have	to	add	another	if	statement	for	“purple”?

Our	architect	would	have	to	insulate	the	system	from	bugs	like	this	by	creating
some	kind	of	dispatch	command	creation	module	that	was	driven	by	a
configuration	database	keyed	by	the	dispatch	URI.	The	configuration	data	might
look	something	like	this:

http://purplecab.com/driver/Bob


Click	here	to	view	code	image

URI Dispatch	Format

Acme.com /pickupAddress/%s/pickupTime/%s/dest/%s

*.* /pickupAddress/%s/pickupTime/%s/destination/%s

And	so	our	architect	has	had	to	add	a	significant	and	complex	mechanism	to	deal
with	the	fact	that	the	interfaces	of	the	restful	services	are	not	all	substitutable.

CONCLUSION
The	LSP	can,	and	should,	be	extended	to	the	level	of	architecture.	A	simple
violation	of	substitutability,	can	cause	a	system’s	architecture	to	be	polluted	with
a	significant	amount	of	extra	mechanisms.

1.	Barbara	Liskov,	“Data	Abstraction	and	Hierarchy,”	SIGPLAN	Notices	23,	5	(May	1988).

http://Acme.com
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ISP:	THE	INTERFACE	SEGREGATION

PRINCIPLE

The	Interface	Segregation	Principle	(ISP)	derives	its	name	from	the	diagram
shown	in	Figure	10.1.



Figure	10.1	The	Interface	Segregation	Principle

In	the	situation	illustrated	in	Figure	10.1,	there	are	several	users	who	use	the
operations	of	the	OPS	class.	Let’s	assume	that	User1	uses	only	op1,	User2	uses
only	op2,	and	User3	uses	only	op3.

Now	imagine	that	OPS	is	a	class	written	in	a	language	like	Java.	Clearly,	in	that
case,	the	source	code	of	User1	will	inadvertently	depend	on	op2	and	op3,	even
though	it	doesn’t	call	them.	This	dependence	means	that	a	change	to	the	source
code	of	op2	in	OPS	will	force	User1	to	be	recompiled	and	redeployed,	even
though	nothing	that	it	cared	about	has	actually	changed.

This	problem	can	be	resolved	by	segregating	the	operations	into	interfaces	as
shown	in	Figure	10.2.

Again,	if	we	imagine	that	this	is	implemented	in	a	statically	typed	language	like
Java,	then	the	source	code	of	User1	will	depend	on	U1Ops,	and	op1,	but	will	not
depend	on	OPS.	Thus	a	change	to	OPS	that	User1	does	not	care	about	will	not
cause	User1	to	be	recompiled	and	redeployed.



Figure	10.2	Segregated	operations

ISP	AND	LANGUAGE
Clearly,	the	previously	given	description	depends	critically	on	language	type.
Statically	typed	languages	like	Java	force	programmers	to	create	declarations
that	users	must	import,	or	use,	or	otherwise	include.	It	is	these	included
declarations	in	source	code	that	create	the	source	code	dependencies	that	force
recompilation	and	redeployment.

In	dynamically	typed	languages	like	Ruby	and	Python,	such	declarations	don’t
exist	in	source	code.	Instead,	they	are	inferred	at	runtime.	Thus	there	are	no
source	code	dependencies	to	force	recompilation	and	redeployment.	This	is	the
primary	reason	that	dynamically	typed	languages	create	systems	that	are	more
flexible	and	less	tightly	coupled	than	statically	typed	languages.

This	fact	could	lead	you	to	conclude	that	the	ISP	is	a	language	issue,	rather	than
an	architecture	issue.

ISP	AND	ARCHITECTURE
If	you	take	a	step	back	and	look	at	the	root	motivations	of	the	ISP,	you	can	see	a
deeper	concern	lurking	there.	In	general,	it	is	harmful	to	depend	on	modules	that
contain	more	than	you	need.	This	is	obviously	true	for	source	code	dependencies



that	can	force	unnecessary	recompilation	and	redeployment—but	it	is	also	true	at
a	much	higher,	architectural	level.

Consider,	for	example,	an	architect	working	on	a	system,	S.	He	wants	to	include
a	certain	framework,	F,	into	the	system.	Now	suppose	that	the	authors	of	F	have
bound	it	to	a	particular	database,	D.	So	S	depends	on	F.	which	depends	on	D
(Figure	10.3).

Figure	10.3	A	problematic	architecture

Now	suppose	that	D	contains	features	that	F	does	not	use	and,	therefore,	that	S
does	not	care	about.	Changes	to	those	features	within	D	may	well	force	the
redeployment	of	F	and,	therefore,	the	redeployment	of	S.	Even	worse,	a	failure
of	one	of	the	features	within	D	may	cause	failures	in	F	and	S.

CONCLUSION
The	lesson	here	is	that	depending	on	something	that	carries	baggage	that	you
don’t	need	can	cause	you	troubles	that	you	didn’t	expect.

We’ll	explore	this	idea	in	more	detail	when	we	discuss	the	Common	Reuse
Principle	in	Chapter	13,	“Component	Cohesion.”
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DIP:	THE	DEPENDENCY	INVERSION

PRINCIPLE

The	Dependency	Inversion	Principle	(DIP)	tells	us	that	the	most	flexible	systems
are	those	in	which	source	code	dependencies	refer	only	to	abstractions,	not	to
concretions.

In	a	statically	typed	language,	like	Java,	this	means	that	the	use,	import,	and
include	statements	should	refer	only	to	source	modules	containing	interfaces,
abstract	classes,	or	some	other	kind	of	abstract	declaration.	Nothing	concrete
should	be	depended	on.

The	same	rule	applies	for	dynamically	typed	languages,	like	Ruby	and	Python.



Source	code	dependencies	should	not	refer	to	concrete	modules.	However,	in
these	languages	it	is	a	bit	harder	to	define	what	a	concrete	module	is.	In
particular,	it	is	any	module	in	which	the	functions	being	called	are	implemented.

Clearly,	treating	this	idea	as	a	rule	is	unrealistic,	because	software	systems	must
depend	on	many	concrete	facilities.	For	example,	the	String	class	in	Java	is
concrete,	and	it	would	be	unrealistic	to	try	to	force	it	to	be	abstract.	The	source
code	dependency	on	the	concrete	java.lang.string	cannot,	and	should	not,	be
avoided.

By	comparison,	the	String	class	is	very	stable.	Changes	to	that	class	are	very
rare	and	tightly	controlled.	Programmers	and	architects	do	not	have	to	worry
about	frequent	and	capricious	changes	to	String.

For	these	reasons,	we	tend	to	ignore	the	stable	background	of	operating	system
and	platform	facilities	when	it	comes	to	DIP.	We	tolerate	those	concrete
dependencies	because	we	know	we	can	rely	on	them	not	to	change.

It	is	the	volatile	concrete	elements	of	our	system	that	we	want	to	avoid
depending	on.	Those	are	the	modules	that	we	are	actively	developing,	and	that
are	undergoing	frequent	change.

STABLE	ABSTRACTIONS
Every	change	to	an	abstract	interface	corresponds	to	a	change	to	its	concrete
implementations.	Conversely,	changes	to	concrete	implementations	do	not
always,	or	even	usually,	require	changes	to	the	interfaces	that	they	implement.
Therefore	interfaces	are	less	volatile	than	implementations.

Indeed,	good	software	designers	and	architects	work	hard	to	reduce	the	volatility
of	interfaces.	They	try	to	find	ways	to	add	functionality	to	implementations
without	making	changes	to	the	interfaces.	This	is	Software	Design	101.

The	implication,	then,	is	that	stable	software	architectures	are	those	that	avoid
depending	on	volatile	concretions,	and	that	favor	the	use	of	stable	abstract
interfaces.	This	implication	boils	down	to	a	set	of	very	specific	coding	practices:

•	Don’t	refer	to	volatile	concrete	classes.	Refer	to	abstract	interfaces	instead.
This	rule	applies	in	all	languages,	whether	statically	or	dynamically	typed.	It



also	puts	severe	constraints	on	the	creation	of	objects	and	generally	enforces
the	use	of	Abstract	Factories.

•	Don’t	derive	from	volatile	concrete	classes.	This	is	a	corollary	to	the
previous	rule,	but	it	bears	special	mention.	In	statically	typed	languages,
inheritance	is	the	strongest,	and	most	rigid,	of	all	the	source	code	relationships;
consequently,	it	should	be	used	with	great	care.	In	dynamically	typed
languages,	inheritance	is	less	of	a	problem,	but	it	is	still	a	dependency—and
caution	is	always	the	wisest	choice.

•	Don’t	override	concrete	functions.	Concrete	functions	often	require	source
code	dependencies.	When	you	override	those	functions,	you	do	not	eliminate
those	dependencies—indeed,	you	inherit	them.	To	manage	those	dependencies,
you	should	make	the	function	abstract	and	create	multiple	implementations.

•	Never	mention	the	name	of	anything	concrete	and	volatile.	This	is	really
just	a	restatement	of	the	principle	itself.

FACTORIES
To	comply	with	these	rules,	the	creation	of	volatile	concrete	objects	requires
special	handling.	This	caution	is	warranted	because,	in	virtually	all	languages,
the	creation	of	an	object	requires	a	source	code	dependency	on	the	concrete
definition	of	that	object.

In	most	object-oriented	languages,	such	as	Java,	we	would	use	an	Abstract
Factory	to	manage	this	undesirable	dependency.

The	diagram	in	Figure	11.1	shows	the	structure.	The	Application	uses	the
ConcreteImpl	through	the	Service	interface.	However,	the	Application	must
somehow	create	instances	of	the	ConcreteImpl.	To	achieve	this	without	creating
a	source	code	dependency	on	the	ConcreteImpl,	the	Application	calls	the
makeSvc	method	of	the	ServiceFactory	interface.	This	method	is	implemented
by	the	ServiceFactoryImpl	class,	which	derives	from	ServiceFactory.	That
implementation	instantiates	the	ConcreteImpl	and	returns	it	as	a	Service.



Figure	11.1	Use	of	the	Abstract	Factory	pattern	to	manage	the	dependency

The	curved	line	in	Figure	11.1	is	an	architectural	boundary.	It	separates	the
abstract	from	the	concrete.	All	source	code	dependencies	cross	that	curved	line
pointing	in	the	same	direction,	toward	the	abstract	side.

The	curved	line	divides	the	system	into	two	components:	one	abstract	and	the
other	concrete.	The	abstract	component	contains	all	the	high-level	business	rules
of	the	application.	The	concrete	component	contains	all	the	implementation
details	that	those	business	rules	manipulate.

Note	that	the	flow	of	control	crosses	the	curved	line	in	the	opposite	direction	of
the	source	code	dependencies.	The	source	code	dependencies	are	inverted
against	the	flow	of	control—which	is	why	we	refer	to	this	principle	as
Dependency	Inversion.

CONCRETE	COMPONENTS
The	concrete	component	in	Figure	11.1	contains	a	single	dependency,	so	it
violates	the	DIP.	This	is	typical.	DIP	violations	cannot	be	entirely	removed,	but
they	can	be	gathered	into	a	small	number	of	concrete	components	and	kept
separate	from	the	rest	of	the	system.

Most	systems	will	contain	at	least	one	such	concrete	component—often	called
main	because	it	contains	the	main1	function.	In	the	case	illustrated	in	Figure	11.1,



the	main	function	would	instantiate	the	ServiceFactoryImpl	and	place	that
instance	in	a	global	variable	of	type	ServiceFactory.	The	Application	would
then	access	the	factory	through	that	global	variable.

CONCLUSION
As	we	move	forward	in	this	book	and	cover	higher-level	architectural	principles,
the	DIP	will	show	up	again	and	again.	It	will	be	the	most	visible	organizing
principle	in	our	architecture	diagrams.	The	curved	line	in	Figure	11.1	will
become	the	architectural	boundaries	in	later	chapters.	The	way	the	dependencies
cross	that	curved	line	in	one	direction,	and	toward	more	abstract	entities,	will
become	a	new	rule	that	we	will	call	the	Dependency	Rule.

1.	In	other	words,	the	function	that	is	invoked	by	the	operating	system	when	the	application	is	first	started
up.



IV
COMPONENT	PRINCIPLES

If	the	SOLID	principles	tell	us	how	to	arrange	the	bricks	into	walls	and	rooms,
then	the	component	principles	tell	us	how	to	arrange	the	rooms	into	buildings.
Large	software	systems,	like	large	buildings,	are	built	out	of	smaller
components.

In	Part	IV,	we	will	discuss	what	software	components	are,	which	elements
should	compose	them,	and	how	they	should	be	composed	together	into	systems.



12
COMPONENTS

Components	are	the	units	of	deployment.	They	are	the	smallest	entities	that	can
be	deployed	as	part	of	a	system.	In	Java,	they	are	jar	files.	In	Ruby,	they	are	gem
files.	In	.Net,	they	are	DLLs.	In	compiled	languages,	they	are	aggregations	of
binary	files.	In	interpreted	languages,	they	are	aggregations	of	source	files.	In	all
languages,	they	are	the	granule	of	deployment.

Components	can	be	linked	together	into	a	single	executable.	Or	they	can	be
aggregated	together	into	a	single	archive,	such	as	a	.war	file.	Or	they	can	be
independently	deployed	as	separate	dynamically	loaded	plugins,	such	as.jar	or
.dll	or	.exe	files.	Regardless	of	how	they	are	eventually	deployed,	well-
designed	components	always	retain	the	ability	to	be	independently	deployable
and,	therefore,	independently	developable.



A	BRIEF	HISTORY	OF	COMPONENTS
In	the	early	years	of	software	development,	programmers	controlled	the	memory
location	and	layout	of	their	programs.	One	of	the	first	lines	of	code	in	a	program
would	be	the	origin	statement,	which	declared	the	address	at	which	the	program
was	to	be	loaded.

Consider	the	following	simple	PDP-8	program.	It	consists	of	a	subroutine	named
GETSTR	that	inputs	a	string	from	the	keyboard	and	saves	it	in	a	buffer.	It	also	has
a	little	unit	test	program	to	exercise	GETSTR.

Click	here	to	view	code	image

*200

TLS

START,	CLA

TAD	BUFR

JMS	GETSTR

CLA

TAD	BUFR

JMS	PUTSTR

JMP	START

BUFR,	3000

GETSTR,	0

DCA	PTR

NXTCH,	KSF

JMP	-1

KRB

DCA	I	PTR

TAD	I	PTR

AND	K177

ISZ	PTR

TAD	MCR

SZA

JMP	NXTCH

K177,	177

MCR,	-15

Note	the	*200	command	at	the	start	of	this	program.	It	tells	the	compiler	to
generate	code	that	will	be	loaded	at	address	2008.

This	kind	of	programming	is	a	foreign	concept	for	most	programmers	today.
They	rarely	have	to	think	about	where	a	program	is	loaded	in	the	memory	of	the



computer.	But	in	the	early	days,	this	was	one	of	the	first	decisions	a	programmer
needed	to	make.	In	those	days,	programs	were	not	relocatable.

How	did	you	access	a	library	function	in	those	olden	days?	The	preceding	code
illustrates	the	approach	used.	Programmers	included	the	source	code	of	the
library	functions	with	their	application	code,	and	compiled	them	all	as	a	single
program.1	Libraries	were	kept	in	source,	not	in	binary.

The	problem	with	this	approach	was	that,	during	this	era,	devices	were	slow	and
memory	was	expensive	and,	therefore,	limited.	Compilers	needed	to	make
several	passes	over	the	source	code,	but	memory	was	too	limited	to	keep	all	the
source	code	resident.	Consequently,	the	compiler	had	to	read	in	the	source	code
several	times	using	the	slow	devices.

This	took	a	long	time—and	the	larger	your	function	library,	the	longer	the
compiler	took.	Compiling	a	large	program	could	take	hours.

To	shorten	the	compile	times,	programmers	separated	the	source	code	of	the
function	library	from	the	applications.	They	compiled	the	function	library
separately	and	loaded	the	binary	at	a	known	address—say,	20008.	They	created	a
symbol	table	for	the	function	library	and	compiled	that	with	their	application
code.	When	they	wanted	to	run	an	application,	they	would	load	the	binary
function	library,2	and	then	load	the	application.	Memory	looked	like	the	layout
shown	in	Figure	12.1.

Figure	12.1	Early	memory	layout



This	worked	fine	so	long	as	the	application	could	fit	between	addresses	00008
and	17778.	But	soon	applications	grew	to	be	larger	than	the	space	allotted	for
them.	At	that	point,	programmers	had	to	split	their	applications	into	two	address
segments,	jumping	around	the	function	library	(Figure	12.2).

Figure	12.2	Splitting	the	application	into	two	address	segments

Obviously,	this	was	not	a	sustainable	situation.	As	programmers	added	more
functions	to	the	function	library,	it	exceeded	its	bounds,	and	they	had	to	allocate
more	space	for	it	(in	this	example,	near	70008).	This	fragmentation	of	programs
and	libraries	necessarily	continued	as	computer	memory	grew.

Clearly,	something	had	to	be	done.

RELOCATABILITY
The	solution	was	relocatable	binaries.	The	idea	behind	them	was	very	simple.
The	compiler	was	changed	to	output	binary	code	that	could	be	relocated	in
memory	by	a	smart	loader.	The	loader	would	be	told	where	to	load	the
relocatable	code.	The	relocatable	code	was	instrumented	with	flags	that	told	the
loader	which	parts	of	the	loaded	data	had	to	be	altered	to	be	loaded	at	the
selected	address.	Usually	this	just	meant	adding	the	starting	address	to	any
memory	reference	addresses	in	the	binary.

Now	the	programmer	could	tell	the	loader	where	to	load	the	function	library,	and



where	to	load	the	application.	In	fact,	the	loader	would	accept	several	binary
inputs	and	simply	load	them	in	memory	one	right	after	the	other,	relocating	them
as	it	loaded	them.	This	allowed	programmers	to	load	only	those	functions	that
they	needed.

The	compiler	was	also	changed	to	emit	the	names	of	the	functions	as	metadata	in
the	relocatable	binary.	If	a	program	called	a	library	function,	the	compiler	would
emit	that	name	as	an	external	reference.	If	a	program	defined	a	library	function,
the	compiler	would	emit	that	name	as	an	external	definition.	Then	the	loader
could	link	the	external	references	to	the	external	definitions	once	it	had
determined	where	it	had	loaded	those	definitions.

And	the	linking	loader	was	born.

LINKERS
The	linking	loader	allowed	programmers	to	divide	their	programs	up	onto
separately	compilable	and	loadable	segments.	This	worked	well	when	relatively
small	programs	were	being	linked	with	relatively	small	libraries.	However,	in	the
late	1960s	and	early	1970s,	programmers	got	more	ambitious,	and	their
programs	got	a	lot	bigger.

Eventually,	the	linking	loaders	were	too	slow	to	tolerate.	Function	libraries	were
stored	on	slow	devices	such	a	magnetic	tape.	Even	the	disks,	back	then,	were
quite	slow.	Using	these	relatively	slow	devices,	the	linking	loaders	had	to	read
dozens,	if	not	hundreds,	of	binary	libraries	to	resolve	the	external	references.	As
programs	grew	larger	and	larger,	and	more	library	functions	accumulated	in
libraries,	a	linking	loader	could	take	more	than	an	hour	just	to	load	the	program.

Eventually,	the	loading	and	the	linking	were	separated	into	two	phases.
Programmers	took	the	slow	part—the	part	that	did	that	linking—and	put	it	into	a
separate	application	called	the	linker.	The	output	of	the	linker	was	a	linked
relocatable	that	a	relocating	loader	could	load	very	quickly.	This	allowed
programmers	to	prepare	an	executable	using	the	slow	linker,	but	then	they	could
load	it	quickly,	at	any	time.

Then	came	the	1980s.	Programmers	were	working	in	C	or	some	other	high-level
language.	As	their	ambitions	grew,	so	did	their	programs.	Programs	that



numbered	hundreds	of	thousands	of	lines	of	code	were	not	unusual.

Source	modules	were	compiled	from	.c	files	into	.o	files,	and	then	fed	into	the
linker	to	create	executable	files	that	could	be	quickly	loaded.	Compiling	each
individual	module	was	relatively	fast,	but	compiling	all	the	modules	took	a	bit	of
time.	The	linker	would	then	take	even	more	time.	Turnaround	had	again	grown
to	an	hour	or	more	in	many	cases.

It	seemed	as	if	programmers	were	doomed	to	endlessly	chase	their	tails.
Throughout	the	1960s,	1970s,	and	1980s,	all	the	changes	made	to	speed	up
workflow	were	thwarted	by	programmers’	ambitions,	and	the	size	of	the
programs	they	wrote.	They	could	not	seem	to	escape	from	the	hour-long
turnaround	times.	Loading	time	remained	fast,	but	compile-link	times	were	the
bottleneck.

We	were,	of	course,	experiencing	Murphy’s	law	of	program	size:

Programs	will	grow	to	fill	all	available	compile	and	link	time.

But	Murphy	was	not	the	only	contender	in	town.	Along	came	Moore,3	and	in	the
late	1980s,	the	two	battled	it	out.	Moore	won	that	battle.	Disks	started	to	shrink
and	got	significantly	faster.	Computer	memory	started	to	get	so	ridiculously
cheap	that	much	of	the	data	on	disk	could	be	cached	in	RAM.	Computer	clock
rates	increased	from	1	MHz	to	100	MHz.

By	the	mid-1990s,	the	time	spent	linking	had	begun	to	shrink	faster	than	our
ambitions	could	make	programs	grow.	In	many	cases,	link	time	decreased	to	a
matter	of	seconds.	For	small	jobs,	the	idea	of	a	linking	loader	became	feasible
again.

This	was	the	era	of	Active-X,	shared	libraries,	and	the	beginnings	of	.jar	files.
Computers	and	devices	had	gotten	so	fast	that	we	could,	once	again,	do	the
linking	at	load	time.	We	could	link	together	several	.jar	files,	or	several	shared
libraries	in	a	matter	of	seconds,	and	execute	the	resulting	program.	And	so	the
component	plugin	architecture	was	born.

Today	we	routinely	ship	.jar	files	or	DLLs	or	shared	libraries	as	plugins	to
existing	applications.	If	you	want	to	create	a	mod	to	Minecraft,	for	example,	you
simply	include	your	custom	.jar	files	in	a	certain	folder.	If	you	want	to	plug
Resharper	into	Visual	Studio,	you	simply	include	the	appropriate	DLLs.



CONCLUSION
These	dynamically	linked	files,	which	can	be	plugged	together	at	runtime,	are
the	software	components	of	our	architectures.	It	has	taken	50	years,	but	we	have
arrived	at	a	place	where	component	plugin	architecture	can	be	the	casual	default
as	opposed	to	the	herculean	effort	it	once	was.

1.	My	first	employer	kept	several	dozen	decks	of	the	subroutine	library	source	code	on	a	shelf.	When	you
wrote	a	new	program,	you	simply	grabbed	one	of	those	decks	and	slapped	it	onto	the	end	of	your	deck.

2.	Actually,	most	of	those	old	machines	used	core	memory,	which	did	not	get	erased	when	you	powered	the
computer	down.	We	often	left	the	function	library	loaded	for	days	at	a	time.

3.	Moore’s	law:	Computer	speed,	memory,	and	density	double	every	18	months.	This	law	held	from	the
1950s	to	2000,	but	then,	at	least	for	clock	rates,	stopped	cold.
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COMPONENT	COHESION

Which	classes	belong	in	which	components?	This	is	an	important	decision,	and
requires	guidance	from	good	software	engineering	principles.	Unfortunately,
over	the	years,	this	decision	has	been	made	in	an	ad	hoc	manner	based	almost
entirely	on	context.

In	this	chapter	we	will	discuss	the	three	principles	of	component	cohesion:

•	REP:	The	Reuse/Release	Equivalence	Principle
•	CCP:	The	Common	Closure	Principle
•	CRP:	The	Common	Reuse	Principle



THE	REUSE/RELEASE	EQUIVALENCE
PRINCIPLE

The	granule	of	reuse	is	the	granule	of	release.

The	last	decade	has	seen	the	rise	of	a	menagerie	of	module	management	tools,
such	as	Maven,	Leiningen,	and	RVM.	These	tools	have	grown	in	importance
because,	during	that	time,	a	vast	number	of	reusable	components	and	component
libraries	have	been	created.	We	are	now	living	in	the	age	of	software	reuse—a
fulfillment	of	one	of	the	oldest	promises	of	the	object-oriented	model.

The	Reuse/Release	Equivalence	Principle	(REP)	is	a	principle	that	seems
obvious,	at	least	in	hindsight.	People	who	want	to	reuse	software	components
cannot,	and	will	not,	do	so	unless	those	components	are	tracked	through	a
release	process	and	are	given	release	numbers.

This	is	not	simply	because,	without	release	numbers,	there	would	be	no	way	to
ensure	that	all	the	reused	components	are	compatible	with	each	other.	Rather,	it
also	reflects	the	fact	that	software	developers	need	to	know	when	new	releases
are	coming,	and	which	changes	those	new	releases	will	bring.

It	is	not	uncommon	for	developers	to	be	alerted	about	a	new	release	and	decide,
based	on	the	changes	made	in	that	release,	to	continue	to	use	the	old	release
instead.	Therefore	the	release	process	must	produce	the	appropriate	notifications
and	release	documentation	so	that	users	can	make	informed	decisions	about
when	and	whether	to	integrate	the	new	release.

From	a	software	design	and	architecture	point	of	view,	this	principle	means	that
the	classes	and	modules	that	are	formed	into	a	component	must	belong	to	a
cohesive	group.	The	component	cannot	simply	consist	of	a	random	hodgepodge
of	classes	and	modules;	instead,	there	must	be	some	overarching	theme	or
purpose	that	those	modules	all	share.

Of	course,	this	should	be	obvious.	However,	there	is	another	way	to	look	at	this
issue	that	is	perhaps	not	quite	so	obvious.	Classes	and	modules	that	are	grouped
together	into	a	component	should	be	releasable	together.	The	fact	that	they	share
the	same	version	number	and	the	same	release	tracking,	and	are	included	under
the	same	release	documentation,	should	make	sense	both	to	the	author	and	to	the
users.



This	is	weak	advice:	Saying	that	something	should	“make	sense”	is	just	a	way	of
waving	your	hands	in	the	air	and	trying	to	sound	authoritative.	The	advice	is
weak	because	it	is	hard	to	precisely	explain	the	glue	that	holds	the	classes	and
modules	together	into	a	single	component.	Weak	though	the	advice	may	be,	the
principle	itself	is	important,	because	violations	are	easy	to	detect—they	don’t
“make	sense.”	If	you	violate	the	REP,	your	users	will	know,	and	they	won’t	be
impressed	with	your	architectural	skills.

The	weakness	of	this	principle	is	more	than	compensated	for	by	the	strength	of
the	next	two	principles.	Indeed,	the	CCP	and	the	CRP	strongly	define	the	this
principle,	but	in	a	negative	sense.

THE	COMMON	CLOSURE	PRINCIPLE
Gather	into	components	those	classes	that	change	for	the	same	reasons	and	at	the	same	times.
Separate	into	different	components	those	classes	that	change	at	different	times	and	for	different
reasons.

This	is	the	Single	Responsibility	Principle	restated	for	components.	Just	as	the
SRP	says	that	a	class	should	not	contain	multiples	reasons	to	change,	so	the
Common	Closure	Principle	(CCP)	says	that	a	component	should	not	have
multiple	reasons	to	change.

For	most	applications,	maintainability	is	more	important	than	reusability.	If	the
code	in	an	application	must	change,	you	would	rather	that	all	of	the	changes
occur	in	one	component,	rather	than	being	distributed	across	many	components.1
If	changes	are	confined	to	a	single	component,	then	we	need	to	redeploy	only	the
one	changed	component.	Other	components	that	don’t	depend	on	the	changed
component	do	not	need	to	be	revalidated	or	redeployed.

The	CCP	prompts	us	to	gather	together	in	one	place	all	the	classes	that	are	likely
to	change	for	the	same	reasons.	If	two	classes	are	so	tightly	bound,	either
physically	or	conceptually,	that	they	always	change	together,	then	they	belong	in
the	same	component.	This	minimizes	the	workload	related	to	releasing,
revalidating,	and	redeploying	the	software.

This	principle	is	closely	associated	with	the	Open	Closed	Principle	(OCP).
Indeed,	it	is	“closure”	in	the	OCP	sense	of	the	word	that	the	CCP	addresses.	The
OCP	states	that	classes	should	be	closed	for	modification	but	open	for	extension.



Because	100%	closure	is	not	attainable,	closure	must	be	strategic.	We	design	our
classes	such	that	they	are	closed	to	the	most	common	kinds	of	changes	that	we
expect	or	have	experienced.

The	CCP	amplifies	this	lesson	by	gathering	together	into	the	same	component
those	classes	that	are	closed	to	the	same	types	of	changes.	Thus,	when	a	change
in	requirements	comes	along,	that	change	has	a	good	chance	of	being	restricted
to	a	minimal	number	of	components.

SIMILARITY	WITH	SRP

As	stated	earlier,	the	CCP	is	the	component	form	of	the	SRP.	The	SRP	tells	us	to
separate	methods	into	different	classes,	if	they	change	for	different	reasons.	The
CCP	tells	us	to	separate	classes	into	different	components,	if	they	change	for
different	reasons.	Both	principles	can	be	summarized	by	the	following	sound
bite:

Gather	together	those	things	that	change	at	the	same	times	and	for	the	same	reasons.	Separate
those	things	that	change	at	different	times	or	for	different	reasons.

THE	COMMON	REUSE	PRINCIPLE
Don’t	force	users	of	a	component	to	depend	on	things	they	don’t	need.

The	Common	Reuse	Principle	(CRP)	is	yet	another	principle	that	helps	us	to
decide	which	classes	and	modules	should	be	placed	into	a	component.	It	states
that	classes	and	modules	that	tend	to	be	reused	together	belong	in	the	same
component.

Classes	are	seldom	reused	in	isolation.	More	typically,	reusable	classes
collaborate	with	other	classes	that	are	part	of	the	reusable	abstraction.	The	CRP
states	that	these	classes	belong	together	in	the	same	component.	In	such	a
component	we	would	expect	to	see	classes	that	have	lots	of	dependencies	on
each	other.

A	simple	example	might	be	a	container	class	and	its	associated	iterators.	These
classes	are	reused	together	because	they	are	tightly	coupled	to	each	other.	Thus
they	ought	to	be	in	the	same	component.

But	the	CRP	tells	us	more	than	just	which	classes	to	put	together	into	a



component:	It	also	tells	us	which	classes	not	to	keep	together	in	a	component.
When	one	component	uses	another,	a	dependency	is	created	between	the
components.	Perhaps	the	using	component	uses	only	one	class	within	the	used
component—but	that	still	doesn’t	weaken	the	dependency.	The	using	component
still	depends	on	the	used	component.

Because	of	that	dependency,	every	time	the	used	component	is	changed,	the
using	component	will	likely	need	corresponding	changes.	Even	if	no	changes	are
necessary	to	the	using	component,	it	will	likely	still	need	to	be	recompiled,
revalidated,	and	redeployed.	This	is	true	even	if	the	using	component	doesn’t
care	about	the	change	made	in	the	used	component.

Thus	when	we	depend	on	a	component,	we	want	to	make	sure	we	depend	on
every	class	in	that	component.	Put	another	way,	we	want	to	make	sure	that	the
classes	that	we	put	into	a	component	are	inseparable—that	it	is	impossible	to
depend	on	some	and	not	on	the	others.	Otherwise,	we	will	be	redeploying	more
components	than	is	necessary,	and	wasting	significant	effort.

Therefore	the	CRP	tells	us	more	about	which	classes	shouldn’t	be	together	than
about	which	classes	should	be	together.	The	CRP	says	that	classes	that	are	not
tightly	bound	to	each	other	should	not	be	in	the	same	component.

RELATION	TO	ISP

The	CRP	is	the	generic	version	of	the	ISP.	The	ISP	advises	us	not	to	depend	on
classes	that	have	methods	we	don’t	use.	The	CRP	advises	us	not	to	depend	on
components	that	have	classes	we	don’t	use.

All	of	this	advice	can	be	reduced	to	a	single	sound	bite:

Don’t	depend	on	things	you	don’t	need.

THE	TENSION	DIAGRAM	FOR
COMPONENT	COHESION
You	may	have	already	realized	that	the	three	cohesion	principles	tend	to	fight
each	other.	The	REP	and	CCP	are	inclusive	principles:	Both	tend	to	make
components	larger.	The	CRP	is	an	exclusive	principle,	driving	components	to	be



smaller.	It	is	the	tension	between	these	principles	that	good	architects	seek	to
resolve.

Figure	13.1	is	a	tension	diagram2	that	shows	how	the	three	principles	of
cohesion	interact	with	each	other.	The	edges	of	the	diagram	describe	the	cost	of
abandoning	the	principle	on	the	opposite	vertex.

Figure	13.1	Cohesion	principles	tension	diagram

An	architect	who	focuses	on	just	the	REP	and	CRP	will	find	that	too	many
components	are	impacted	when	simple	changes	are	made.	In	contrast,	an
architect	who	focuses	too	strongly	on	the	CCP	and	REP	will	cause	too	many
unneeded	releases	to	be	generated.

A	good	architect	finds	a	position	in	that	tension	triangle	that	meets	the	current
concerns	of	the	development	team,	but	is	also	aware	that	those	concerns	will
change	over	time.	For	example,	early	in	the	development	of	a	project,	the	CCP	is
much	more	important	than	the	REP,	because	develop-ability	is	more	important
than	reuse.

Generally,	projects	tend	to	start	on	the	right	hand	side	of	the	triangle,	where	the
only	sacrifice	is	reuse.	As	the	project	matures,	and	other	projects	begin	to	draw
from	it,	the	project	will	slide	over	to	the	left.	This	means	that	the	component
structure	of	a	project	can	vary	with	time	and	maturity.	It	has	more	to	do	with	the
way	that	project	is	developed	and	used,	than	with	what	the	project	actually	does.



CONCLUSION
In	the	past,	our	view	of	cohesion	was	much	simpler	than	the	REP,	CCP,	and	CRP
implied.	We	once	thought	that	cohesion	was	simply	the	attribute	that	a	module
performs	one,	and	only	one,	function.	However,	the	three	principles	of
component	cohesion	describe	a	much	more	complex	variety	of	cohesion.	In
choosing	the	classes	to	group	together	into	components,	we	must	consider	the
opposing	forces	involved	in	reusability	and	develop-ability.	Balancing	these
forces	with	the	needs	of	the	application	is	nontrivial.	Moreover,	the	balance	is
almost	always	dynamic.	That	is,	the	partitioning	that	is	appropriate	today	might
not	be	appropriate	next	year.	As	a	consequence,	the	composition	of	the
components	will	likely	jitter	and	evolve	with	time	as	the	focus	of	the	project
changes	from	develop-ability	to	reusability.

1.	See	the	section	on	“The	Kitty	Problem”	in	Chapter	27,	“Services:	Great	and	Small.“
2.	Thanks	to	Tim	Ottinger	for	this	idea.



14
COMPONENT	COUPLING

The	next	three	principles	deal	with	the	relationships	between	components.	Here
again	we	will	run	into	the	tension	between	develop-ability	and	logical	design.
The	forces	that	impinge	upon	the	architecture	of	a	component	structure	are
technical,	political,	and	volatile.

THE	ACYCLIC	DEPENDENCIES
PRINCIPLE

Allow	no	cycles	in	the	component	dependency	graph.

Have	you	ever	worked	all	day,	gotten	some	stuff	working,	and	then	gone	home,



only	to	arrive	the	next	morning	to	find	that	your	stuff	no	longer	works?	Why
doesn’t	it	work?	Because	somebody	stayed	later	than	you	and	changed
something	you	depend	on!	I	call	this	“the	morning	after	syndrome.”

The	“morning	after	syndrome”	occurs	in	development	environments	where
many	developers	are	modifying	the	same	source	files.	In	relatively	small	projects
with	just	a	few	developers,	it	isn’t	too	big	a	problem.	But	as	the	size	of	the
project	and	the	development	team	grow,	the	mornings	after	can	get	pretty
nightmarish.	It	is	not	uncommon	for	weeks	to	go	by	without	the	team	being	able
to	build	a	stable	version	of	the	project.	Instead,	everyone	keeps	on	changing	and
changing	their	code	trying	to	make	it	work	with	the	last	changes	that	someone
else	made.

Over	the	last	several	decades,	two	solutions	to	this	problem	have	evolved,	both
of	which	came	from	the	telecommunications	industry.	The	first	is	“the	weekly
build,”	and	the	second	is	the	Acyclic	Dependencies	Principle	(ADP).

THE	WEEKLY	BUILD

The	weekly	build	used	to	be	common	in	medium-sized	projects.	It	works	like
this:	All	the	developers	ignore	each	other	for	the	first	four	days	of	the	week.
They	all	work	on	private	copies	of	the	code,	and	don’t	worry	about	integrating
their	work	on	a	collective	basis.	Then,	on	Friday,	they	integrate	all	their	changes
and	build	the	system.

This	approach	has	the	wonderful	advantage	of	allowing	the	developers	to	live	in
an	isolated	world	for	four	days	out	of	five.	The	disadvantage,	of	course,	is	the
large	integration	penalty	that	is	paid	on	Friday.

Unfortunately,	as	the	project	grows,	it	becomes	less	feasible	to	finish	integrating
the	project	on	Friday.	The	integration	burden	grows	until	it	starts	to	overflow
into	Saturday.	A	few	such	Saturdays	are	enough	to	convince	the	developers	that
integration	should	really	begin	on	Thursday—and	so	the	start	of	integration
slowly	creeps	toward	the	middle	of	the	week.

As	the	duty	cycle	of	development	versus	integration	decreases,	the	efficiency	of
the	team	decreases,	too.	Eventually	this	situation	becomes	so	frustrating	that	the
developers,	or	the	project	managers,	declare	that	the	schedule	should	be	changed
to	a	biweekly	build.	This	suffices	for	a	time,	but	the	integration	time	continues	to



grow	with	project	size.

Eventually,	this	scenario	leads	to	a	crisis.	To	maintain	efficiency,	the	build
schedule	has	to	be	continually	lengthened—but	lengthening	the	build	schedule
increases	project	risks.	Integration	and	testing	become	increasingly	harder	to	do,
and	the	team	loses	the	benefit	of	rapid	feedback.

ELIMINATING	DEPENDENCY	CYCLES

The	solution	to	this	problem	is	to	partition	the	development	environment	into
releasable	components.	The	components	become	units	of	work	that	can	be	the
responsibility	of	a	single	developer,	or	a	team	of	developers.	When	developers
get	a	component	working,	they	release	it	for	use	by	the	other	developers.	They
give	it	a	release	number	and	move	it	into	a	directory	for	other	teams	to	use.	They
then	continue	to	modify	their	component	in	their	own	private	areas.	Everyone
else	uses	the	released	version.

As	new	releases	of	a	component	are	made	available,	other	teams	can	decide
whether	they	will	immediately	adopt	the	new	release.	If	they	decide	not	to,	they
simply	continue	using	the	old	release.	Once	they	decide	that	they	are	ready,	they
begin	to	use	the	new	release.

Thus	no	team	is	at	the	mercy	of	the	others.	Changes	made	to	one	component	do
not	need	to	have	an	immediate	affect	on	other	teams.	Each	team	can	decide	for
itself	when	to	adapt	its	own	components	to	new	releases	of	the	components.
Moreover,	integration	happens	in	small	increments.	There	is	no	single	point	in
time	when	all	developers	must	come	together	and	integrate	everything	they	are
doing.

This	is	a	very	simple	and	rational	process,	and	it	is	widely	used.	To	make	it	work
successfully,	however,	you	must	manage	the	dependency	structure	of	the
components.	There	can	be	no	cycles.	If	there	are	cycles	in	the	dependency
structure,	then	the	“morning	after	syndrome”	cannot	be	avoided.

Consider	the	component	diagram	in	Figure	14.1.	It	shows	a	rather	typical
structure	of	components	assembled	into	an	application.	The	function	of	this
application	is	unimportant	for	the	purpose	of	this	example.	What	is	important	is
the	dependency	structure	of	the	components.	Notice	that	this	structure	is	a
directed	graph.	The	components	are	the	nodes,	and	the	dependency	relationships



are	the	directed	edges.

Figure	14.1	Typical	component	diagram

Notice	one	more	thing:	Regardless	of	which	component	you	begin	at,	it	is
impossible	to	follow	the	dependency	relationships	and	wind	up	back	at	that
component.	This	structure	has	no	cycles.	It	is	a	directed	acyclic	graph	(DAG).

Now	consider	what	happens	when	the	team	responsible	for	Presenters	makes	a
new	release	of	their	component.	It	is	easy	to	find	out	who	is	affected	by	this
release;	you	just	follow	the	dependency	arrows	backward.	Thus	View	and	Main
will	both	be	affected.	The	developers	currently	working	on	those	components
will	have	to	decide	when	they	should	integrate	their	work	with	the	new	release
of	Presenters.

Notice	also	that	when	Main	is	released,	it	has	utterly	no	effect	on	any	of	the	other
components	in	the	system.	They	don’t	know	about	Main,	and	they	don’t	care
when	it	changes.	This	is	nice.	It	means	that	the	impact	of	releasing	Main	is
relatively	small.

When	the	developers	working	on	the	Presenters	component	would	like	to	run	a
test	of	that	component,	they	just	need	to	build	their	version	of	Presenters	with
the	versions	of	the	Interactors	and	Entities	components	that	they	are
currently	using.	None	of	the	other	components	in	the	system	need	be	involved.
This	is	nice.	It	means	that	the	developers	working	on	Presenters	have	relatively
little	work	to	do	to	set	up	a	test,	and	that	they	have	relatively	few	variables	to



consider.

When	it	is	time	to	release	the	whole	system,	the	process	proceeds	from	the
bottom	up.	First	the	Entities	component	is	compiled,	tested,	and	released.	Then
the	same	is	done	for	Database	and	Interactors.	These	components	are
followed	by	Presenters,	View,	Controllers,	and	then	Authorizer.	Main	goes
last.	This	process	is	very	clear	and	easy	to	deal	with.	We	know	how	to	build	the
system	because	we	understand	the	dependencies	between	its	parts.

THE	EFFECT	OF	A	CYCLE	IN	THE	COMPONENT
DEPENDENCY	GRAPH

Suppose	that	a	new	requirement	forces	us	to	change	one	of	the	classes	in
Entities	such	that	it	makes	use	of	a	class	in	Authorizer.	For	example,	let’s	say
that	the	User	class	in	Entities	uses	the	Permissions	class	in	Authorizer.	This
creates	a	dependency	cycle,	as	shown	in	Figure	14.2.

This	cycle	creates	some	immediate	problems.	For	example,	the	developers
working	on	the	Database	component	know	that	to	release	it,	the	component
must	be	compatible	with	Entities.	However,	with	the	cycle	in	place,	the
Database	component	must	now	also	be	compatible	with	Authorizer.	But
Authorizer	depends	on	Interactors.	This	makes	Database	much	more	difficult
to	release.	Entities,	Authorizer,	and	Interactors	have,	in	effect,	become	one
large	component—which	means	that	all	of	the	developers	working	on	any	of
those	components	will	experience	the	dreaded	“morning	after	syndrome.”	They
will	be	stepping	all	over	one	another	because	they	must	all	use	exactly	the	same
release	of	one	another’s	components.



Figure	14.2	A	dependency	cycle

But	this	is	just	part	of	the	trouble.	Consider	what	happens	when	we	want	to	test
the	Entities	component.	To	our	chagrin,	we	find	that	we	must	build	and
integrate	with	Authorizer	and	Interactors.	This	level	of	coupling	between
components	is	troubling,	if	not	intolerable.

You	may	have	wondered	why	you	have	to	include	so	many	different	libraries,
and	so	much	of	everybody	else’s	stuff,	just	to	run	a	simple	unit	test	of	one	of
your	classes.	If	you	investigate	the	matter	a	bit,	you	will	probably	discover	that
there	are	cycles	in	the	dependency	graph.	Such	cycles	make	it	very	difficult	to
isolate	components.	Unit	testing	and	releasing	become	very	difficult	and	error
prone.	In	addition,	build	issues	grow	geometrically	with	the	number	of	modules.

Moreover,	when	there	are	cycles	in	the	dependency	graph,	it	can	be	very	difficult
to	work	out	the	order	in	which	you	must	build	the	components.	Indeed,	there
probably	is	no	correct	order.	This	can	lead	to	some	very	nasty	problems	in
languages	like	Java	that	read	their	declarations	from	compiled	binary	files.

BREAKING	THE	CYCLE

It	is	always	possible	to	break	a	cycle	of	components	and	reinstate	the
dependency	graph	as	a	DAG.	There	are	two	primary	mechanisms	for	doing	so:

1.	Apply	the	Dependency	Inversion	Principle	(DIP).	In	the	case	in	Figure	14.3,
we	could	create	an	interface	that	has	the	methods	that	User	needs.	We	could



then	put	that	interface	into	Entities	and	inherit	it	into	Authorizer.	This
inverts	the	dependency	between	Entities	and	Authorizer,	thereby	breaking
the	cycle.

Figure	14.3	Inverting	the	dependency	between	Entities	and	Authorizer

2.	Create	a	new	component	that	both	Entities	and	Authorizer	depend	on.
Move	the	class(es)	that	they	both	depend	on	into	that	new	component	(Figure
14.4).

Figure	14.4	The	new	component	that	both	Entities	and	Authorizer	depend	on

THE	“JITTERS”



The	second	solution	implies	that	the	component	structure	is	volatile	in	the
presence	of	changing	requirements.	Indeed,	as	the	application	grows,	the
component	dependency	structure	jitters	and	grows.	Thus	the	dependency
structure	must	always	be	monitored	for	cycles.	When	cycles	occur,	they	must	be
broken	somehow.	Sometimes	this	will	mean	creating	new	components,	making
the	dependency	structure	grow.

TOP-DOWN	DESIGN
The	issues	we	have	discussed	so	far	lead	to	an	inescapable	conclusion:	The
component	structure	cannot	be	designed	from	the	top	down.	It	is	not	one	of	the
first	things	about	the	system	that	is	designed,	but	rather	evolves	as	the	system
grows	and	changes.

Some	readers	may	find	this	point	to	be	counterintuitive.	We	have	come	to	expect
that	large-grained	decompositions,	like	components,	will	also	be	high-level
functional	decompositions.

When	we	see	a	large-grained	grouping	such	as	a	component	dependency
structure,	we	believe	that	the	components	ought	to	somehow	represent	the
functions	of	the	system.	Yet	this	does	not	seem	to	be	an	attribute	of	component
dependency	diagrams.

In	fact,	component	dependency	diagrams	have	very	little	do	to	with	describing
the	function	of	the	application.	Instead,	they	are	a	map	to	the	buildability	and
maintainability	of	the	application.	This	is	why	they	aren’t	designed	at	the
beginning	of	the	project.	There	is	no	software	to	build	or	maintain,	so	there	is	no
need	for	a	build	and	maintenance	map.	But	as	more	and	more	modules
accumulate	in	the	early	stages	of	implementation	and	design,	there	is	a	growing
need	to	manage	the	dependencies	so	that	the	project	can	be	developed	without
the	“morning	after	syndrome.”	Moreover,	we	want	to	keep	changes	as	localized
as	possible,	so	we	start	paying	attention	to	the	SRP	and	CCP	and	collocate
classes	that	are	likely	to	change	together.

One	of	the	overriding	concerns	with	this	dependency	structure	is	the	isolation	of
volatility.	We	don’t	want	components	that	change	frequently	and	for	capricious
reasons	to	affect	components	that	otherwise	ought	to	be	stable.	For	example,	we
don’t	want	cosmetic	changes	to	the	GUI	to	have	an	impact	on	our	business	rules.



We	don’t	want	the	addition	or	modification	of	reports	to	have	an	impact	on	our
highest-level	policies.	Consequently,	the	component	dependency	graph	is	created
and	molded	by	architects	to	protect	stable	high-value	components	from	volatile
components.

As	the	application	continues	to	grow,	we	start	to	become	concerned	about
creating	reusable	elements.	At	this	point,	the	CRP	begins	to	influence	the
composition	of	the	components.	Finally,	as	cycles	appear,	the	ADP	is	applied
and	the	component	dependency	graph	jitters	and	grows.

If	we	tried	to	design	the	component	dependency	structure	before	we	designed
any	classes,	we	would	likely	fail	rather	badly.	We	would	not	know	much	about
common	closure,	we	would	be	unaware	of	any	reusable	elements,	and	we	would
almost	certainly	create	components	that	produced	dependency	cycles.	Thus	the
component	dependency	structure	grows	and	evolves	with	the	logical	design	of
the	system.

THE	STABLE	DEPENDENCIES
PRINCIPLE

Depend	in	the	direction	of	stability.

Designs	cannot	be	completely	static.	Some	volatility	is	necessary	if	the	design	is
to	be	maintained.	By	conforming	to	the	Common	Closure	Principle	(CCP),	we
create	components	that	are	sensitive	to	certain	kinds	of	changes	but	immune	to
others.	Some	of	these	components	are	designed	to	be	volatile.	We	expect	them	to
change.

Any	component	that	we	expect	to	be	volatile	should	not	be	depended	on	by	a
component	that	is	difficult	to	change.	Otherwise,	the	volatile	component	will
also	be	difficult	to	change.

It	is	the	perversity	of	software	that	a	module	that	you	have	designed	to	be	easy	to
change	can	be	made	difficult	to	change	by	someone	else	who	simply	hangs	a
dependency	on	it.	Not	a	line	of	source	code	in	your	module	need	change,	yet
your	module	will	suddenly	become	more	challenging	to	change.	By	conforming
to	the	Stable	Dependencies	Principle	(SDP),	we	ensure	that	modules	that	are
intended	to	be	easy	to	change	are	not	depended	on	by	modules	that	are	harder	to



change.

STABILITY

What	is	meant	by	“stability”?	Stand	a	penny	on	its	side.	Is	it	stable	in	that
position?	You	would	likely	say	“no.”	However,	unless	disturbed,	it	will	remain
in	that	position	for	a	very	long	time.	Thus	stability	has	nothing	directly	to	do
with	frequency	of	change.	The	penny	is	not	changing,	but	it	is	difficult	to	think
of	it	as	stable.

Webster’s	Dictionary	says	that	something	is	stable	if	it	is	“not	easily	moved.”
Stability	is	related	to	the	amount	of	work	required	to	make	a	change.	On	the	one
hand,	the	standing	penny	is	not	stable	because	it	requires	very	little	work	to
topple	it.	On	the	other	hand,	a	table	is	very	stable	because	it	takes	a	considerable
amount	of	effort	to	turn	it	over.

How	does	this	relate	to	software?	Many	factors	may	make	a	software	component
hard	to	change—for	example,	its	size,	complexity,	and	clarity,	among	other
characteristics.	We	will	ignore	all	those	factors	and	focus	on	something	different
here.	One	sure	way	to	make	a	software	component	difficult	to	change,	is	to	make
lots	of	other	software	components	depend	on	it.	A	component	with	lots	of
incoming	dependencies	is	very	stable	because	it	requires	a	great	deal	of	work	to
reconcile	any	changes	with	all	the	dependent	components.

The	diagram	in	Figure	14.5	shows	X,	which	is	a	stable	component.	Three
components	depend	on	X,	so	it	has	three	good	reasons	not	to	change.	We	say	that
X	is	responsible	to	those	three	components.	Conversely,	X	depends	on	nothing,	so
it	has	no	external	influence	to	make	it	change.	We	say	it	is	independent.



Figure	14.5	X:	a	stable	component

Figure	14.6	shows	Y,	which	is	a	very	unstable	component.	No	other	components
depend	on	Y,	so	we	say	that	it	is	irresponsible.	Y	also	has	three	components	that	it
depends	on,	so	changes	may	come	from	three	external	sources.	We	say	that	Y	is
dependent.

Figure	14.6	Y:	a	very	unstable	component

STABILITY	METRICS

How	can	we	measure	the	stability	of	a	component?	One	way	is	to	count	the
number	of	dependencies	that	enter	and	leave	that	component.	These	counts	will
allow	us	to	calculate	the	positional	stability	of	the	component.

•	Fan-in:	Incoming	dependencies.	This	metric	identifies	the	number	of	classes



outside	this	component	that	depend	on	classes	within	the	component.
•	Fan-out:	Outgoing	depenencies.	This	metric	identifies	the	number	of	classes
inside	this	component	that	depend	on	classes	outside	the	component.

•	I:	Instability:	I	=	Fan-out	,	(Fan-in	+	Fan-out).	This	metric	has	the	range	[0,	1].
I	=	0	indicates	a	maximally	stable	component.	I	=	1	indicates	a	maximally
unstable	component.

The	Fan-in	and	Fan-out	metrics1	are	calculated	by	counting	the	number	of
classes	outside	the	component	in	question	that	have	dependencies	with	the
classes	inside	the	component	in	question.	Consider	the	example	in	Figure	14.7.

Figure	14.7	Our	example

Let’s	say	we	want	to	calculate	the	stability	of	the	component	Cc.	We	find	that
there	are	three	classes	outside	Cc	that	depend	on	classes	in	Cc.	Thus,	Fan-in	=	3.
Moreover,	there	is	one	class	outside	Cc	that	classes	in	Cc	depend	on.	Thus,	Fan-
out	=	1	and	I	=	1/4.

In	C++,	these	dependencies	are	typically	represented	by	#include	statements.
Indeed,	the	I	metric	is	easiest	to	calculate	when	you	have	organized	your	source
code	such	that	there	is	one	class	in	each	source	file.	In	Java,	the	I	metric	can	be
calculated	by	counting	import	statements	and	qualified	names.

When	the	I	metric	is	equal	to	1,	it	means	that	no	other	component	depends	on
this	component	(Fan-in	=	0),	and	this	component	depends	on	other	components
(Fan-out	>	0).	This	situation	is	as	unstable	as	a	component	can	get;	it	is



irresponsible	and	dependent.	Its	lack	of	dependents	gives	the	component	no
reason	not	to	change,	and	the	components	that	it	depends	on	may	give	it	ample
reason	to	change.

In	contrast,	when	the	I	metric	is	equal	to	0,	it	means	that	the	component	is
depended	on	by	other	components	(Fan-in	>	0),	but	does	not	itself	depend	on
any	other	components	(Fan-out	=	0).	Such	a	component	is	responsible	and
independent.	It	is	as	stable	as	it	can	get.	Its	dependents	make	it	hard	to	change
the	component,	and	its	has	no	dependencies	that	might	force	it	to	change.

The	SDP	says	that	the	I	metric	of	a	component	should	be	larger	than	the	I
metrics	of	the	components	that	it	depends	on.	That	is,	I	metrics	should	decrease
in	the	direction	of	dependency.

NOT	ALL	COMPONENTS	SHOULD	BE	STABLE

If	all	the	components	in	a	system	were	maximally	stable,	the	system	would	be
unchangeable.	This	is	not	a	desirable	situation.	Indeed,	we	want	to	design	our
component	structure	so	that	some	components	are	unstable	and	some	are	stable.
The	diagram	in	Figure	14.8	shows	an	ideal	configuration	for	a	system	with	three
components.

The	changeable	components	are	on	top	and	depend	on	the	stable	component	at
the	bottom.	Putting	the	unstable	components	at	the	top	of	the	diagram	is	a	useful
convention	because	any	arrow	that	points	up	is	violating	the	SDP	(and,	as	we
shall	see	later,	the	ADP).



Figure	14.8	An	ideal	configuration	for	a	system	with	three	components

The	diagram	in	Figure	14.9	shows	how	the	SDP	can	be	violated.

Figure	14.9	SDP	violation

Flexible	is	a	component	that	we	have	designed	to	be	easy	to	change.	We	want
Flexible	to	be	unstable.	However,	some	developer,	working	in	the	component
named	Stable,	has	hung	a	dependency	on	Flexible.	This	violates	the	SDP
because	the	I	metric	for	Stable	is	much	smaller	than	the	I	metric	for	Flexible.
As	a	result,	Flexible	will	no	longer	be	easy	to	change.	A	change	to	Flexible
will	force	us	to	deal	with	Stable	and	all	its	dependents.

To	fix	this	problem,	we	somehow	have	to	break	the	dependence	of	Stable	on
Flexible.	Why	does	this	dependency	exist?	Let’s	assume	that	there	is	a	class	C
within	Flexible	that	another	class	U	within	Stable	needs	to	use	(Figure	14.10).

Figure	14.10	U	within	Stable	uses	C	within	Flexible

We	can	fix	this	by	employing	the	DIP.	We	create	an	interface	class	called	US	and
put	it	in	a	component	named	UServer.	We	make	sure	that	this	interface	declares



all	the	methods	that	U	needs	to	use.	We	then	make	C	implement	this	interface	as
shown	in	Figure	14.11.	This	breaks	the	dependency	of	Stable	on	Flexible,	and
forces	both	components	to	depend	on	UServer.	UServer	is	very	stable	(I	=	0),
and	Flexible	retains	its	necessary	instability	(I	=	1).	All	the	dependencies	now
flow	in	the	direction	of	decreasing	I.

Figure	14.11	C	implements	the	interface	class	US

Abstract	Components

You	may	find	it	strange	that	we	would	create	a	component—in	this	example,
UService—that	contains	nothing	but	an	interface.	Such	a	component	contains	no
executable	code!	It	turns	out,	however,	that	this	is	a	very	common,	and
necessary,	tactic	when	using	statically	typed	languages	like	Java	and	C#.	These
abstract	components	are	very	stable	and,	therefore,	are	ideal	targets	for	less
stable	components	to	depend	on.

When	using	dynamically	typed	languages	like	Ruby	and	Python,	these	abstract
components	don’t	exist	at	all,	nor	do	the	dependencies	that	would	have	targeted
them.	Dependency	structures	in	these	languages	are	much	simpler	because
dependency	inversion	does	not	require	either	the	declaration	or	the	inheritance	of
interfaces.

THE	STABLE	ABSTRACTIONS



PRINCIPLE
A	component	should	be	as	abstract	as	it	is	stable.

WHERE	DO	WE	PUT	THE	HIGH-LEVEL	POLICY?

Some	software	in	the	system	should	not	change	very	often.	This	software
represents	high-level	architecture	and	policy	decisions.	We	don’t	want	these
business	and	architectural	decisions	to	be	volatile.	Thus	the	software	that
encapsulates	the	high-level	policies	of	the	system	should	be	placed	into	stable
components	(I	=	0).	Unstable	components	(I	=	1)	should	contain	only	the
software	that	is	volatile—software	that	we	want	to	be	able	to	quickly	and	easily
change.

However,	if	the	high-level	policies	are	placed	into	stable	components,	then	the
source	code	that	represents	those	policies	will	be	difficult	to	change.	This	could
make	the	overall	architecture	inflexible.	How	can	a	component	that	is	maximally
stable	(I	=	0)	be	flexible	enough	to	withstand	change?	The	answer	is	found	in	the
OCP.	This	principle	tells	us	that	it	is	possible	and	desirable	to	create	classes	that
are	flexible	enough	to	be	extended	without	requiring	modification.	Which	kind
of	classes	conform	to	this	principle?	Abstract	classes.

INTRODUCING	THE	STABLE	ABSTRACTIONS	PRINCIPLE

The	Stable	Abstractions	Principle	(SAP)	sets	up	a	relationship	between	stability
and	abstractness.	On	the	one	hand,	it	says	that	a	stable	component	should	also	be
abstract	so	that	its	stability	does	not	prevent	it	from	being	extended.	On	the	other
hand,	it	says	that	an	unstable	component	should	be	concrete	since	it	its	instability
allows	the	concrete	code	within	it	to	be	easily	changed.

Thus,	if	a	component	is	to	be	stable,	it	should	consist	of	interfaces	and	abstract
classes	so	that	it	can	be	extended.	Stable	components	that	are	extensible	are
flexible	and	do	not	overly	constrain	the	architecture.

The	SAP	and	the	SDP	combined	amount	to	the	DIP	for	components.	This	is	true
because	the	SDP	says	that	dependencies	should	run	in	the	direction	of	stability,
and	the	SAP	says	that	stability	implies	abstraction.	Thus	dependencies	run	in	the
direction	of	abstraction.



The	DIP,	however,	is	a	principle	that	deals	with	classes—and	with	classes	there
are	no	shades	of	gray.	Either	a	class	is	abstract	or	it	is	not.	The	combination	of
the	SDP	and	the	SAP	deals	with	components,	and	allows	that	a	component	can
be	partially	abstract	and	partially	stable.

MEASURING	ABSTRACTION

The	A	metric	is	a	measure	of	the	abstractness	of	a	component.	Its	value	is	simply
the	ratio	of	interfaces	and	abstract	classes	in	a	component	to	the	total	number	of
classes	in	the	component.

•	Nc:	The	number	of	classes	in	the	component.
•	Na:	The	number	of	abstract	classes	and	interfaces	in	the	component.
•	A:	Abstractness.	A	=	Na	÷	Nc.

The	A	metric	ranges	from	0	to	1.	A	value	of	0	implies	that	the	component	has	no
abstract	classes	at	all.	A	value	of	1	implies	that	the	component	contains	nothing
but	abstract	classes.

THE	MAIN	SEQUENCE

We	are	now	in	a	position	to	define	the	relationship	between	stability	(I)	and
abstractness	(A).	To	do	so,	we	create	a	graph	with	A	on	the	vertical	axis	and	I	on
the	horizontal	axis	(Figure	14.12).	If	we	plot	the	two	“good”	kinds	of
components	on	this	graph,	we	will	find	the	components	that	are	maximally
stable	and	abstract	at	the	upper	left	at	(0,	1).	The	components	that	are	maximally
unstable	and	concrete	are	at	the	lower	right	at	(1,	0).



Figure	14.12	The	I/A	graph

Not	all	components	fall	into	one	of	these	two	positions,	because	components
often	have	degrees	of	abstraction	and	stability.	For	example,	it	is	very	common
for	one	abstract	class	to	derive	from	another	abstract	class.	The	derivative	is	an
abstraction	that	has	a	dependency.	Thus,	though	it	is	maximally	abstract,	it	will
not	be	maximally	stable.	Its	dependency	will	decrease	its	stability.

Since	we	cannot	enforce	a	rule	that	all	components	sit	at	either	(0,	1)	or	(1,	0),
we	must	assume	that	there	is	a	locus	of	points	on	the	A/I	graph	that	defines
reasonable	positions	for	components.	We	can	infer	what	that	locus	is	by	finding
the	areas	where	components	should	not	be—in	other	words,	by	determining	the
zones	of	exclusion	(Figure	11.13).



Figure	14.13	Zones	of	exclusion

The	Zone	of	Pain

Consider	a	component	in	the	area	of	(0,	0).	This	is	a	highly	stable	and	concrete
component.	Such	a	component	is	not	desirable	because	it	is	rigid.	It	cannot	be
extended	because	it	is	not	abstract,	and	it	is	very	difficult	to	change	because	of
its	stability.	Thus	we	do	not	normally	expect	to	see	well-designed	components
sitting	near	(0,	0).	The	area	around	(0,	0)	is	a	zone	of	exclusion	called	the	Zone
of	Pain.

Some	software	entities	do,	in	fact,	fall	within	the	Zone	of	Pain.	An	example
would	be	a	database	schema.	Database	schemas	are	notoriously	volatile,
extremely	concrete,	and	highly	depended	on.	This	is	one	reason	why	the
interface	between	OO	applications	and	databases	is	so	difficult	to	manage,	and
why	schema	updates	are	generally	painful.

Another	example	of	software	that	sits	near	the	area	of	(0,	0)	is	a	concrete	utility
library.	Although	such	a	library	has	an	I	metric	of	1,	it	may	actually	be
nonvolatile.	Consider	the	String	component,	for	example.	Even	though	all	the
classes	within	it	are	concrete,	it	is	so	commonly	used	that	changing	it	would
create	chaos.	Therefore	String	is	nonvolatile.

Nonvolatile	components	are	harmless	in	the	(0,	0)	zone	since	they	are	not	likely
to	be	changed.	For	that	reason,	it	is	only	volatile	software	components	that	are
problematic	in	the	Zone	of	Pain.	The	more	volatile	a	component	in	the	Zone	of
Pain,	the	more	“painful”	it	is.	Indeed,	we	might	consider	volatility	to	be	a	third
axis	of	the	graph.	With	this	understanding,	Figure	14.13	shows	only	the	most
painful	plane,	where	volatility	=	1.

The	Zone	of	Uselessness

Consider	a	component	near	(1,	1).	This	location	is	undesirable	because	it	is
maximally	abstract,	yet	has	no	dependents.	Such	components	are	useless.	Thus
this	area	is	called	the	Zone	of	Uselessness.

The	software	entities	that	inhabit	this	region	are	a	kind	of	detritus.	They	are
often	leftover	abstract	classes	that	no	one	ever	implemented.	We	find	them	in
systems	from	time	to	time,	sitting	in	the	code	base,	unused.



A	component	that	has	a	position	deep	within	the	Zone	of	Uselessness	must
contain	a	significant	fraction	of	such	entities.	Clearly,	the	presence	of	such
useless	entities	is	undesirable.

AVOIDING	THE	ZONES	OF	EXCLUSION

It	seems	clear	that	our	most	volatile	components	should	be	kept	as	far	from	both
zones	of	exclusion	as	possible.	The	locus	of	points	that	are	maximally	distant
from	each	zone	is	the	line	that	connects	(1,	0)	and	(0,	1).	I	call	this	line	the	Main
Sequence.2

A	component	that	sits	on	the	Main	Sequence	is	not	“too	abstract”	for	its	stability,
nor	is	it	“too	unstable”	for	its	abstractness.	It	is	neither	useless	nor	particularly
painful.	It	is	depended	on	to	the	extent	that	it	is	abstract,	and	it	depends	on	others
to	the	extent	that	it	is	concrete.

The	most	desirable	position	for	a	component	is	at	one	of	the	two	endpoints	of	the
Main	Sequence.	Good	architects	strive	to	position	the	majority	of	their
components	at	those	endpoints.	However,	in	my	experience,	some	small	fraction
of	the	components	in	a	large	system	are	neither	perfectly	abstract	nor	perfectly
stable.	Those	components	have	the	best	characteristics	if	they	are	on,	or	close,	to
the	Main	Sequence.

DISTANCE	FROM	THE	MAIN	SEQUENCE

This	leads	us	to	our	last	metric.	If	it	is	desirable	for	components	to	be	on,	or
close,	to	the	Main	Sequence,	then	we	can	create	a	metric	that	measures	how	far
away	a	component	is	from	this	ideal.

•	D3:	Distance.	D	=	|A+I–1|	.	The	range	of	this	metric	is	[0,	1].	A	value	of	0
indicates	that	the	component	is	directly	on	the	Main	Sequence.	A	value	of	1
indicates	that	the	component	is	as	far	away	as	possible	from	the	Main
Sequence.

Given	this	metric,	a	design	can	be	analyzed	for	its	overall	conformance	to	the
Main	Sequence.	The	D	metric	for	each	component	can	be	calculated.	Any
component	that	has	a	D	value	that	is	not	near	zero	can	be	reexamined	and
restructured.



Statistical	analysis	of	a	design	is	also	possible.	We	can	calculate	the	mean	and
variance	of	all	the	D	metrics	for	the	components	within	a	design.	We	would
expect	a	conforming	design	to	have	a	mean	and	variance	that	are	close	to	zero.
The	variance	can	be	used	to	establish	“control	limits”	so	as	to	identify
components	that	are	“exceptional”	in	comparison	to	all	the	others.

In	the	scatterplot	in	Figure	14.14,	we	see	that	the	bulk	of	the	components	lie
along	the	Main	Sequence,	but	some	of	them	are	more	than	one	standard
deviation	(Z	=	1)	away	from	the	mean.	These	aberrant	components	are	worth
examining	more	closely.	For	some	reason,	they	are	either	very	abstract	with	few
dependents	or	very	concrete	with	many	dependents.

Figure	14.14	Scatterplot	of	the	components

Another	way	to	use	the	metrics	is	to	plot	the	D	metric	of	each	component	over
time.	The	graph	in	Figure	14.15	is	a	mock-up	of	such	a	plot.	You	can	see	that
some	strange	dependencies	have	been	creeping	into	the	Payroll	component	over
the	last	few	releases.	The	plot	shows	a	control	threshold	at	D	=	0.1.	The	R2.1
point	has	exceeded	this	control	limit,	so	it	would	be	worth	our	while	to	find	out
why	this	component	is	so	far	from	the	main	sequence.



Figure	14.15	Plot	of	D	for	a	single	component	over	time

CONCLUSION
The	dependency	management	metrics	described	in	this	chapter	measure	the
conformance	of	a	design	to	a	pattern	of	dependency	and	abstraction	that	I	think
is	a	“good”	pattern.	Experience	has	shown	that	certain	dependencies	are	good
and	others	are	bad.	This	pattern	reflects	that	experience.	However,	a	metric	is	not
a	god;	it	is	merely	a	measurement	against	an	arbitrary	standard.	These	metrics
are	imperfect,	at	best,	but	it	is	my	hope	that	you	find	them	useful.

1.	In	previous	publications,	I	used	the	names	Efferent	and	Afferent	couplings	(Ce	and	Ca)	for	Fan-out	and
Fan-in,	respectively.	That	was	just	hubris	on	my	part:	I	liked	the	metaphor	of	the	central	nervous	system.

2.	The	author	begs	the	reader’s	indulgence	for	the	arrogance	of	borrowing	such	an	important	term	from
astronomy.

3.	In	previous	publications,	I	called	this	metric	D′.	I	see	no	reason	to	continue	that	practice.



V
ARCHITECTURE



15
WHAT	IS	ARCHITECTURE?

The	word	“architecture”	conjures	visions	of	power	and	mystery.	It	makes	us
think	of	weighty	decisions	and	deep	technical	prowess.	Software	architecture	is
at	the	pinnacle	of	technical	achievement.	When	we	think	of	a	software	architect,
we	think	of	someone	who	has	power,	and	who	commands	respect.	What	young
aspiring	software	developer	has	not	dreamed	of	one	day	becoming	a	software
architect?

But	what	is	software	architecture?	What	does	a	software	architect	do,	and	when
does	he	or	she	do	it?

First	of	all,	a	software	architect	is	a	programmer;	and	continues	to	be	a
programmer.	Never	fall	for	the	lie	that	suggests	that	software	architects	pull	back



from	code	to	focus	on	higher-level	issues.	They	do	not!	Software	architects	are
the	best	programmers,	and	they	continue	to	take	programming	tasks,	while	they
also	guide	the	rest	of	the	team	toward	a	design	that	maximizes	productivity.
Software	architects	may	not	write	as	much	code	as	other	programmers	do,	but
they	continue	to	engage	in	programming	tasks.	They	do	this	because	they	cannot
do	their	jobs	properly	if	they	are	not	experiencing	the	problems	that	they	are
creating	for	the	rest	of	the	programmers.

The	architecture	of	a	software	system	is	the	shape	given	to	that	system	by	those
who	build	it.	The	form	of	that	shape	is	in	the	division	of	that	system	into
components,	the	arrangement	of	those	components,	and	the	ways	in	which	those
components	communicate	with	each	other.

The	purpose	of	that	shape	is	to	facilitate	the	development,	deployment,
operation,	and	maintenance	of	the	software	system	contained	within	it.

The	strategy	behind	that	facilitation	is	to	leave	as	many	options	open	as	possible,	for	as	long	as
possible.

Perhaps	this	statement	has	surprised	you.	Perhaps	you	thought	that	the	goal	of
software	architecture	was	to	make	the	system	work	properly.	Certainly	we	want
the	system	to	work	properly,	and	certainly	the	architecture	of	the	system	must
support	that	as	one	of	its	highest	priorities.

However,	the	architecture	of	a	system	has	very	little	bearing	on	whether	that
system	works.	There	are	many	systems	out	there,	with	terrible	architectures,	that
work	just	fine.	Their	troubles	do	not	lie	in	their	operation;	rather,	they	occur	in
their	deployment,	maintenance,	and	ongoing	development.

This	is	not	to	say	that	architecture	plays	no	role	in	supporting	the	proper
behavior	of	the	system.	It	certainly	does,	and	that	role	is	critical.	But	the	role	is
passive	and	cosmetic,	not	active	or	essential.	There	are	few,	if	any,	behavioral
options	that	the	architecture	of	a	system	can	leave	open.

The	primary	purpose	of	architecture	is	to	support	the	life	cycle	of	the	system.
Good	architecture	makes	the	system	easy	to	understand,	easy	to	develop,	easy	to
maintain,	and	easy	to	deploy.	The	ultimate	goal	is	to	minimize	the	lifetime	cost
of	the	system	and	to	maximize	programmer	productivity.



DEVELOPMENT
A	software	system	that	is	hard	to	develop	is	not	likely	to	have	a	long	and	healthy
lifetime.	So	the	architecture	of	a	system	should	make	that	system	easy	to
develop,	for	the	team(s)	who	develop	it.

Different	team	structures	imply	different	architectural	decisions.	On	the	one
hand,	a	small	team	of	five	developers	can	quite	effectively	work	together	to
develop	a	monolithic	system	without	well-defined	components	or	interfaces.	In
fact,	such	a	team	would	likely	find	the	strictures	of	an	architecture	something	of
an	impediment	during	the	early	days	of	development.	This	is	likely	the	reason
why	so	many	systems	lack	good	architecture:	They	were	begun	with	none,
because	the	team	was	small	and	did	not	want	the	impediment	of	a	superstructure.

On	the	other	hand,	a	system	being	developed	by	five	different	teams,	each	of
which	includes	seven	developers,	cannot	make	progress	unless	the	system	is
divided	into	well-defined	components	with	reliably	stable	interfaces.	If	no	other
factors	are	considered,	the	architecture	of	that	system	will	likely	evolve	into	five
components—one	for	each	team.

Such	a	component-per-team	architecture	is	not	likely	to	be	the	best	architecture
for	deployment,	operation,	and	maintenance	of	the	system.	Nevertheless,	it	is	the
architecture	that	a	group	of	teams	will	gravitate	toward	if	they	are	driven	solely
by	development	schedule.

DEPLOYMENT
To	be	effective,	a	software	system	must	be	deployable.	The	higher	the	cost	of
deployment,	the	less	useful	the	system	is.	A	goal	of	a	software	architecture,	then,
should	be	to	make	a	system	that	can	be	easily	deployed	with	a	single	action.

Unfortunately,	deployment	strategy	is	seldom	considered	during	initial
development.	This	leads	to	architectures	that	may	make	the	system	easy	to
develop,	but	leave	it	very	difficult	to	deploy.

For	example,	in	the	early	development	of	a	system,	the	developers	may	decide	to
use	a	“micro-service	architecture.”	They	may	find	that	this	approach	makes	the
system	very	easy	to	develop	since	the	component	boundaries	are	very	firm	and



the	interfaces	relatively	stable.	However,	when	it	comes	time	to	deploy	the
system,	they	may	discover	that	the	number	of	micro-services	has	become
daunting;	configuring	the	connections	between	them,	and	the	timing	of	their
initiation,	may	also	turn	out	to	be	a	huge	source	of	errors.

Had	the	architects	considered	deployment	issues	early	on,	they	might	have
decided	on	fewer	services,	a	hybrid	of	services	and	in-process	components,	and	a
more	integrated	means	of	managing	the	interconnections.

OPERATION
The	impact	of	architecture	on	system	operation	tends	to	be	less	dramatic	than	the
impact	of	architecture	on	development,	deployment,	and	maintenance.	Almost
any	operational	difficulty	can	be	resolved	by	throwing	more	hardware	at	the
system	without	drastically	impacting	the	software	architecture.

Indeed,	we	have	seen	this	happen	over	and	over	again.	Software	systems	that
have	inefficient	architectures	can	often	be	made	to	work	effectively	simply	by
adding	more	storage	and	more	servers.	The	fact	that	hardware	is	cheap	and
people	are	expensive	means	that	architectures	that	impede	operation	are	not	as
costly	as	architectures	that	impede	development,	deployment,	and	maintenance.

This	is	not	to	say	that	an	architecture	that	is	well	tuned	to	the	operation	of	the
system	is	not	desirable.	It	is!	It’s	just	that	the	cost	equation	leans	more	toward
development,	deployment,	and	maintenance.

Having	said	that,	there	is	another	role	that	architecture	plays	in	the	operation	of
the	system:	A	good	software	architecture	communicates	the	operational	needs	of
the	system.

Perhaps	a	better	way	to	say	this	is	that	the	architecture	of	a	system	makes	the
operation	of	the	system	readily	apparent	to	the	developers.	Architecture	should
reveal	operation.	The	architecture	of	the	system	should	elevate	the	use	cases,	the
features,	and	the	required	behaviors	of	the	system	to	first-class	entities	that	are
visible	landmarks	for	the	developers.	This	simplifies	the	understanding	of	the
system	and,	therefore,	greatly	aids	in	development	and	maintenance.



MAINTENANCE
Of	all	the	aspects	of	a	software	system,	maintenance	is	the	most	costly.	The
never-ending	parade	of	new	features	and	the	inevitable	trail	of	defects	and
corrections	consume	vast	amounts	of	human	resources.

The	primary	cost	of	maintenance	is	in	spelunking	and	risk.	Spelunking	is	the	cost
of	digging	through	the	existing	software,	trying	to	determine	the	best	place	and
the	best	strategy	to	add	a	new	feature	or	to	repair	a	defect.	While	making	such
changes,	the	likelihood	of	creating	inadvertent	defects	is	always	there,	adding	to
the	cost	of	risk.

A	carefully	thought-through	architecture	vastly	mitigates	these	costs.	By
separating	the	system	into	components,	and	isolating	those	components	through
stable	interfaces,	it	is	possible	to	illuminate	the	pathways	for	future	features	and
greatly	reduce	the	risk	of	inadvertent	breakage.

KEEPING	OPTIONS	OPEN
As	we	described	in	an	earlier	chapter,	software	has	two	types	of	value:	the	value
of	its	behavior	and	the	value	of	its	structure.	The	second	of	these	is	the	greater	of
the	two	because	it	is	this	value	that	makes	software	soft.

Software	was	invented	because	we	needed	a	way	to	quickly	and	easily	change
the	behavior	of	machines.	But	that	flexibility	depends	critically	on	the	shape	of
the	system,	the	arrangement	of	its	components,	and	the	way	those	components
are	interconnected.

The	way	you	keep	software	soft	is	to	leave	as	many	options	open	as	possible,	for
as	long	as	possible.	What	are	the	options	that	we	need	to	leave	open?	They	are
the	details	that	don’t	matter.

All	software	systems	can	be	decomposed	into	two	major	elements:	policy	and
details.	The	policy	element	embodies	all	the	business	rules	and	procedures.	The
policy	is	where	the	true	value	of	the	system	lives.

The	details	are	those	things	that	are	necessary	to	enable	humans,	other	systems,
and	programmers	to	communicate	with	the	policy,	but	that	do	not	impact	the



behavior	of	the	policy	at	all.	They	include	IO	devices,	databases,	web	systems,
servers,	frameworks,	communication	protocols,	and	so	forth.

The	goal	of	the	architect	is	to	create	a	shape	for	the	system	that	recognizes
policy	as	the	most	essential	element	of	the	system	while	making	the	details
irrelevant	to	that	policy.	This	allows	decisions	about	those	details	to	be	delayed
and	deferred.

For	example:

•	It	is	not	necessary	to	choose	a	database	system	in	the	early	days	of
development,	because	the	high-level	policy	should	not	care	which	kind	of
database	will	be	used.	Indeed,	if	the	architect	is	careful,	the	high-level	policy
will	not	care	if	the	database	is	relational,	distributed,	hierarchical,	or	just	plain
flat	files.

•	It	is	not	necessary	to	choose	a	web	server	early	in	development,	because	the
high-level	policy	should	not	know	that	it	is	being	delivered	over	the	web.	If	the
high-level	policy	is	unaware	of	HTML,	AJAX,	JSP,	JSF,	or	any	of	the	rest	of
the	alphabet	soup	of	web	development,	then	you	don’t	need	to	decide	which
web	system	to	use	until	much	later	in	the	project.	Indeed,	you	don’t	even	have
to	decide	if	the	system	will	be	delivered	over	the	web.

•	It	is	not	necessary	to	adopt	REST	early	in	development,	because	the	high-level
policy	should	be	agnostic	about	the	interface	to	the	outside	world.	Nor	is	it
necessary	to	adopt	a	micro-services	framework,	or	a	SOA	framework.	Again,
the	high-level	policy	should	not	care	about	these	things.

•	It	is	not	necessary	to	adopt	a	dependency	injection	framework	early	in
development,	because	the	high-level	policy	should	not	care	how	dependencies
are	resolved.

I	think	you	get	the	point.	If	you	can	develop	the	high-level	policy	without
committing	to	the	details	that	surround	it,	you	can	delay	and	defer	decisions
about	those	details	for	a	long	time.	And	the	longer	you	wait	to	make	those
decisions,	the	more	information	you	have	with	which	to	make	them	properly.

This	also	leaves	you	the	option	to	try	different	experiments.	If	you	have	a	portion
of	the	high-level	policy	working,	and	it	is	agnostic	about	the	database,	you	could
try	connecting	it	to	several	different	databases	to	check	applicability	and
performance.	The	same	is	true	with	web	systems,	web	frameworks,	or	even	the
web	itself.



The	longer	you	leave	options	open,	the	more	experiments	you	can	run,	the	more
things	you	can	try,	and	the	more	information	you	will	have	when	you	reach	the
point	at	which	those	decisions	can	no	longer	be	deferred.

What	if	the	decisions	have	already	been	made	by	someone	else?	What	if	your
company	has	made	a	commitment	to	a	certain	database,	or	a	certain	web	server,
or	a	certain	framework?	A	good	architect	pretends	that	the	decision	has	not	been
made,	and	shapes	the	system	such	that	those	decisions	can	still	be	deferred	or
changed	for	as	long	as	possible.

A	good	architect	maximizes	the	number	of	decisions	not	made.

DEVICE	INDEPENDENCE
As	an	example	of	this	kind	of	thinking,	let’s	take	a	trip	back	to	the	1960s,	when
computers	were	teenagers	and	most	programmers	were	mathematicians	or
engineers	from	other	disciplines	(and-one	third	or	more	were	women).

In	those	days	we	made	a	lot	of	mistakes.	We	didn’t	know	they	were	mistakes	at
the	time,	of	course.	How	could	we?

One	of	those	mistakes	was	to	bind	our	code	directly	to	the	IO	devices.	If	we
needed	to	print	something	on	a	printer,	we	wrote	code	that	used	the	IO
instructions	that	would	control	the	printer.	Our	code	was	device	dependent.

For	example,	when	I	wrote	PDP-8	programs	that	printed	on	the	teleprinter,	I
used	a	set	of	machine	instructions	that	looked	like	this:

Click	here	to	view	code	image

PRTCHR,	0

TSF

JMP	.-1

TLS

JMP	I	PRTCHR

PRTCHR	is	a	subroutine	that	prints	one	character	on	the	teleprinter.	The	beginning
zero	was	used	as	the	storage	for	the	return	address.	(Don’t	ask.)	The	TSF
instruction	skipped	the	next	instruction	if	the	teleprinter	was	ready	to	print	a
character.	If	the	teleprinter	was	busy,	then	TSF	just	fell	through	to	the	JMP	.-1



instruction,	which	just	jumped	back	to	the	TSF	instruction.	If	the	teleprinter	was
ready,	then	TSF	would	skip	to	the	TLS	instruction,	which	sent	the	character	in	the
A	register	to	the	teleprinter.	Then	the	JMP	I	PRTCHR	instruction	returned	to	the
caller.

At	first	this	strategy	worked	fine.	If	we	needed	to	read	cards	from	the	card
reader,	we	used	code	that	talked	directly	to	the	card	reader.	If	we	needed	to
punch	cards,	we	wrote	code	that	directly	manipulated	the	punch.	The	programs
worked	perfectly.	How	could	we	know	this	was	a	mistake?

But	big	batches	of	punched	cards	are	difficult	to	manage.	They	can	be	lost,
mutilated,	spindled,	shuffled,	or	dropped.	Individual	cards	can	be	lost	and	extra
cards	can	be	inserted.	So	data	integrity	became	a	significant	problem.

Magnetic	tape	was	the	solution.	We	could	move	the	card	images	to	tape.	If	you
drop	a	magnetic	tape,	the	records	don’t	get	shuffled.	You	can’t	accidentally	lose
a	record,	or	insert	a	blank	record	simply	by	handing	the	tape.	The	tape	is	much
more	secure.	It’s	also	faster	to	read	and	write,	and	it	is	very	easy	to	make	backup
copies.

Unfortunately,	all	our	software	was	written	to	manipulate	card	readers	and	card
punches.	Those	programs	had	to	be	rewritten	to	use	magnetic	tape.	That	was	a
big	job.

By	the	late	1960s,	we	had	learned	our	lesson—and	we	invented	device
independence.	The	operating	systems	of	the	day	abstracted	the	IO	devices	into
software	functions	that	handled	unit	records	that	looked	like	cards.	The	programs
would	invoke	operating	system	services	that	dealt	with	abstract	unit-record
devices.	Operators	could	tell	the	operating	system	whether	those	abstract
services	should	be	connected	to	card	readers,	magnetic	tape,	or	any	other	unit-
record	device.

Now	the	same	program	could	read	and	write	cards,	or	read	and	write	tape,
without	any	change.	The	Open–Closed	Principle	was	born	(but	not	yet	named).

JUNK	MAIL
In	the	late	1960s,	I	worked	for	a	company	that	printed	junk	mail	for	clients.	The



clients	would	send	us	magnetic	tapes	with	unit	records	containing	the	names	and
addresses	of	their	customers,	and	we	would	write	programs	that	printed	nice
personalized	advertisements.

You	know	the	kind:

Hello	Mr.	Martin,

Congratulations!

We	chose	YOU	from	everyone	else	who	lives	on	Witchwood	Lane	to	participate
in	our	new	fantastic	one-time-only	offering…

The	clients	would	send	us	huge	rolls	of	form	letters	with	all	the	words	except	the
name	and	address,	and	any	other	element	they	wanted	us	to	print.	We	wrote
programs	that	extracted	the	names,	addresses,	and	other	elements	from	the
magnetic	tape,	and	printed	those	elements	exactly	where	they	needed	to	appear
on	the	forms.

These	rolls	of	form	letters	weighed	500	pounds	and	contained	thousands	of
letters.	Clients	would	send	us	hundreds	of	these	rolls.	We	would	print	each	one
individually.

At	first,	we	had	an	IBM	360	doing	the	printing	on	its	sole	line	printer.	We	could
print	a	few	thousand	letters	per	shift.	Unfortunately,	this	tied	up	a	very	expensive
machine	for	a	very	long	time.	In	those	days,	IBM	360s	rented	for	tens	of
thousands	of	dollars	per	month.

So	we	told	the	operating	system	to	use	magnetic	tape	instead	of	the	line	printer.
Our	programs	didn’t	care,	because	they	had	been	written	to	use	the	IO
abstractions	of	the	operating	system.

The	360	could	pump	out	a	full	tape	in	10	minutes	or	so—enough	to	print	several
rolls	of	form	letters.	The	tapes	were	taken	outside	of	the	computer	room	and
mounted	on	tape	drives	connected	to	offline	printers.	We	had	five	of	them,	and
we	ran	those	five	printers	24	hours	per	day,	seven	days	per	week,	printing
hundreds	of	thousands	of	pieces	of	junk	mail	every	week.

The	value	of	device	independence	was	enormous!	We	could	write	our	programs
without	knowing	or	caring	which	device	would	be	used.	We	could	test	those
programs	using	the	local	line	printer	connected	to	the	computer.	Then	we	could



tell	the	operating	system	to	“print”	to	magnetic	tape	and	run	off	hundreds	of
thousands	of	forms.

Our	programs	had	a	shape.	That	shape	disconnected	policy	from	detail.	The
policy	was	the	formatting	of	the	name	and	address	records.	The	detail	was	the
device.	We	deferred	the	decision	about	which	device	we	would	use.

PHYSICAL	ADDRESSING
In	the	early	1970s,	I	worked	on	a	large	accounting	system	for	a	local	truckers
union.	We	had	a	25MB	disk	drive	on	which	we	stored	records	for	Agents,
Employers,	and	Members.	The	different	records	had	different	sizes,	so	we
formatted	the	first	few	cylinders	of	the	disk	so	that	each	sector	was	just	the	size
of	an	Agent	record.	The	next	few	cylinders	were	formatted	to	have	sectors	that
fit	the	Employer	records.	The	last	few	cylinders	were	formatted	to	fit	the	Member
records.

We	wrote	our	software	to	know	the	detailed	structure	of	the	disk.	It	knew	that	the
disk	had	200	cylinders	and	10	heads,	and	that	each	cylinder	had	several	dozen
sectors	per	head.	It	knew	which	cylinders	held	the	Agents,	Employers,	and
Members.	All	this	was	hard-wired	into	the	code.

We	kept	an	index	on	the	disk	that	allowed	us	to	look	up	each	of	the	Agents,
Employers,	and	Members.	This	index	was	in	yet	another	specially	formatted	set
of	cylinders	on	the	disk.	The	Agent	index	was	composed	of	records	that
contained	the	ID	of	an	agent,	and	the	cylinder	number,	head	number,	and	sector
number	of	that	Agent	record.	Employers	and	Members	had	similar	indices.
Members	were	also	kept	in	a	doubly	linked	list	on	the	disk.	Each	Member	record
held	the	cylinder,	head,	and	sector	number	of	the	next	Member	record,	and	of	the
previous	Member	record.

What	would	happen	if	we	needed	to	upgrade	to	a	new	disk	drive—one	with
more	heads,	or	one	with	more	cylinders,	or	one	with	more	sectors	per	cylinder?
We	had	to	write	a	special	program	to	read	in	the	old	data	from	the	old	disk,	and
then	write	it	out	to	the	new	disk,	translating	all	of	the	cylinder/head/sector
numbers.	We	also	had	to	change	all	the	hard-wiring	in	our	code—and	that	hard-
wiring	was	everywhere!	All	the	business	rules	knew	the	cylinder/head/sector
scheme	in	detail.



One	day	a	more	experienced	programmer	joined	our	ranks.	When	he	saw	what
we	had	done,	the	blood	drained	from	his	face,	and	he	stared	aghast	at	us,	as	if	we
were	aliens	of	some	kind.	Then	he	gently	advised	us	to	change	our	addressing
scheme	to	use	relative	addresses.

Our	wiser	colleague	suggested	that	we	consider	the	disk	to	be	one	huge	linear
array	of	sectors,	each	addressable	by	a	sequential	integer.	Then	we	could	write	a
little	conversion	routine	that	knew	the	physical	structure	of	the	disk,	and	could
translate	the	relative	address	to	a	cylinder/head/sector	number	on	the	fly.

Fortunately	for	us,	we	took	his	advice.	We	changed	the	high-level	policy	of	the
system	to	be	agnostic	about	the	physical	structure	of	the	disk.	That	allowed	us	to
decouple	the	decision	about	disk	drive	structure	from	the	application.

CONCLUSION
The	two	stories	in	this	chapter	are	examples,	in	the	small,	of	a	principle	that
architects	employ	in	the	large.	Good	architects	carefully	separate	details	from
policy,	and	then	decouple	the	policy	from	the	details	so	thoroughly	that	the
policy	has	no	knowledge	of	the	details	and	does	not	depend	on	the	details	in	any
way.	Good	architects	design	the	policy	so	that	decisions	about	the	details	can	be
delayed	and	deferred	for	as	long	as	possible.



16
INDEPENDENCE

As	we	previously	stated,	a	good	architecture	must	support:

•	The	use	cases	and	operation	of	the	system.
•	The	maintenance	of	the	system.
•	The	development	of	the	system.
•	The	deployment	of	the	system.

USE	CASES
The	first	bullet—use	cases—means	that	the	architecture	of	the	system	must



support	the	intent	of	the	system.	If	the	system	is	a	shopping	cart	application,	then
the	architecture	must	support	shopping	cart	use	cases.	Indeed,	this	is	the	first
concern	of	the	architect,	and	the	first	priority	of	the	architecture.	The	architecture
must	support	the	use	cases.

However,	as	we	discussed	previously,	architecture	does	not	wield	much
influence	over	the	behavior	of	the	system.	There	are	very	few	behavioral	options
that	the	architecture	can	leave	open.	But	influence	isn’t	everything.	The	most
important	thing	a	good	architecture	can	do	to	support	behavior	is	to	clarify	and
expose	that	behavior	so	that	the	intent	of	the	system	is	visible	at	the	architectural
level.

A	shopping	cart	application	with	a	good	architecture	will	look	like	a	shopping
cart	application.	The	use	cases	of	that	system	will	be	plainly	visible	within	the
structure	of	that	system.	Developers	will	not	have	to	hunt	for	behaviors,	because
those	behaviors	will	be	first-class	elements	visible	at	the	top	level	of	the	system.
Those	elements	will	be	classes	or	functions	or	modules	that	have	prominent
positions	within	the	architecture,	and	they	will	have	names	that	clearly	describe
their	function.

Chapter	21,	“Screaming	Architecture,”	will	make	this	point	much	clearer.

OPERATION
Architecture	plays	a	more	substantial,	and	less	cosmetic,	role	in	supporting	the
operation	of	the	system.	If	the	system	must	handle	100,000	customers	per
second,	the	architecture	must	support	that	kind	of	throughput	and	response	time
for	each	use	case	that	demands	it.	If	the	system	must	query	big	data	cubes	in
milliseconds,	then	the	architecture	must	be	structured	to	allow	this	kind	of
operation.

For	some	systems,	this	will	mean	arranging	the	processing	elements	of	the
system	into	an	array	of	little	services	can	be	run	in	parallel	on	many	different
servers.	For	other	systems,	it	will	mean	a	plethora	of	little	lightweight	threads
sharing	the	address	space	of	a	single	process	within	a	single	processor.	Still	other
systems	will	need	just	a	few	processes	running	in	isolated	address	spaces.	And
some	systems	can	even	survive	as	simple	monolithic	programs	running	in	a
single	process.



As	strange	as	it	may	seem,	this	decision	is	one	of	the	options	that	a	good
architect	leaves	open.	A	system	that	is	written	as	a	monolith,	and	that	depends	on
that	monolithic	structure,	cannot	easily	be	upgraded	to	multiple	processes,
multiple	threads,	or	micro-services	should	the	need	arise.	By	comparison,	an
architecture	that	maintains	the	proper	isolation	of	its	components,	and	does	not
assume	the	means	of	communication	between	those	components,	will	be	much
easier	to	transition	through	the	spectrum	of	threads,	processes,	and	services	as
the	operational	needs	of	the	system	change	over	time.

DEVELOPMENT
Architecture	plays	a	significant	role	in	supporting	the	development	environment.
This	is	where	Conway’s	law	comes	into	play.	Conway’s	law	says:

Any	organization	that	designs	a	system	will	produce	a	design	whose	structure	is	a	copy	of	the
organization’s	communication	structure.

A	system	that	must	be	developed	by	an	organization	with	many	teams	and	many
concerns	must	have	an	architecture	that	facilitates	independent	actions	by	those
teams,	so	that	the	teams	do	not	interfere	with	each	other	during	development.
This	is	accomplished	by	properly	partitioning	the	system	into	well-isolated,
independently	developable	components.	Those	components	can	then	be
allocated	to	teams	that	can	work	independently	of	each	other.

DEPLOYMENT
The	architecture	also	plays	a	huge	role	in	determining	the	ease	with	which	the
system	is	deployed.	The	goal	is	“immediate	deployment.”	A	good	architecture
does	not	rely	on	dozens	of	little	configuration	scripts	and	property	file	tweaks.	It
does	not	require	manual	creation	of	directories	or	files	that	must	be	arranged	just
so.	A	good	architecture	helps	the	system	to	be	immediately	deployable	after
build.

Again,	this	is	achieved	through	the	proper	partitioning	and	isolation	of	the
components	of	the	system,	including	those	master	components	that	tie	the	whole
system	together	and	ensure	that	each	component	is	properly	started,	integrated,
and	supervised.



LEAVING	OPTIONS	OPEN
A	good	architecture	balances	all	of	these	concerns	with	a	component	structure
that	mutually	satisfies	them	all.	Sounds	easy,	right?	Well,	it’s	easy	for	me	to
write	that.

The	reality	is	that	achieving	this	balance	is	pretty	hard.	The	problem	is	that	most
of	the	time	we	don’t	know	what	all	the	use	cases	are,	nor	do	we	know	the
operational	constraints,	the	team	structure,	or	the	deployment	requirements.
Worse,	even	if	we	did	know	them,	they	will	inevitably	change	as	the	system
moves	through	its	life	cycle.	In	short,	the	goals	we	must	meet	are	indistinct	and
inconstant.	Welcome	to	the	real	world.

But	all	is	not	lost:	Some	principles	of	architecture	are	relatively	inexpensive	to
implement	and	can	help	balance	those	concerns,	even	when	you	don’t	have	a
clear	picture	of	the	targets	you	have	to	hit.	Those	principles	help	us	partition	our
systems	into	well-isolated	components	that	allow	us	to	leave	as	many	options
open	as	possible,	for	as	long	as	possible.

A	good	architecture	makes	the	system	easy	to	change,	in	all	the	ways	that	it	must
change,	by	leaving	options	open.

DECOUPLING	LAYERS
Consider	the	use	cases.	The	architect	wants	the	structure	of	the	system	to	support
all	the	necessary	use	cases,	but	does	not	know	what	all	those	use	cases	are.
However,	the	architect	does	know	the	basic	intent	of	the	system.	It’s	a	shopping
cart	system,	or	it’s	a	bill	of	materials	system,	or	it’s	an	order	processing	system.
So	the	architect	can	employ	the	Single	Responsibility	Principle	and	the	Common
Closure	Principle	to	separate	those	things	that	change	for	different	reasons,	and
to	collect	those	things	that	change	for	the	same	reasons—given	the	context	of	the
intent	of	the	system.

What	changes	for	different	reasons?	There	are	some	obvious	things.	User
interfaces	change	for	reasons	that	have	nothing	to	do	with	business	rules.	Use
cases	have	elements	of	both.	Clearly,	then,	a	good	architect	will	want	to	separate
the	UI	portions	of	a	use	case	from	the	business	rule	portions	in	such	a	way	that
they	can	be	changed	independently	of	each	other,	while	keeping	those	use	cases



visible	and	clear.

Business	rules	themselves	may	be	closely	tied	to	the	application,	or	they	may	be
more	general.	For	example,	the	validation	of	input	fields	is	a	business	rule	that	is
closely	tied	to	the	application	itself.	In	contrast,	the	calculation	of	interest	on	an
account	and	the	counting	of	inventory	are	business	rules	that	are	more	closely
associated	with	the	domain.	These	two	different	kinds	of	rules	will	change	at
different	rates,	and	for	different	reasons—so	they	should	be	separated	so	that
they	can	be	independently	changed.

The	database,	the	query	language,	and	even	the	schema	are	technical	details	that
have	nothing	to	do	with	the	business	rules	or	the	UI.	They	will	change	at	rates,
and	for	reasons,	that	are	independent	of	other	aspects	of	the	system.
Consequently,	the	architecture	should	separate	them	from	the	rest	of	the	system
so	that	they	can	be	independently	changed.

Thus	we	find	the	system	divided	into	decoupled	horizontal	layers—the	UI,
application-specific	business	rules,	application-independent	business	rules,	and
the	database,	just	to	mention	a	few.

DECOUPLING	USE	CASES
What	else	changes	for	different	reasons?	The	use	cases	themselves!	The	use	case
for	adding	an	order	to	an	order	entry	system	almost	certainly	will	change	at	a
different	rate,	and	for	different	reasons,	than	the	use	case	that	deletes	an	order
from	the	system.	Use	cases	are	a	very	natural	way	to	divide	the	system.

At	the	same	time,	use	cases	are	narrow	vertical	slices	that	cut	through	the
horizontal	layers	of	the	system.	Each	use	case	uses	some	UI,	some	application-
specific	business	rules,	some	application-independent	business	rules,	and	some
database	functionality.	Thus,	as	we	are	dividing	the	system	in	to	horizontal
layers,	we	are	also	dividing	the	system	into	thin	vertical	use	cases	that	cut
through	those	layers.

To	achieve	this	decoupling,	we	separate	the	UI	of	the	add-order	use	case	from
the	UI	of	the	delete-order	use	case.	We	do	the	same	with	the	business	rules,	and
with	the	database.	We	keep	the	use	cases	separate	down	the	vertical	height	of	the
system.



You	can	see	the	pattern	here.	If	you	decouple	the	elements	of	the	system	that
change	for	different	reasons,	then	you	can	continue	to	add	new	use	cases	without
interfering	with	old	ones.	If	you	also	group	the	UI	and	database	in	support	of
those	use	cases,	so	that	each	use	case	uses	a	different	aspect	of	the	UI	and
database,	then	adding	new	use	cases	will	be	unlikely	to	affect	older	ones.

DECOUPLING	MODE
Now	think	of	what	all	that	decoupling	means	for	the	second	bullet:	operations.	If
the	different	aspects	of	the	use	cases	are	separated,	then	those	that	must	run	at	a
high	throughput	are	likely	already	separated	from	those	that	must	run	at	a	low
throughput.	If	the	UI	and	the	database	have	been	separated	from	the	business
rules,	then	they	can	run	in	different	servers.	Those	that	require	higher	bandwidth
can	be	replicated	in	many	servers.

In	short,	the	decoupling	that	we	did	for	the	sake	of	the	use	cases	also	helps	with
operations.	However,	to	take	advantage	of	the	operational	benefit,	the
decoupling	must	have	the	appropriate	mode.	To	run	in	separate	servers,	the
separated	components	cannot	depend	on	being	together	in	the	same	address
space	of	a	processor.	They	must	be	independent	services,	which	communicate
over	a	network	of	some	kind.

Many	architects	call	such	components	“services”	or	“micro-services,”	depending
upon	some	vague	notion	of	line	count.	Indeed,	an	architecture	based	on	services
is	often	called	a	service-oriented	architecture.

If	that	nomenclature	set	off	some	alarm	bells	in	your	mind,	don’t	worry.	I’m	not
going	to	tell	you	that	SoA	is	the	best	possible	architecture,	or	that	micro-services
are	the	wave	of	the	future.	The	point	being	made	here	is	that	sometimes	we	have
to	separate	our	components	all	the	way	to	the	service	level.

Remember,	a	good	architecture	leaves	options	open.	The	decoupling	mode	is	one
of	those	options.

Before	we	explore	that	topic	further,	let’s	look	to	the	other	two	bullets.

INDEPENDENT	DEVELOP-ABILITY



The	third	bullet	was	development.	Clearly	when	components	are	strongly
decoupled,	the	interference	between	teams	is	mitigated.	If	the	business	rules
don’t	know	about	the	UI,	then	a	team	that	focuses	on	the	UI	cannot	much	affect
a	team	that	focuses	on	the	business	rules.	If	the	use	cases	themselves	are
decoupled	from	one	another,	then	a	team	that	focuses	on	the	addOrder	use	case
is	not	likely	to	interfere	with	a	team	that	focuses	on	the	deleteOrder	use	case.

So	long	as	the	layers	and	use	cases	are	decoupled,	the	architecture	of	the	system
will	support	the	organization	of	the	teams,	irrespective	of	whether	they	are
organized	as	feature	teams,	component	teams,	layer	teams,	or	some	other
variation.

INDEPENDENT	DEPLOYABILITY
The	decoupling	of	the	use	cases	and	layers	also	affords	a	high	degree	of
flexibility	in	deployment.	Indeed,	if	the	decoupling	is	done	well,	then	it	should
be	possible	to	hot-swap	layers	and	use	cases	in	running	systems.	Adding	a	new
use	case	could	be	a	simple	as	adding	a	few	new	jar	files	or	services	to	the	system
while	leaving	the	rest	alone.

DUPLICATION
Architects	often	fall	into	a	trap—a	trap	that	hinges	on	their	fear	of	duplication.

Duplication	is	generally	a	bad	thing	in	software.	We	don’t	like	duplicated	code.
When	code	is	truly	duplicated,	we	are	honor-bound	as	professionals	to	reduce
and	eliminate	it.

But	there	are	different	kinds	of	duplication.	There	is	true	duplication,	in	which
every	change	to	one	instance	necessitates	the	same	change	to	every	duplicate	of
that	instance.	Then	there	is	false	or	accidental	duplication.	If	two	apparently
duplicated	sections	of	code	evolve	along	different	paths—if	they	change	at
different	rates,	and	for	different	reasons—then	they	are	not	true	duplicates.
Return	to	them	in	a	few	years,	and	you’ll	find	that	they	are	very	different	from
each	other.

Now	imagine	two	use	cases	that	have	very	similar	screen	structures.	The



architects	will	likely	be	strongly	tempted	to	share	the	code	for	that	structure.	But
should	they?	Is	that	true	duplication?	Or	it	is	accidental?

Most	likely	it	is	accidental.	As	time	goes	by,	the	odds	are	that	those	two	screens
will	diverge	and	eventually	look	very	different.	For	this	reason,	care	must	be
taken	to	avoid	unifying	them.	Otherwise,	separating	them	later	will	be	a
challenge.

When	you	are	vertically	separating	use	cases	from	one	another,	you	will	run	into
this	issue,	and	your	temptation	will	be	to	couple	the	use	cases	because	they	have
similar	screen	structures,	or	similar	algorithms,	or	similar	database	queries
and/or	schemas.	Be	careful.	Resist	the	temptation	to	commit	the	sin	of	knee-jerk
elimination	of	duplication.	Make	sure	the	duplication	is	real.

By	the	same	token,	when	you	are	separating	layers	horizontally,	you	might
notice	that	the	data	structure	of	a	particular	database	record	is	very	similar	to	the
data	structure	of	a	particular	screen	view.	You	may	be	tempted	to	simply	pass	the
database	record	up	to	the	UI,	rather	than	to	create	a	view	model	that	looks	the
same	and	copy	the	elements	across.	Be	careful:	This	duplication	is	almost
certainly	accidental.	Creating	the	separate	view	model	is	not	a	lot	of	effort,	and	it
will	help	you	keep	the	layers	properly	decoupled.

DECOUPLING	MODES	(AGAIN)
Back	to	modes.	There	are	many	ways	to	decouple	layers	and	use	cases.	They	can
be	decoupled	at	the	source	code	level,	at	the	binary	code	(deployment)	level,	and
at	the	execution	unit	(service)	level.

•	Source	level.	We	can	control	the	dependencies	between	source	code	modules
so	that	changes	to	one	module	do	not	force	changes	or	recompilation	of	others
(e.g.,	Ruby	Gems).
In	this	decoupling	mode	the	components	all	execute	in	the	same	address	space,
and	communicate	with	each	other	using	simple	function	calls.	There	is	a	single
executable	loaded	into	computer	memory.	People	often	call	this	a	monolithic
structure.

•	Deployment	level.	We	can	control	the	dependencies	between	deployable	units
such	as	jar	files,	DLLs,	or	shared	libraries,	so	that	changes	to	the	source	code
in	one	module	do	not	force	others	to	be	rebuilt	and	redeployed.



Many	of	the	components	may	still	live	in	the	same	address	space,	and
communicate	through	function	calls.	Other	components	may	live	in	other
processes	in	the	same	processor,	and	communicate	through	interprocess
communications,	sockets,	or	shared	memory.	The	important	thing	here	is	that
the	decoupled	components	are	partitioned	into	independently	deployable	units
such	as	jar	files,	Gem	files,	or	DLLs.

•	Service	level.	We	can	reduce	the	dependencies	down	to	the	level	of	data
structures,	and	communicate	solely	through	network	packets	such	that	every
execution	unit	is	entirely	independent	of	source	and	binary	changes	to	others
(e.g.,	services	or	micro-services).

What	is	the	best	mode	to	use?

The	answer	is	that	it’s	hard	to	know	which	mode	is	best	during	the	early	phases
of	a	project.	Indeed,	as	the	project	matures,	the	optimal	mode	may	change.

For	example,	it’s	not	difficult	to	imagine	that	a	system	that	runs	comfortably	on
one	server	right	now	might	grow	to	the	point	where	some	of	its	components
ought	to	run	on	separate	servers.	While	the	system	runs	on	a	single	server,	the
source-level	decoupling	might	be	sufficient.	Later,	however,	it	might	require
decoupling	into	deployable	units,	or	even	services.

One	solution	(which	seems	to	be	popular	at	the	moment)	is	to	simply	decouple	at
the	service	level	by	default.	A	problem	with	this	approach	is	that	it	is	expensive
and	encourages	coarse-grained	decoupling.	No	matter	how	“micro”	the	micro-
services	get,	the	decoupling	is	not	likely	to	be	fine-grained	enough.

Another	problem	with	service-level	decoupling	is	that	it	is	expensive,	both	in
development	time	and	in	system	resources.	Dealing	with	service	boundaries
where	none	are	needed	is	a	waste	of	effort,	memory,	and	cycles.	And,	yes,	I
know	that	the	last	two	are	cheap—but	the	first	is	not.

My	preference	is	to	push	the	decoupling	to	the	point	where	a	service	could	be
formed.	should	it	become	necessary;	but	then	to	leave	the	components	in	the
same	address	space	as	long	as	possible.	This	leaves	the	option	for	a	service	open.

With	this	approach,	initially	the	components	are	separated	at	the	source	code
level.	That	may	be	good	enough	for	the	duration	of	the	project’s	lifetime.	If,
however,	deployment	or	development	issues	arise,	driving	some	of	the



decoupling	to	a	deployment	level	may	be	sufficient—at	least	for	a	while.

As	the	development,	deployment,	and	operational	issues	increase,	I	carefully
choose	which	deployable	units	to	turn	into	services,	and	gradually	shift	the
system	in	that	direction.

Over	time,	the	operational	needs	of	the	system	may	decline.	What	once	required
decoupling	at	the	service	level	may	now	require	only	deployment-level	or	even
source-level	decoupling.

A	good	architecture	will	allow	a	system	to	be	born	as	a	monolith,	deployed	in	a
single	file,	but	then	to	grow	into	a	set	of	independently	deployable	units,	and
then	all	the	way	to	independent	services	and/or	micro-services.	Later,	as	things
change,	it	should	allow	for	reversing	that	progression	and	sliding	all	the	way
back	down	into	a	monolith.

A	good	architecture	protects	the	majority	of	the	source	code	from	those	changes.
It	leaves	the	decoupling	mode	open	as	an	option	so	that	large	deployments	can
use	one	mode,	whereas	small	deployments	can	use	another.

CONCLUSION
Yes,	this	is	tricky.	And	I’m	not	saying	that	the	change	of	decoupling	modes
should	be	a	trivial	configuration	option	(though	sometimes	that	is	appropriate).
What	I’m	saying	is	that	the	decoupling	mode	of	a	system	is	one	of	those	things
that	is	likely	to	change	with	time,	and	a	good	architect	foresees	and
appropriately	facilitates	those	changes.
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BOUNDARIES:	DRAWING	LINES

Software	architecture	is	the	art	of	drawing	lines	that	I	call	boundaries.	Those
boundaries	separate	software	elements	from	one	another,	and	restrict	those	on
one	side	from	knowing	about	those	on	the	other.	Some	of	those	lines	are	drawn
very	early	in	a	project’s	life—even	before	any	code	is	written.	Others	are	drawn
much	later.	Those	that	are	drawn	early	are	drawn	for	the	purposes	of	deferring
decisions	for	as	long	as	possible,	and	of	keeping	those	decisions	from	polluting
the	core	business	logic.

Recall	that	the	goal	of	an	architect	is	to	minimize	the	human	resources	required
to	build	and	maintain	the	required	system.	What	it	is	that	saps	this	kind	of
people-power?	Coupling—and	especially	coupling	to	premature	decisions.



Which	kinds	of	decisions	are	premature?	Decisions	that	have	nothing	to	do	with
the	business	requirements—the	use	cases—of	the	system.	These	include
decisions	about	frameworks,	databases,	web	servers,	utility	libraries,	dependency
injection,	and	the	like.	A	good	system	architecture	is	one	in	which	decisions	like
these	are	rendered	ancillary	and	deferrable.	A	good	system	architecture	does	not
depend	on	those	decisions.	A	good	system	architecture	allows	those	decisions	to
be	made	at	the	latest	possible	moment,	without	significant	impact.

A	COUPLE	OF	SAD	STORIES
Here’s	the	sad	story	of	company	P,	which	serves	as	a	warning	about	making
premature	decisions.	In	the	1980s	the	founders	of	P	wrote	a	simple	monolithic
desktop	application.	They	enjoyed	a	great	deal	of	success	and	grew	the	product
through	the	1990s	into	a	popular	and	successful	desktop	GUI	application.

But	then,	in	the	late	1990s,	the	web	emerged	as	a	force.	Suddenly	everybody	had
to	have	a	web	solution,	and	P	was	no	exception.	P’s	customers	clamored	for	a
version	of	the	product	on	the	web.	To	meet	this	demand,	the	company	hired	a
bunch	of	hotshot	twenty-something	Java	programmers	and	embarked	upon	a
project	to	webify	their	product.

The	Java	guys	had	dreams	of	server	farms	dancing	in	their	heads,	so	they
adopted	a	rich	three-tiered	“architecture”1	that	they	could	distribute	through	such
farms.	There	would	be	servers	for	the	GUI,	servers	for	the	middleware,	and
servers	for	the	database.	Of	course.

The	programmers	decided,	very	early	on,	that	all	domain	objects	would	have
three	instantiations:	one	in	the	GUI	tier,	one	in	the	middleware	tier,	and	one	in
the	database	tier.	Since	these	instantiations	lived	on	different	machines,	a	rich
system	of	interprocessor	and	inter-tier	communications	was	set	up.	Method
invocations	between	tiers	were	converted	to	objects,	serialized,	and	marshaled
across	the	wire.

Now	imagine	what	it	took	to	implement	a	simple	feature	like	adding	a	new	field
to	an	existing	record.	That	field	had	to	be	added	to	the	classes	in	all	three	tiers,
and	to	several	of	the	inter-tier	messages.	Since	data	traveled	in	both	directions,
four	message	protocols	needed	to	be	designed.	Each	protocol	had	a	sending	and
receiving	side,	so	eight	protocol	handlers	were	required.	Three	executables	had



to	be	built,	each	with	three	updated	business	objects,	four	new	messages,	and
eight	new	handlers.

And	think	of	what	those	executables	had	to	do	to	implement	the	simplest	of
features.	Think	of	all	the	object	instantiations,	all	the	serializations,	all	the
marshaling	and	de-marshaling,	all	the	building	and	parsing	of	messages,	all	the
socket	communications,	timeout	managers,	retry	scenarios,	and	all	the	other
extra	stuff	that	you	have	to	do	just	to	get	one	simple	thing	done.

Of	course,	during	development	the	programmers	did	not	have	a	server	farm.
Indeed,	they	simply	ran	all	three	executables	in	three	different	processes	on	a
single	machine.	They	developed	this	way	for	several	years.	But	they	were
convinced	that	their	architecture	was	right.	And	so,	even	though	they	were
executing	in	a	single	machine,	they	continued	all	the	object	instantiations,	all	the
serializations,	all	the	marshaling	and	de-marshaling,	all	the	building	and	parsing
of	messages,	all	the	socket	communications,	and	all	the	extra	stuff	in	a	single
machine.

The	irony	is	that	company	P	never	sold	a	system	that	required	a	server	farm.
Every	system	they	ever	deployed	was	a	single	server.	And	in	that	single	server
all	three	executables	continued	all	the	object	instantiations,	all	the	serializations,
all	the	marshaling	and	de-marshaling,	all	the	building	and	parsing	of	messages,
all	the	socket	communications,	and	all	the	extra	stuff,	in	anticipation	of	a	server
farm	that	never	existed,	and	never	would.

The	tragedy	is	that	the	architects,	by	making	a	premature	decision,	multiplied	the
development	effort	enormously.

The	story	of	P	is	not	isolated.	I’ve	seen	it	many	times	and	in	many	places.
Indeed,	P	is	a	superposition	of	all	those	places.

But	there	are	worse	fates	than	P.

Consider	W,	a	local	business	that	manages	fleets	of	company	cars.	They	recently
hired	an	“Architect”	to	get	their	rag-tag	software	effort	under	control.	And,	let
me	tell	you,	control	was	this	guy’s	middle	name.	He	quickly	realized	that	what
this	little	operation	needed	was	a	full-blown,	enterprise-scale,	service-oriented
“ARCHITECTURE.”	He	created	a	huge	domain	model	of	all	the	different
“objects”	in	the	business,	designed	a	suite	of	services	to	manage	these	domain
objects,	and	put	all	the	developers	on	a	path	to	Hell.	As	a	simple	example,



suppose	you	wanted	to	add	the	name,	address,	and	phone	number	of	a	contact
person	to	a	sales	record.	You	had	to	go	to	the	ServiceRegistry	and	ask	for	the
service	ID	of	the	ContactService.	Then	you	had	to	send	a	CreateContact
message	to	the	ContactService.	Of	course,	this	message	had	dozens	of	fields
that	all	had	to	have	valid	data	in	them—data	to	which	the	programmer	had	no
access,	since	all	the	programmer	had	was	a	name,	address,	and	phone	number.
After	faking	the	data,	the	programmer	had	to	jam	the	ID	of	the	newly	created
contact	into	the	sales	record	and	send	the	UpdateContact	message	to	the
SaleRecordService.

Of	course,	to	test	anything	you	had	to	fire	up	all	the	necessary	services,	one	by
one,	and	fire	up	the	message	bus,	and	the	BPel	server,	and	…	And	then,	there
were	the	propagation	delays	as	these	messages	bounced	from	service	to	service,
and	waited	in	queue	after	queue.

And	then	if	you	wanted	to	add	a	new	feature—well,	you	can	imagine	the
coupling	between	all	those	services,	and	the	sheer	volume	of	WSDLs	that
needed	changing,	and	all	the	redeployments	those	changes	necessitated	…

Hell	starts	to	seem	like	a	nice	place	by	comparison.

There’s	nothing	intrinsically	wrong	with	a	software	system	that	is	structured
around	services.	The	error	at	W	was	the	premature	adoption	and	enforcement	of
a	suite	of	tools	that	promised	SoA—that	is,	the	premature	adoption	of	a	massive
suite	of	domain	object	services.	The	cost	of	those	errors	was	sheer	person-hours
—person-hours	in	droves—flushed	down	the	SoA	vortex.

I	could	go	on	describing	one	architectural	failure	after	another.	But	let’s	talk
about	an	architectural	success	instead.

FITNESSE
My	Son,	Micah,	and	I	started	work	on	FitNesse	in	2001.	The	idea	was	to	create
a	simple	wiki	that	wrapped	Ward	Cunningham’s	FIT	tool	for	writing	acceptance
tests.

This	was	back	in	the	days	before	Maven	“solved”	the	jar	file	problem.	I	was
adamant	that	anything	we	produced	should	not	require	people	to	download	more



than	one	jar	file.	I	called	this	rule,	“Download	and	Go.”	This	rule	drove	many	of
our	decisions.

One	of	the	first	decisions	was	to	write	our	own	web	server,	specific	to	the	needs
of	FitNesse.	This	might	sound	absurd.	Even	in	2001	there	were	plenty	of	open
source	web	servers	that	we	could	have	used.	Yet	writing	our	own	turned	out	to
be	a	really	good	decision	because	a	bare-bones	web	server	is	a	very	simple	piece
of	software	to	write	and	it	allowed	us	to	postpone	any	web	framework	decision
until	much	later.2

Another	early	decision	was	to	avoid	thinking	about	a	database.	We	had	MySQL
in	the	back	of	our	minds,	but	we	purposely	delayed	that	decision	by	employing	a
design	that	made	the	decision	irrelevant.	That	design	was	simply	to	put	an
interface	between	all	data	accesses	and	the	data	repository	itself.

We	put	the	data	access	methods	into	an	interface	named	WikiPage.	Those
methods	provided	all	the	functionality	we	needed	to	find,	fetch,	and	save	pages.
Of	course,	we	didn’t	implement	those	methods	at	first;	we	simply	stubbed	them
out	while	we	worked	on	features	that	didn’t	involve	fetching	and	saving	the	data.

Indeed,	for	three	months	we	simply	worked	on	translating	wiki	text	into	HTML.
This	didn’t	require	any	kind	of	data	storage,	so	we	created	a	class	named
MockWikiPage	that	simply	left	the	data	access	methods	stubbed.

Eventually,	those	stubs	became	insufficient	for	the	features	we	wanted	to	write.
We	needed	real	data	access,	not	stubs.	So	we	created	a	new	derivative	of
WikiPage	named	InMemoryPage.	This	derivative	implemented	the	data	access
method	to	manage	a	hash	table	of	wiki	pages,	which	we	kept	in	RAM.

This	allowed	us	to	write	feature	after	feature	for	a	full	year.	In	fact,	we	got	the
whole	first	version	of	the	FitNesse	program	working	this	way.	We	could	create
pages,	link	to	other	pages,	do	all	the	fancy	wiki	formatting,	and	even	run	tests
with	FIT.	What	we	couldn’t	do	was	save	any	of	our	work.

When	it	came	time	to	implement	persistence,	we	thought	again	about	MySQL,
but	decided	that	wasn’t	necessary	in	the	short	term,	because	it	would	be	really
easy	to	write	the	hash	tables	out	to	flat	files.	So	we	implemented
FileSystemWikiPage,	which	just	moved	the	functionality	out	to	flat	files,	and
then	we	continued	developing	more	features.



Three	months	later,	we	reached	the	conclusion	that	the	flat	file	solution	was
good	enough;	we	decided	to	abandon	the	idea	of	MySQL	altogether.	We	deferred
that	decision	into	nonexistence	and	never	looked	back.

That	would	be	the	end	of	the	story	if	it	weren’t	for	one	of	our	customers	who
decided	that	he	needed	to	put	the	wiki	into	MySQL	for	his	own	purposes.	We
showed	him	the	architecture	of	WikiPages	that	had	allowed	us	to	defer	the
decision.	He	came	back	a	day	later	with	the	whole	system	working	in	MySQL.
He	simply	wrote	a	MySqlWikiPage	derivative	and	got	it	working.

We	used	to	bundle	that	option	with	FitNesse,	but	nobody	else	ever	used	it,	so
eventually	we	dropped	it.	Even	the	customer	who	wrote	the	derivative	eventually
dropped	it.

Early	in	the	development	of	FitNesse,	we	drew	a	boundary	line	between
business	rules	and	databases.	That	line	prevented	the	business	rules	from
knowing	anything	at	all	about	the	database,	other	than	the	simple	data	access
methods.	That	decision	allowed	us	to	defer	the	choice	and	implementation	of	the
database	for	well	over	a	year.	It	allowed	us	to	try	the	file	system	option,	and	it
allowed	us	to	change	direction	when	we	saw	a	better	solution.	Yet	it	did	not
prevent,	or	even	impede,	moving	in	the	original	direction	(MySQL)	when
someone	wanted	it.

The	fact	that	we	did	not	have	a	database	running	for	18	months	of	development
meant	that,	for	18	months,	we	did	not	have	schema	issues,	query	issues,	database
server	issues,	password	issues,	connection	time	issues,	and	all	the	other	nasty
issues	that	raise	their	ugly	heads	when	you	fire	up	a	database.	It	also	meant	that
all	our	tests	ran	fast,	because	there	was	no	database	to	slow	them	down.

In	short,	drawing	the	boundary	lines	helped	us	delay	and	defer	decisions,	and	it
ultimately	saved	us	an	enormous	amount	of	time	and	headaches.	And	that’s	what
a	good	architecture	should	do.

WHICH	LINES	DO	YOU	DRAW,	AND
WHEN	DO	YOU	DRAW	THEM?
You	draw	lines	between	things	that	matter	and	things	that	don’t.	The	GUI
doesn’t	matter	to	the	business	rules,	so	there	should	be	a	line	between	them.	The



database	doesn’t	matter	to	the	GUI,	so	there	should	be	a	line	between	them.	The
database	doesn’t	matter	to	the	business	rules,	so	there	should	be	a	line	between
them.

Some	of	you	may	have	rejected	one	or	more	of	those	statements,	especially	the
part	about	the	business	rules	not	caring	about	the	database.	Many	of	us	have
been	taught	to	believe	that	the	database	is	inextricably	connected	to	the	business
rules.	Some	of	us	have	even	been	convinced	that	the	database	is	the	embodiment
of	the	business	rules.

But,	as	we	shall	see	in	another	chapter,	this	idea	is	misguided.	The	database	is	a
tool	that	the	business	rules	can	use	indirectly.	The	business	rules	don’t	need	to
know	about	the	schema,	or	the	query	language,	or	any	of	the	other	details	about
the	database.	All	the	business	rules	need	to	know	is	that	there	is	a	set	of
functions	that	can	be	used	to	fetch	or	save	data.	This	allows	us	to	put	the
database	behind	an	interface.

You	can	see	this	clearly	in	Figure	17.1.	The	BusinessRules	use	the
DatabaseInterface	to	load	and	save	data.	The	DatabaseAccess	implements	the
interface	and	directs	the	operation	of	the	actual	Database.

Figure	17.1	The	database	behind	an	interface

The	classes	and	interfaces	in	this	diagram	are	symbolic.	In	a	real	application,
there	would	be	many	business	rule	classes,	many	database	interface	classes,	and
many	database	access	implementations.	All	of	them,	though,	would	follow



roughly	the	same	pattern.

Where	is	the	boundary	line?	The	boundary	is	drawn	across	the	inheritance
relationship,	just	below	the	DatabaseInterface	(Figure	17.2).

Figure	17.2	The	boundary	line

Note	the	two	arrows	leaving	the	DatabaseAccess	class.	Those	two	arrows	point
away	from	the	DatabaseAccess	class.	That	means	that	none	of	these	classes
knows	that	the	DatabaseAccess	class	exists.

Now	let’s	pull	back	a	bit.	We’ll	look	at	the	component	that	contains	many
business	rules,	and	the	component	that	contains	the	database	and	all	its	access
classes	(Figure	17.3).



Figure	17.3	The	business	rules	and	database	components

Note	the	direction	of	the	arrow.	The	Database	knows	about	the	BusinessRules.
The	BusinessRules	do	not	know	about	the	Database.	This	implies	that	the
DatabaseInterface	classes	live	in	the	BusinessRules	component,	while	the
DatabaseAccess	classes	live	in	the	Database	component.

The	direction	of	this	line	is	important.	It	shows	that	the	Database	does	not
matter	to	the	BusinessRules,	but	the	Database	cannot	exist	without	the
BusinessRules.

If	that	seems	strange	to	you,	just	remember	this	point:	The	Database	component
contains	the	code	that	translates	the	calls	made	by	the	BusinessRules	into	the
query	language	of	the	database.	It	is	that	translation	code	that	knows	about	the
BusinessRules.

Having	drawn	this	boundary	line	between	the	two	components,	and	having	set
the	direction	of	the	arrow	toward	the	BusinessRules,	we	can	now	see	that	the
BusinessRules	could	use	any	kind	of	database.	The	Database	component	could
be	replaced	with	many	different	implementations—the	BusinessRules	don’t
care.

The	database	could	be	implemented	with	Oracle,	or	MySQL,	or	Couch,	or
Datomic,	or	even	flat	files.	The	business	rules	don’t	care	at	all.	And	that	means
that	the	database	decision	can	be	deferred	and	you	can	focus	on	getting	the
business	rules	written	and	tested	before	you	have	to	make	the	database	decision.



WHAT	ABOUT	INPUT	AND	OUTPUT?
Developers	and	customers	often	get	confused	about	what	the	system	is.	They	see
the	GUI,	and	think	that	the	GUI	is	the	system.	They	define	a	system	in	terms	of
the	GUI,	so	they	believe	that	they	should	see	the	GUI	start	working	immediately.
They	fail	to	realize	a	critically	important	principle:	The	IO	is	irrelevant.

This	may	be	hard	to	grasp	at	first.	We	often	think	about	the	behavior	of	the
system	in	terms	of	the	behavior	of	the	IO.	Consider	a	video	game,	for	example.
Your	experience	is	dominated	by	the	interface:	the	screen,	the	mouse,	the
buttons,	and	the	sounds.	You	forget	that	behind	that	interface	there	is	a	model—a
sophisticated	set	of	data	structures	and	functions—driving	it.	More	importantly,
that	model	does	not	need	the	interface.	It	would	happily	execute	its	duties,
modeling	all	the	events	in	the	game,	without	the	game	ever	being	displayed	on
the	screen.	The	interface	does	not	matter	to	the	model—the	business	rules.

And	so,	once	again,	we	see	the	GUI	and	BusinessRules	components	separated
by	a	boundary	line	(Figure	17.4).	Once	again,	we	see	that	the	less	relevant
component	depends	on	the	more	relevant	component.	The	arrows	show	which
component	knows	about	the	other	and,	therefore,	which	component	cares	about
the	other.	The	GUI	cares	about	the	BusinessRules.

Figure	17.4	The	boundary	between	GUI	and	BusinessRules	components

Having	drawn	this	boundary	and	this	arrow,	we	can	now	see	that	the	GUI	could
be	replaced	with	any	other	kind	of	interface—and	the	BusinessRules	would	not



care.

PLUGIN	ARCHITECTURE
Taken	together,	these	two	decisions	about	the	database	and	the	GUI	create	a	kind
of	pattern	for	the	addition	of	other	components.	That	pattern	is	the	same	pattern
that	is	used	by	systems	that	allow	third-party	plugins.

Indeed,	the	history	of	software	development	technology	is	the	story	of	how	to
conveniently	create	plugins	to	establish	a	scalable	and	maintainable	system
architecture.	The	core	business	rules	are	kept	separate	from,	and	independent	of,
those	components	that	are	either	optional	or	that	can	be	implemented	in	many
different	forms	(Figure	17.5).

Figure	17.5	Plugging	in	to	the	business	rules

Because	the	user	interface	in	this	design	is	considered	to	be	a	plugin,	we	have
made	it	possible	to	plug	in	many	different	kinds	of	user	interfaces.	They	could	be
web	based,	client/server	based,	SOA	based,	Console	based,	or	based	on	any
other	kind	of	user	interface	technology.

The	same	is	true	of	the	database.	Since	we	have	chosen	to	treat	it	as	a	plugin,	we
can	replace	it	with	any	of	the	various	SQL	databases,	or	a	NOSQL	database,	or	a
file	system-based	database,	or	any	other	kind	of	database	technology	we	might
deem	necessary	in	the	future.



These	replacements	might	not	be	trivial.	If	the	initial	deployment	of	our	system
was	web-based,	then	writing	the	plugin	for	a	client-server	UI	could	be
challenging.	It	is	likely	that	some	of	the	communications	between	the	business
rules	and	the	new	UI	would	have	to	be	reworked.	Even	so,	by	starting	with	the
presumption	of	a	plugin	structure,	we	have	at	very	least	made	such	a	change
practical.

THE	PLUGIN	ARGUMENT
Consider	the	relationship	between	ReSharper	and	Visual	Studio.	These
components	are	produced	by	completely	different	development	teams	in
completely	different	companies.	Indeed,	JetBrains,	the	maker	of	ReSharper,	lives
in	Russia.	Microsoft,	of	course,	resides	in	Redmond,	Washington.	It’s	hard	to
imagine	two	development	teams	that	are	more	separate.

Which	team	can	damage	the	other?	Which	team	is	immune	to	the	other?	The
dependency	structure	tells	the	story	(Figure	17.6).	The	source	code	of	ReSharper
depends	on	the	source	code	of	Visual	Studio.	Thus	there	is	nothing	that	the
ReSharper	team	can	do	to	disturb	the	Visual	Studio	team.	But	the	Visual	Studio
team	could	completely	disable	the	ReSharper	team	if	they	so	desired.

Figure	17.6	ReSharper	depends	on	Visual	Studio

That’s	a	deeply	asymmetric	relationship,	and	it	is	one	that	we	desire	to	have	in
our	own	systems.	We	want	certain	modules	to	be	immune	to	others.	For



example,	we	don’t	want	the	business	rules	to	break	when	someone	changes	the
format	of	a	web	page,	or	changes	the	schema	of	the	database.	We	don’t	want
changes	in	one	part	of	the	system	to	cause	other	unrelated	parts	of	the	system	to
break.	We	don’t	want	our	systems	to	exhibit	that	kind	of	fragility.

Arranging	our	systems	into	a	plugin	architecture	creates	firewalls	across	which
changes	cannot	propagate.	If	the	GUI	plugs	in	to	the	business	rules,	then	changes
in	the	GUI	cannot	affect	those	business	rules.

Boundaries	are	drawn	where	there	is	an	axis	of	change.	The	components	on	one
side	of	the	boundary	change	at	different	rates,	and	for	different	reasons,	than	the
components	on	the	other	side	of	the	boundary.

GUIs	change	at	different	times	and	at	different	rates	than	business	rules,	so	there
should	be	a	boundary	between	them.	Business	rules	change	at	different	times	and
for	different	reasons	than	dependency	injection	frameworks,	so	there	should	be	a
boundary	between	them.

This	is	simply	the	Single	Responsibility	Principle	again.	The	SRP	tells	us	where
to	draw	our	boundaries.

CONCLUSION
To	draw	boundary	lines	in	a	software	architecture,	you	first	partition	the	system
into	components.	Some	of	those	components	are	core	business	rules;	others	are
plugins	that	contain	necessary	functions	that	are	not	directly	related	to	the	core
business.	Then	you	arrange	the	code	in	those	components	such	that	the	arrows
between	them	point	in	one	direction—toward	the	core	business.

You	should	recognize	this	as	an	application	of	the	Dependency	Inversion
Principle	and	the	Stable	Abstractions	Principle.	Dependency	arrows	are	arranged
to	point	from	lower-level	details	to	higher-level	abstractions.

1.	The	word	“architecture”	appears	in	quotes	here	because	three-tier	is	not	an	architecture;	it’s	a	topology.
It’s	exactly	the	kind	of	decision	that	a	good	architecture	strives	to	defer.

2.	Many	years	later	we	were	able	to	slip	the	Velocity	framework	into	FitNesse.



18
BOUNDARY	ANATOMY

The	architecture	of	a	system	is	defined	by	a	set	of	software	components	and	the
boundaries	that	separate	them.	Those	boundaries	come	in	many	different	forms.
In	this	chapter	we’ll	look	at	some	of	the	most	common.

BOUNDARY	CROSSING
At	runtime,	a	boundary	crossing	is	nothing	more	than	a	function	on	one	side	of
the	boundary	calling	a	function	on	the	other	side	and	passing	along	some	data.
The	trick	to	creating	an	appropriate	boundary	crossing	is	to	manage	the	source
code	dependencies.



Why	source	code?	Because	when	one	source	code	module	changes,	other	source
code	modules	may	have	to	be	changed	or	recompiled,	and	then	redeployed.
Managing	and	building	firewalls	against	this	change	is	what	boundaries	are	all
about.

THE	DREADED	MONOLITH
The	simplest	and	most	common	of	the	architectural	boundaries	has	no	strict
physical	representation.	It	is	simply	a	disciplined	segregation	of	functions	and
data	within	a	single	processor	and	a	single	address	space.	In	a	previous	chapter,	I
called	this	the	source-level	decoupling	mode.

From	a	deployment	point	of	view,	this	amounts	to	nothing	more	than	a	single
executable	file—the	so-called	monolith.	This	file	might	be	a	statically	linked	C
or	C++	project,	a	set	of	Java	class	files	bound	together	into	an	executable	jar	file,
a	set	of	.NET	binaries	bound	into	a	single	.EXE	file,	and	so	on.

The	fact	that	the	boundaries	are	not	visible	during	the	deployment	of	a	monolith
does	not	mean	that	they	are	not	present	and	meaningful.	Even	when	statically
linked	into	a	single	executable,	the	ability	to	independently	develop	and	marshal
the	various	components	for	final	assembly	is	immensely	valuable.

Such	architectures	almost	always	depend	on	some	kind	of	dynamic
polymorphism1	to	manage	their	internal	dependencies.	This	is	one	of	the	reasons
that	object-oriented	development	has	become	such	an	important	paradigm	in
recent	decades.	Without	OO,	or	an	equivalent	form	of	polymorphism,	architects
must	fall	back	on	the	dangerous	practice	of	using	pointers	to	functions	to	achieve
the	appropriate	decoupling.	Most	architects	find	prolific	use	of	pointers	to
functions	to	be	too	risky,	so	they	are	forced	to	abandon	any	kind	of	component
partitioning.

The	simplest	possible	boundary	crossing	is	a	function	call	from	a	low-level
client	to	a	higher-level	service.	Both	the	runtime	dependency	and	the	compile-
time	dependency	point	in	the	same	direction,	toward	the	higher-level	component.

In	Figure	18.1,	the	flow	of	control	crosses	the	boundary	from	left	to	right.	The
Client	calls	function	f()	on	the	Service.	It	passes	along	an	instance	of	Data.
The	<DS>	marker	simply	indicates	a	data	structure.	The	Data	may	be	passed	as	a



function	argument	or	by	some	other	more	elaborate	means.	Note	that	the
definition	of	the	Data	is	on	the	called	side	of	the	boundary.

Figure	18.1	Flow	of	control	crosses	the	boundary	from	a	lower	level	to	a	higher	level

When	a	high-level	client	needs	to	invoke	a	lower-level	service,	dynamic
polymorphism	is	used	to	invert	the	dependency	against	the	flow	of	control.	The
runtime	dependency	opposes	the	compile-time	dependency.

In	Figure	18.2,	the	flow	of	control	crosses	the	boundary	from	left	to	right	as
before.	The	high-level	Client	calls	the	f()	function	of	the	lower-level
ServiceImpl	through	the	Service	interface.	Note,	however,	that	all
dependencies	cross	the	boundary	from	right	to	left	toward	the	higher-level
component.	Note,	also,	that	the	definition	of	the	data	structure	is	on	the	calling
side	of	the	boundary.



Figure	18.2	Crossing	the	boundary	against	the	flow	of	control

Even	in	a	monolithic,	statically	linked	executable,	this	kind	of	disciplined
partitioning	can	greatly	aid	the	job	of	developing,	testing,	and	deploying	the
project.	Teams	can	work	independently	of	each	other	on	their	own	components
without	treading	on	each	other’s	toes.	High-level	components	remain
independent	of	lower-level	details.

Communications	between	components	in	a	monolith	are	very	fast	and
inexpensive.	They	are	typically	just	function	calls.	Consequently,
communications	across	source-level	decoupled	boundaries	can	be	very	chatty.

Since	the	deployment	of	monoliths	usually	requires	compilation	and	static
linking,	components	in	these	systems	are	typically	delivered	as	source	code.

DEPLOYMENT	COMPONENTS
The	simplest	physical	representation	of	an	architectural	boundary	is	a
dynamically	linked	library	like	a	.Net	DLL,	a	Java	jar	file,	a	Ruby	Gem,	or	a
UNIX	shared	library.	Deployment	does	not	involve	compilation.	Instead,	the
components	are	delivered	in	binary,	or	some	equivalent	deployable	form.	This	is
the	deployment-level	decoupling	mode.	The	act	of	deployment	is	simply	the
gathering	of	these	deployable	units	together	in	some	convenient	form,	such	as	a
WAR	file,	or	even	just	a	directory.

With	that	one	exception,	deployment-level	components	are	the	same	as
monoliths.	The	functions	generally	all	exist	in	the	same	processor	and	address



space.	The	strategies	for	segregating	the	components	and	managing	their
dependencies	are	the	same.2

As	with	monoliths,	communications	across	deployment	component	boundaries
are	just	function	calls	and,	therefore,	are	very	inexpensive.	There	may	be	a	one-
time	hit	for	dynamic	linking	or	runtime	loading,	but	communications	across
these	boundaries	can	still	be	very	chatty.

THREADS
Both	monoliths	and	deployment	components	can	make	use	of	threads.	Threads
are	not	architectural	boundaries	or	units	of	deployment,	but	rather	a	way	to
organize	the	schedule	and	order	of	execution.	They	may	be	wholly	contained
within	a	component,	or	spread	across	many	components.

LOCAL	PROCESSES
A	much	stronger	physical	architectural	boundary	is	the	local	process.	A	local
process	is	typically	created	from	the	command	line	or	an	equivalent	system	call.
Local	processes	run	in	the	same	processor,	or	in	the	same	set	of	processors
within	a	multicore,	but	run	in	separate	address	spaces.	Memory	protection
generally	prevents	such	processes	from	sharing	memory,	although	shared
memory	partitions	are	often	used.

Most	often,	local	processes	communicate	with	each	other	using	sockets,	or	some
other	kind	of	operating	system	communications	facility	such	as	mailboxes	or
message	queues.

Each	local	process	may	be	a	statically	linked	monolith,	or	it	may	be	composed	of
dynamically	linked	deployment	components.	In	the	former	case,	several
monolithic	processes	may	have	the	same	components	compiled	and	linked	into
them.	In	the	latter,	they	may	share	the	same	dynamically	linked	deployment
components.

Think	of	a	local	process	as	a	kind	of	uber-component:	The	process	consists	of
lower-level	components	that	manage	their	dependencies	through	dynamic
polymorphism.



The	segregation	strategy	between	local	processes	is	the	same	as	for	monoliths
and	binary	components.	Source	code	dependencies	point	in	the	same	direction
across	the	boundary,	and	always	toward	the	higher-level	component.

For	local	processes,	this	means	that	the	source	code	of	the	higher-level	processes
must	not	contain	the	names,	or	physical	addresses,	or	registry	lookup	keys	of
lower-level	processes.	Remember	that	the	architectural	goal	is	for	lower-level
processes	to	be	plugins	to	higher-level	processes.

Communication	across	local	process	boundaries	involve	operating	system	calls,
data	marshaling	and	decoding,	and	interprocess	context	switches,	which	are
moderately	expensive.	Chattiness	should	be	carefully	limited.

SERVICES
The	strongest	boundary	is	a	service.	A	service	is	a	process,	generally	started
from	the	command	line	or	through	an	equivalent	system	call.	Services	do	not
depend	on	their	physical	location.	Two	communicating	services	may,	or	may	not,
operate	in	the	same	physical	processor	or	multicore.	The	services	assume	that	all
communications	take	place	over	the	network.

Communications	across	service	boundaries	are	very	slow	compared	to	function
calls.	Turnaround	times	can	range	from	tens	of	milliseconds	to	seconds.	Care
must	be	taken	to	avoid	chatting	where	possible.	Communications	at	this	level
must	deal	with	high	levels	of	latency.

Otherwise,	the	same	rules	apply	to	services	as	apply	to	local	processes.	Lower-
level	services	should	“plug	in”	to	higher-level	services.	The	source	code	of
higher-level	services	must	not	contain	any	specific	physical	knowledge	(e.g.,	a
URI)	of	any	lower-level	service.

CONCLUSION
Most	systems,	other	than	monoliths,	use	more	than	one	boundary	strategy.	A
system	that	makes	use	of	service	boundaries	may	also	have	some	local	process
boundaries.	Indeed,	a	service	is	often	just	a	facade	for	a	set	of	interacting	local
processes.	A	service,	or	a	local	process,	will	almost	certainly	be	either	a



monolith	composed	of	source	code	components	or	a	set	of	dynamically	linked
deployment	components.

This	means	that	the	boundaries	in	a	system	will	often	be	a	mixture	of	local
chatty	boundaries	and	boundaries	that	are	more	concerned	with	latency.

1.	Static	polymorphism	(e.g.,	generics	or	templates)	can	sometimes	be	a	viable	means	of	dependency
management	in	monolithic	systems,	especially	in	languages	like	C++.	However,	the	decoupling	afforded
by	generics	cannot	protect	you	from	the	need	for	recompilation	and	redeployment	the	way	dynamic
polymorphism	can.

2.	Although	static	polymorphism	is	not	an	option	in	this	case.



19
POLICY	AND	LEVEL

Software	systems	are	statements	of	policy.	Indeed,	at	its	core,	that’s	all	a
computer	program	actually	is.	A	computer	program	is	a	detailed	description	of
the	policy	by	which	inputs	are	transformed	into	outputs.

In	most	nontrivial	systems,	that	policy	can	be	broken	down	into	many	different
smaller	statements	of	policy.	Some	of	those	statements	will	describe	how
particular	business	rules	are	to	be	calculated.	Others	will	describe	how	certain
reports	are	to	be	formatted.	Still	others	will	describe	how	input	data	are	to	be
validated.

Part	of	the	art	of	developing	a	software	architecture	is	carefully	separating	those
policies	from	one	another,	and	regrouping	them	based	on	the	ways	that	they



change.	Policies	that	change	for	the	same	reasons,	and	at	the	same	times,	are	at
the	same	level	and	belong	together	in	the	same	component.	Policies	that	change
for	different	reasons,	or	at	different	times,	are	at	different	levels	and	should	be
separated	into	different	components.

The	art	of	architecture	often	involves	forming	the	regrouped	components	into	a
directed	acyclic	graph.	The	nodes	of	the	graph	are	the	components	that	contain
policies	at	the	same	level.	The	directed	edges	are	the	dependencies	between
those	components.	They	connect	components	that	are	at	different	levels.

Those	dependencies	are	source	code,	compile-time	dependencies.	In	Java,	they
are	import	statements.	In	C#,	they	are	using	statements.	In	Ruby,	they	are
require	statements.	They	are	the	dependencies	that	are	necessary	for	the
compiler	to	function.

In	a	good	architecture,	the	direction	of	those	dependencies	is	based	on	the	level
of	the	components	that	they	connect.	In	every	case,	low-level	components	are
designed	so	that	they	depend	on	high-level	components.

LEVEL
A	strict	definition	of	“level”	is	“the	distance	from	the	inputs	and	outputs.”	The
farther	a	policy	is	from	both	the	inputs	and	the	outputs	of	the	system,	the	higher
its	level.	The	policies	that	manage	input	and	output	are	the	lowest-level	policies
in	the	system.

The	data	flow	diagram	in	Figure	19.1	depicts	a	simple	encryption	program	that
reads	characters	from	an	input	device,	translates	the	characters	using	a	table,	and
then	writes	the	translated	characters	to	an	output	device.	The	data	flows	are
shown	as	curved	solid	arrows.	The	properly	designed	source	code	dependencies
are	shown	as	straight	dashed	lines.



Figure	19.1	A	simple	encryption	program

The	Translate	component	is	the	highest-level	component	in	this	system	because
it	is	the	component	that	is	farthest	from	the	inputs	and	outputs.1

Note	that	the	data	flows	and	the	source	code	dependencies	do	not	always	point	in
the	same	direction.	This,	again,	is	part	of	the	art	of	software	architecture.	We
want	source	code	dependencies	to	be	decoupled	from	data	flow	and	coupled	to
level.

It	would	be	easy	to	create	an	incorrect	architecture	by	writing	the	encryption
program	like	this:

Click	here	to	view	code	image

function	encrypt()	{

while(true)

writeChar(translate(readChar()));

}

This	is	incorrect	architecture	because	the	high-level	encrypt	function	depends
on	the	lower-level	readChar	and	writeChar	functions.

A	better	architecture	for	this	system	is	shown	in	the	class	diagram	in	Figure	19.2.
Note	the	dashed	border	surrounding	the	Encrypt	class,	and	the	CharWriter	and
CharReader	interfaces.	All	dependencies	crossing	that	border	point	inward.	This
unit	is	the	highest-level	element	in	the	system.



Figure	19.2	Class	diagram	showing	a	better	architecture	for	the	system

ConsoleReader	and	ConsoleWriter	are	shown	here	as	classes.	They	are	low
level	because	they	are	close	to	the	inputs	and	outputs.

Note	how	this	structure	decouples	the	high-level	encryption	policy	from	the
lower-level	input/output	policies.	This	makes	the	encryption	policy	usable	in	a
wide	range	of	contexts.	When	changes	are	made	to	the	input	and	output	policies,
they	are	not	likely	to	affect	the	encryption	policy.

Recall	that	policies	are	grouped	into	components	based	on	the	way	that	they
change.	Policies	that	change	for	the	same	reasons	and	at	the	same	times	are
grouped	together	by	the	SRP	and	CCP.	Higher-level	policies—those	that	are
farthest	from	the	inputs	and	outputs—tend	to	change	less	frequently,	and	for
more	important	reasons,	than	lower-level	policies.	Lower-level	policies—those
that	are	closest	to	the	inputs	and	outputs—tend	to	change	frequently,	and	with
more	urgency,	but	for	less	important	reasons.

For	example,	even	in	the	trivial	example	of	the	encryption	program,	it	is	far
more	likely	that	the	IO	devices	will	change	than	that	the	encryption	algorithm
will	change.	If	the	encryption	algorithm	does	change,	it	will	likely	be	for	a	more
substantive	reason	than	a	change	to	one	of	the	IO	devices.

Keeping	these	policies	separate,	with	all	source	code	dependencies	pointing	in
the	direction	of	the	higher-level	policies,	reduces	the	impact	of	change.	Trivial
but	urgent	changes	at	the	lowest	levels	of	the	system	have	little	or	no	impact	on



the	higher,	more	important,	levels.

Another	way	to	look	at	this	issue	is	to	note	that	lower-level	components	should
be	plugins	to	the	higher-level	components.	The	component	diagram	in	Figure
19.3	shows	this	arrangement.	The	Encryption	component	knows	nothing	of	the
IODevices	component;	the	IODevices	component	depends	on	the	Encryption
component.

Figure	19.3	Lower-level	components	should	plug	in	to	higher-level	components

CONCLUSION
At	this	point,	this	discussion	of	policies	has	involved	a	mixture	of	the	Single
Responsibility	Principle,	the	Open-Closed	Principle,	the	Common	Closure
Principle,	the	Dependency	Inversion	Principle,	the	Stable	Dependencies
Principle,	and	the	Stable	Abstractions	Principle.	Look	back	and	see	if	you	can
identify	where	each	principle	was	used,	and	why.

1.	Meilir	Page-Jones	called	this	component	the	“Central	Transform”	in	his	book	The	Practical	Guide	to
Structured	Systems	Design,	2nd	ed.	(Yourdon	Press,	1988).



20
BUSINESS	RULES

If	we	are	going	to	divide	our	application	into	business	rules	and	plugins,	we’d
better	get	a	good	grasp	on	just	what	business	rules	actually	are.	It	turns	out	there
are	several	different	kinds.

Strictly	speaking,	business	rules	are	rules	or	procedures	that	make	or	save	the
business	money.	Very	strictly	speaking,	these	rules	would	make	or	save	the
business	money,	irrespective	of	whether	they	were	implemented	on	a	computer.
They	would	make	or	save	money	even	if	they	were	executed	manually.

The	fact	that	a	bank	charges	N%	interest	for	a	loan	is	a	business	rule	that	makes
the	bank	money.	It	doesn’t	matter	if	a	computer	program	calculates	the	interest,
or	if	a	clerk	with	an	abacus	calculates	the	interest.



We	shall	call	these	rules	Critical	Business	Rules,	because	they	are	critical	to	the
business	itself,	and	would	exist	even	if	there	were	no	system	to	automate	them.

Critical	Business	Rules	usually	require	some	data	to	work	with.	For	example,
our	loan	requires	a	loan	balance,	an	interest	rate,	and	a	payment	schedule.

We	shall	call	this	data	Critical	Business	Data.	This	is	the	data	that	would	exist
even	if	the	system	were	not	automated.

The	critical	rules	and	critical	data	are	inextricably	bound,	so	they	are	a	good
candidate	for	an	object.	We’ll	call	this	kind	of	object	an	Entity.1

ENTITIES
An	Entity	is	an	object	within	our	computer	system	that	embodies	a	small	set	of
critical	business	rules	operating	on	Critical	Business	Data.	The	Entity	object
either	contains	the	Critical	Business	Data	or	has	very	easy	access	to	that	data.
The	interface	of	the	Entity	consists	of	the	functions	that	implement	the	Critical
Business	Rules	that	operate	on	that	data.

For	example,	Figure	20.1	shows	what	our	Loan	entity	might	look	like	as	a	class
in	UML.	It	has	three	pieces	of	Critical	Business	Data,	and	presents	three	related
Critical	Business	Rules	at	its	interface.

Figure	20.1	Loan	entity	as	a	class	in	UML



When	we	create	this	kind	of	class,	we	are	gathering	together	the	software	that
implements	a	concept	that	is	critical	to	the	business,	and	separating	it	from	every
other	concern	in	the	automated	system	we	are	building.	This	class	stands	alone
as	a	representative	of	the	business.	It	is	unsullied	with	concerns	about	databases,
user	interfaces,	or	third-party	frameworks.	It	could	serve	the	business	in	any
system,	irrespective	of	how	that	system	was	presented,	or	how	the	data	was
stored,	or	how	the	computers	in	that	system	were	arranged.	The	Entity	is	pure
business	and	nothing	else.

Some	of	you	may	be	concerned	that	I	called	it	a	class.	Don’t	be.	You	don’t	need
to	use	an	object-oriented	language	to	create	an	Entity.	All	that	is	required	is	that
you	bind	the	Critical	Business	Data	and	the	Critical	Business	Rules	together	in	a
single	and	separate	software	module.

USE	CASES
Not	all	business	rules	are	as	pure	as	Entities.	Some	business	rules	make	or	save
money	for	the	business	by	defining	and	constraining	the	way	that	an	automated
system	operates.	These	rules	would	not	be	used	in	a	manual	environment,
because	they	make	sense	only	as	part	of	an	automated	system.

For	example,	imagine	an	application	that	is	used	by	bank	officers	to	create	a	new
loan.	The	bank	may	decide	that	it	does	not	want	the	loan	officers	to	offer	loan
payment	estimates	until	they	have	first	gathered,	and	validated,	contact
information	and	ensured	that	the	candidate’s	credit	score	is	500	or	higher.	For
this	reason,	the	bank	may	specify	that	the	system	will	not	proceed	to	the
payment	estimation	screen	until	the	contact	information	screen	has	been	filled
out	and	verified,	and	the	credit	score	has	been	confirmed	to	be	greater	than	the
cutoff.

This	is	a	use	case.2	A	use	case	is	a	description	of	the	way	that	an	automated
system	is	used.	It	specifies	the	input	to	be	provided	by	the	user,	the	output	to	be
returned	to	the	user,	and	the	processing	steps	involved	in	producing	that	output.
A	use	case	describes	application-specific	business	rules	as	opposed	to	the
Critical	Business	Rules	within	the	Entities.

Figure	20.2	shows	an	example	of	a	use	case.	Notice	that	in	the	last	line	it
mentions	the	Customer.	This	is	a	reference	to	the	Customer	entity,	which



contains	the	Critical	Business	Rules	that	govern	the	relationship	between	the
bank	and	its	customers.

Figure	20.2	Example	use	case

Use	cases	contain	the	rules	that	specify	how	and	when	the	Critical	Business
Rules	within	the	Entities	are	invoked.	Use	cases	control	the	dance	of	the	Entities.

Notice	also	that	the	use	case	does	not	describe	the	user	interface	other	than	to
informally	specify	the	data	coming	in	from	that	interface,	and	the	data	going
back	out	through	that	interface.	From	the	use	case,	it	is	impossible	to	tell
whether	the	application	is	delivered	on	the	web,	or	on	a	thick	client,	or	on	a
console,	or	is	a	pure	service.

This	is	very	important.	Use	cases	do	not	describe	how	the	system	appears	to	the
user.	Instead,	they	describe	the	application-specific	rules	that	govern	the
interaction	between	the	users	and	the	Entities.	How	the	data	gets	in	and	out	of
the	system	is	irrelevant	to	the	use	cases.

A	use	case	is	an	object.	It	has	one	or	more	functions	that	implement	the
application-specific	business	rules.	It	also	has	data	elements	that	include	the
input	data,	the	output	data,	and	the	references	to	the	appropriate	Entities	with
which	it	interacts.

Entities	have	no	knowledge	of	the	use	cases	that	control	them.	This	is	another
example	of	the	direction	of	the	dependencies	following	the	Dependency



Inversion	Principle.	High-level	concepts,	such	as	Entities,	know	nothing	of
lower-level	concepts,	such	as	use	cases.	Instead,	the	lower-level	use	cases	know
about	the	higher-level	Entities.

Why	are	Entities	high	level	and	use	cases	lower	level?	Because	use	cases	are
specific	to	a	single	application	and,	therefore,	are	closer	to	the	inputs	and	outputs
of	that	system.	Entities	are	generalizations	that	can	be	used	in	many	different
applications,	so	they	are	farther	from	the	inputs	and	outputs	of	the	system.	Use
cases	depend	on	Entities;	Entities	do	not	depend	on	use	cases.

REQUEST	AND	RESPONSE	MODELS
Use	cases	expect	input	data,	and	they	produce	output	data.	However,	a	well-
formed	use	case	object	should	have	no	inkling	about	the	way	that	data	is
communicated	to	the	user,	or	to	any	other	component.	We	certainly	don’t	want
the	code	within	the	use	case	class	to	know	about	HTML	or	SQL!

The	use	case	class	accepts	simple	request	data	structures	for	its	input,	and	returns
simple	response	data	structures	as	its	output.	These	data	structures	are	not
dependent	on	anything.	They	do	not	derive	from	standard	framework	interfaces
such	as	HttpRequest	and	HttpResponse.	They	know	nothing	of	the	web,	nor	do
they	share	any	of	the	trappings	of	whatever	user	interface	might	be	in	place.

This	lack	of	dependencies	is	critical.	If	the	request	and	response	models	are	not
independent,	then	the	use	cases	that	depend	on	them	will	be	indirectly	bound	to
whatever	dependencies	the	models	carry	with	them.

You	might	be	tempted	to	have	these	data	structures	contain	references	to	Entity
objects.	You	might	think	this	makes	sense	because	the	Entities	and	the
request/response	models	share	so	much	data.	Avoid	this	temptation!	The	purpose
of	these	two	objects	is	very	different.	Over	time	they	will	change	for	very
different	reasons,	so	tying	them	together	in	any	way	violates	the	Common
Closure	and	Single	Responsibility	Principles.	The	result	would	be	lots	of	tramp
data,	and	lots	of	conditionals	in	your	code.

CONCLUSION



Business	rules	are	the	reason	a	software	system	exists.	They	are	the	core
functionality.	They	carry	the	code	that	makes,	or	saves,	money.	They	are	the
family	jewels.

The	business	rules	should	remain	pristine,	unsullied	by	baser	concerns	such	as
the	user	interface	or	database	used.	Ideally,	the	code	that	represents	the	business
rules	should	be	the	heart	of	the	system,	with	lesser	concerns	being	plugged	in	to
them.	The	business	rules	should	be	the	most	independent	and	reusable	code	in
the	system.

1.	This	is	Ivar	Jacobson’s	name	for	this	concept	(I.	Jacobson	et	al.,	Object	Oriented	Software	Engineering,
Addison-Wesley,	1992).

2.	Ibid.



21
SCREAMING	ARCHITECTURE

Imagine	that	you	are	looking	at	the	blueprints	of	a	building.	This	document,
prepared	by	an	architect,	provides	the	plans	for	the	building.	What	do	these	plans
tell	you?

If	the	plans	you	are	viewing	are	for	a	single-family	residence,	then	you’ll	likely
see	a	front	entrance,	a	foyer	leading	to	a	living	room,	and	perhaps	a	dining	room.
There	will	likely	be	a	kitchen	a	short	distance	away,	close	to	the	dining	room.
Perhaps	there	is	a	dinette	area	next	to	the	kitchen,	and	probably	a	family	room
close	to	that.	When	you	looked	at	those	plans,	there	would	be	no	question	that
you	were	looking	at	a	single	family	home.	The	architecture	would	scream:
“HOME.”



Now	suppose	you	were	looking	at	the	architecture	of	a	library.	You	would	likely
see	a	grand	entrance,	an	area	for	check-in/out	clerks,	reading	areas,	small
conference	rooms,	and	gallery	after	gallery	capable	of	holding	bookshelves	for
all	the	books	in	the	library.	That	architecture	would	scream:	“LIBRARY.”

So	what	does	the	architecture	of	your	application	scream?	When	you	look	at	the
top-level	directory	structure,	and	the	source	files	in	the	highest-level	package,	do
they	scream	“Health	Care	System,”	or	“Accounting	System,”	or	“Inventory
Management	System”?	Or	do	they	scream	“Rails,”	or	“Spring/Hibernate,”	or
“ASP”?

THE	THEME	OF	AN	ARCHITECTURE
Go	back	and	read	Ivar	Jacobson’s	seminal	work	on	software	architecture:	Object
Oriented	Software	Engineering.	Notice	the	subtitle	of	the	book:	A	Use	Case
Driven	Approach.	In	this	book	Jacobson	makes	the	point	that	software
architectures	are	structures	that	support	the	use	cases	of	the	system.	Just	as	the
plans	for	a	house	or	a	library	scream	about	the	use	cases	of	those	buildings,	so
should	the	architecture	of	a	software	application	scream	about	the	use	cases	of
the	application.

Architectures	are	not	(or	should	not	be)	about	frameworks.	Architectures	should
not	be	supplied	by	frameworks.	Frameworks	are	tools	to	be	used,	not
architectures	to	be	conformed	to.	If	your	architecture	is	based	on	frameworks,
then	it	cannot	be	based	on	your	use	cases.

THE	PURPOSE	OF	AN	ARCHITECTURE
Good	architectures	are	centered	on	use	cases	so	that	architects	can	safely
describe	the	structures	that	support	those	use	cases	without	committing	to
frameworks,	tools,	and	environments.	Again,	consider	the	plans	for	a	house.	The
first	concern	of	the	architect	is	to	make	sure	that	the	house	is	usable—not	to
ensure	that	the	house	is	made	of	bricks.	Indeed,	the	architect	takes	pains	to
ensure	that	the	homeowner	can	make	decisions	about	the	exterior	material
(bricks,	stone,	or	cedar)	later,	after	the	plans	ensure	that	the	use	cases	are	met.

A	good	software	architecture	allows	decisions	about	frameworks,	databases,	web



servers,	and	other	environmental	issues	and	tools	to	be	deferred	and	delayed.
Frameworks	are	options	to	be	left	open.	A	good	architecture	makes	it
unnecessary	to	decide	on	Rails,	or	Spring,	or	Hibernate,	or	Tomcat,	or	MySQL,
until	much	later	in	the	project.	A	good	architecture	makes	it	easy	to	change	your
mind	about	those	decisions,	too.	A	good	architecture	emphasizes	the	use	cases
and	decouples	them	from	peripheral	concerns.

BUT	WHAT	ABOUT	THE	WEB?
Is	the	web	an	architecture?	Does	the	fact	that	your	system	is	delivered	on	the
web	dictate	the	architecture	of	your	system?	Of	course	not!	The	web	is	a
delivery	mechanism—an	IO	device—and	your	application	architecture	should
treat	it	as	such.	The	fact	that	your	application	is	delivered	over	the	web	is	a	detail
and	should	not	dominate	your	system	structure.	Indeed,	the	decision	that	your
application	will	be	delivered	over	the	web	is	one	that	you	should	defer.	Your
system	architecture	should	be	as	ignorant	as	possible	about	how	it	will	be
delivered.	You	should	be	able	to	deliver	it	as	a	console	app,	or	a	web	app,	or	a
thick	client	app,	or	even	a	web	service	app,	without	undue	complication	or
change	to	the	fundamental	architecture.

FRAMEWORKS	ARE	TOOLS,	NOT	WAYS
OF	LIFE
Frameworks	can	be	very	powerful	and	very	useful.	Framework	authors	often
believe	very	deeply	in	their	frameworks.	The	examples	they	write	for	how	to	use
their	frameworks	are	told	from	the	point	of	view	of	a	true	believer.	Other	authors
who	write	about	the	framework	also	tend	to	be	disciples	of	the	true	belief.	They
show	you	the	way	to	use	the	framework.	Often	they	assume	an	all-
encompassing,	all-pervading,	let-the-framework-do-everything	position.

This	is	not	the	position	you	want	to	take.

Look	at	each	framework	with	a	jaded	eye.	View	it	skeptically.	Yes,	it	might	help,
but	at	what	cost?	Ask	yourself	how	you	should	use	it,	and	how	you	should
protect	yourself	from	it.	Think	about	how	you	can	preserve	the	use-case
emphasis	of	your	architecture.	Develop	a	strategy	that	prevents	the	framework



from	taking	over	that	architecture.

TESTABLE	ARCHITECTURES
If	your	system	architecture	is	all	about	the	use	cases,	and	if	you	have	kept	your
frameworks	at	arm’s	length,	then	you	should	be	able	to	unit-test	all	those	use
cases	without	any	of	the	frameworks	in	place.	You	shouldn’t	need	the	web	server
running	to	run	your	tests.	You	shouldn’t	need	the	database	connected	to	run	your
tests.	Your	Entity	objects	should	be	plain	old	objects	that	have	no	dependencies
on	frameworks	or	databases	or	other	complications.	Your	use	case	objects	should
coordinate	your	Entity	objects.	Finally,	all	of	them	together	should	be	testable	in
situ,	without	any	of	the	complications	of	frameworks.

CONCLUSION
Your	architecture	should	tell	readers	about	the	system,	not	about	the	frameworks
you	used	in	your	system.	If	you	are	building	a	health	care	system,	then	when
new	programmers	look	at	the	source	repository,	their	first	impression	should	be,
“Oh,	this	is	a	heath	care	system.”	Those	new	programmers	should	be	able	to
learn	all	the	use	cases	of	the	system,	yet	still	not	know	how	the	system	is
delivered.	They	may	come	to	you	and	say:

“We	see	some	things	that	look	like	models—but	where	are	the	views	and
controllers?”

And	you	should	respond:

“Oh,	those	are	details	that	needn’t	concern	us	at	the	moment.	We’ll	decide	about
them	later.”



22
THE	CLEAN	ARCHITECTURE

Over	the	last	several	decades	we’ve	seen	a	whole	range	of	ideas	regarding	the
architecture	of	systems.	These	include:

•	Hexagonal	Architecture	(also	known	as	Ports	and	Adapters),	developed	by
Alistair	Cockburn,	and	adopted	by	Steve	Freeman	and	Nat	Pryce	in	their
wonderful	book	Growing	Object	Oriented	Software	with	Tests

•	DCI	from	James	Coplien	and	Trygve	Reenskaug
•	BCE,	introduced	by	Ivar	Jacobson	from	his	book	Object	Oriented	Software
Engineering:	A	Use-Case	Driven	Approach

Although	these	architectures	all	vary	somewhat	in	their	details,	they	are	very



similar.	They	all	have	the	same	objective,	which	is	the	separation	of	concerns.
They	all	achieve	this	separation	by	dividing	the	software	into	layers.	Each	has	at
least	one	layer	for	business	rules,	and	another	layer	for	user	and	system
interfaces.

Each	of	these	architectures	produces	systems	that	have	the	following
characteristics:

•	Independent	of	frameworks.	The	architecture	does	not	depend	on	the	existence
of	some	library	of	feature-laden	software.	This	allows	you	to	use	such
frameworks	as	tools,	rather	than	forcing	you	to	cram	your	system	into	their
limited	constraints.

•	Testable.	The	business	rules	can	be	tested	without	the	UI,	database,	web	server,
or	any	other	external	element.

•	Independent	of	the	UI.	The	UI	can	change	easily,	without	changing	the	rest	of
the	system.	A	web	UI	could	be	replaced	with	a	console	UI,	for	example,
without	changing	the	business	rules.

•	Independent	of	the	database.	You	can	swap	out	Oracle	or	SQL	Server	for
Mongo,	BigTable,	CouchDB,	or	something	else.	Your	business	rules	are	not
bound	to	the	database.

•	Independent	of	any	external	agency.	In	fact,	your	business	rules	don’t	know
anything	at	all	about	the	interfaces	to	the	outside	world.

The	diagram	in	Figure	22.1	is	an	attempt	at	integrating	all	these	architectures
into	a	single	actionable	idea.



Figure	22.1	The	clean	architecture

THE	DEPENDENCY	RULE
The	concentric	circles	in	Figure	22.1	represent	different	areas	of	software.	In
general,	the	further	in	you	go,	the	higher	level	the	software	becomes.	The	outer
circles	are	mechanisms.	The	inner	circles	are	policies.

The	overriding	rule	that	makes	this	architecture	work	is	the	Dependency	Rule:

Source	code	dependencies	must	point	only	inward,	toward	higher-level	policies.

Nothing	in	an	inner	circle	can	know	anything	at	all	about	something	in	an	outer
circle.	In	particular,	the	name	of	something	declared	in	an	outer	circle	must	not
be	mentioned	by	the	code	in	an	inner	circle.	That	includes	functions,	classes,
variables,	or	any	other	named	software	entity.

By	the	same	token,	data	formats	declared	in	an	outer	circle	should	not	be	used	by
an	inner	circle,	especially	if	those	formats	are	generated	by	a	framework	in	an
outer	circle.	We	don’t	want	anything	in	an	outer	circle	to	impact	the	inner	circles.

ENTITIES

Entities	encapsulate	enterprise-wide	Critical	Business	Rules.	An	entity	can	be	an
object	with	methods,	or	it	can	be	a	set	of	data	structures	and	functions.	It	doesn’t
matter	so	long	as	the	entities	can	be	used	by	many	different	applications	in	the
enterprise.

If	you	don’t	have	an	enterprise	and	are	writing	just	a	single	application,	then
these	entities	are	the	business	objects	of	the	application.	They	encapsulate	the
most	general	and	high-level	rules.	They	are	the	least	likely	to	change	when
something	external	changes.	For	example,	you	would	not	expect	these	objects	to
be	affected	by	a	change	to	page	navigation	or	security.	No	operational	change	to
any	particular	application	should	affect	the	entity	layer.

USE	CASES

The	software	in	the	use	cases	layer	contains	application-specific	business	rules.
It	encapsulates	and	implements	all	of	the	use	cases	of	the	system.	These	use



cases	orchestrate	the	flow	of	data	to	and	from	the	entities,	and	direct	those
entities	to	use	their	Critical	Business	Rules	to	achieve	the	goals	of	the	use	case.

We	do	not	expect	changes	in	this	layer	to	affect	the	entities.	We	also	do	not
expect	this	layer	to	be	affected	by	changes	to	externalities	such	as	the	database,
the	UI,	or	any	of	the	common	frameworks.	The	use	cases	layer	is	isolated	from
such	concerns.

We	do,	however,	expect	that	changes	to	the	operation	of	the	application	will
affect	the	use	cases	and,	therefore,	the	software	in	this	layer.	If	the	details	of	a
use	case	change,	then	some	code	in	this	layer	will	certainly	be	affected.

INTERFACE	ADAPTERS

The	software	in	the	interface	adapters	layer	is	a	set	of	adapters	that	convert	data
from	the	format	most	convenient	for	the	use	cases	and	entities,	to	the	format
most	convenient	for	some	external	agency	such	as	the	database	or	the	web.	It	is
this	layer,	for	example,	that	will	wholly	contain	the	MVC	architecture	of	a	GUI.
The	presenters,	views,	and	controllers	all	belong	in	the	interface	adapters	layer.
The	models	are	likely	just	data	structures	that	are	passed	from	the	controllers	to
the	use	cases,	and	then	back	from	the	use	cases	to	the	presenters	and	views.

Similarly,	data	is	converted,	in	this	layer,	from	the	form	most	convenient	for
entities	and	use	cases,	to	the	form	most	convenient	for	whatever	persistence
framework	is	being	used	(i.e.,	the	database).	No	code	inward	of	this	circle	should
know	anything	at	all	about	the	database.	If	the	database	is	a	SQL	database,	then
all	SQL	should	be	restricted	to	this	layer—and	in	particular	to	the	parts	of	this
layer	that	have	to	do	with	the	database.

Also	in	this	layer	is	any	other	adapter	necessary	to	convert	data	from	some
external	form,	such	as	an	external	service,	to	the	internal	form	used	by	the	use
cases	and	entities.

FRAMEWORKS	AND	DRIVERS

The	outermost	layer	of	the	model	in	Figure	22.1	is	generally	composed	of
frameworks	and	tools	such	as	the	database	and	the	web	framework.	Generally
you	don’t	write	much	code	in	this	layer,	other	than	glue	code	that	communicates
to	the	next	circle	inward.



The	frameworks	and	drivers	layer	is	where	all	the	details	go.	The	web	is	a	detail.
The	database	is	a	detail.	We	keep	these	things	on	the	outside	where	they	can	do
little	harm.

ONLY	FOUR	CIRCLES?

The	circles	in	Figure	22.1	are	intended	to	be	schematic:	You	may	find	that	you
need	more	than	just	these	four.	There’s	no	rule	that	says	you	must	always	have
just	these	four.	However,	the	Dependency	Rule	always	applies.	Source	code
dependencies	always	point	inward.	As	you	move	inward,	the	level	of	abstraction
and	policy	increases.	The	outermost	circle	consists	of	low-level	concrete	details.
As	you	move	inward,	the	software	grows	more	abstract	and	encapsulates	higher-
level	policies.	The	innermost	circle	is	the	most	general	and	highest	level.

CROSSING	BOUNDARIES

At	the	lower	right	of	the	diagram	in	Figure	22.1	is	an	example	of	how	we	cross
the	circle	boundaries.	It	shows	the	controllers	and	presenters	communicating
with	the	use	cases	in	the	next	layer.	Note	the	flow	of	control:	It	begins	in	the
controller,	moves	through	the	use	case,	and	then	winds	up	executing	in	the
presenter.	Note	also	the	source	code	dependencies:	Each	points	inward	toward
the	use	cases.

We	usually	resolve	this	apparent	contradiction	by	using	the	Dependency
Inversion	Principle.	In	a	language	like	Java,	for	example,	we	would	arrange
interfaces	and	inheritance	relationships	such	that	the	source	code	dependencies
oppose	the	flow	of	control	at	just	the	right	points	across	the	boundary.

For	example,	suppose	the	use	case	needs	to	call	the	presenter.	This	call	must	not
be	direct	because	that	would	violate	the	Dependency	Rule:	No	name	in	an	outer
circle	can	be	mentioned	by	an	inner	circle.	So	we	have	the	use	case	call	an
interface	(shown	in	Figure	22.1	as	“use	case	output	port”)	in	the	inner	circle,	and
have	the	presenter	in	the	outer	circle	implement	it.

The	same	technique	is	used	to	cross	all	the	boundaries	in	the	architectures.	We
take	advantage	of	dynamic	polymorphism	to	create	source	code	dependencies
that	oppose	the	flow	of	control	so	that	we	can	conform	to	the	Dependency	Rule,
no	matter	which	direction	the	flow	of	control	travels.



WHICH	DATA	CROSSES	THE	BOUNDARIES

Typically	the	data	that	crosses	the	boundaries	consists	of	simple	data	structures.
You	can	use	basic	structs	or	simple	data	transfer	objects	if	you	like.	Or	the	data
can	simply	be	arguments	in	function	calls.	Or	you	can	pack	it	into	a	hashmap,	or
construct	it	into	an	object.	The	important	thing	is	that	isolated,	simple	data
structures	are	passed	across	the	boundaries.	We	don’t	want	to	cheat	and	pass
Entity	objects	or	database	rows.	We	don’t	want	the	data	structures	to	have	any
kind	of	dependency	that	violates	the	Dependency	Rule.

For	example,	many	database	frameworks	return	a	convenient	data	format	in
response	to	a	query.	We	might	call	this	a	“row	structure.”	We	don’t	want	to	pass
that	row	structure	inward	across	a	boundary.	Doing	so	would	violate	the
Dependency	Rule	because	it	would	force	an	inner	circle	to	know	something
about	an	outer	circle.

Thus,	when	we	pass	data	across	a	boundary,	it	is	always	in	the	form	that	is	most
convenient	for	the	inner	circle.

A	TYPICAL	SCENARIO
The	diagram	in	Figure	22.2	shows	a	typical	scenario	for	a	web-based	Java
system	using	a	database.	The	web	server	gathers	input	data	from	the	user	and
hands	it	to	the	Controller	on	the	upper	left.	The	Controller	packages	that	data
into	a	plain	old	Java	object	and	passes	this	object	through	the	InputBoundary	to
the	UseCaseInteractor.	The	UseCaseInteractor	interprets	that	data	and	uses	it
to	control	the	dance	of	the	Entities.	It	also	uses	the	DataAccessInterface	to
bring	the	data	used	by	those	Entities	into	memory	from	the	Database.	Upon
completion,	the	UseCaseInteractor	gathers	data	from	the	Entities	and
constructs	the	OutputData	as	another	plain	old	Java	object.	The	OutputData	is
then	passed	through	the	OutputBoundary	interface	to	the	Presenter.



Figure	22.2	A	typical	scenario	for	a	web-based	Java	system	utilizing	a	database

The	job	of	the	Presenter	is	to	repackage	the	OutputData	into	viewable	form	as
the	ViewModel,	which	is	yet	another	plain	old	Java	object.	The	ViewModel
contains	mostly	Strings	and	flags	that	the	View	uses	to	display	the	data.
Whereas	the	OutputData	may	contain	Date	objects,	the	Presenter	will	load	the
ViewModel	with	corresponding	Strings	already	formatted	properly	for	the	user.
The	same	is	true	of	Currency	objects	or	any	other	business-related	data.	Button
and	MenuItem	names	are	placed	in	the	ViewModel,	as	are	flags	that	tell	the	View
whether	those	Buttons	and	MenuItems	should	be	gray.

This	leaves	the	View	with	almost	nothing	to	do	other	than	to	move	the	data	from
the	ViewModel	into	the	HTML	page.

Note	the	directions	of	the	dependencies.	All	dependencies	cross	the	boundary
lines	pointing	inward,	following	the	Dependency	Rule.

CONCLUSION
Conforming	to	these	simple	rules	is	not	difficult,	and	it	will	save	you	a	lot	of
headaches	going	forward.	By	separating	the	software	into	layers	and	conforming
to	the	Dependency	Rule,	you	will	create	a	system	that	is	intrinsically	testable,
with	all	the	benefits	that	implies.	When	any	of	the	external	parts	of	the	system
become	obsolete,	such	as	the	database,	or	the	web	framework,	you	can	replace
those	obsolete	elements	with	a	minimum	of	fuss.



23
PRESENTERS	AND	HUMBLE	OBJECTS

In	Chapter	22,	we	introduced	the	notion	of	presenters.	Presenters	are	a	form	of
the	Humble	Object	pattern,	which	helps	us	identify	and	protect	architectural
boundaries.	Actually,	the	Clean	Architecture	in	the	last	chapter	was	full	of
Humble	Object	implementations.

THE	HUMBLE	OBJECT	PATTERN
The	Humble	Object	pattern1	is	a	design	pattern	that	was	originally	identified	as	a
way	to	help	unit	testers	to	separate	behaviors	that	are	hard	to	test	from	behaviors
that	are	easy	to	test.	The	idea	is	very	simple:	Split	the	behaviors	into	two



modules	or	classes.	One	of	those	modules	is	humble;	it	contains	all	the	hard-to-
test	behaviors	stripped	down	to	their	barest	essence.	The	other	module	contains
all	the	testable	behaviors	that	were	stripped	out	of	the	humble	object.

For	example,	GUIs	are	hard	to	unit	test	because	it	is	very	difficult	to	write	tests
that	can	see	the	screen	and	check	that	the	appropriate	elements	are	displayed
there.	However,	most	of	the	behavior	of	a	GUI	is,	in	fact,	easy	to	test.	Using	the
Humble	Object	pattern,	we	can	separate	these	two	kinds	of	behaviors	into	two
different	classes	called	the	Presenter	and	the	View.

PRESENTERS	AND	VIEWS
The	View	is	the	humble	object	that	is	hard	to	test.	The	code	in	this	object	is	kept
as	simple	as	possible.	It	moves	data	into	the	GUI	but	does	not	process	that	data.

The	Presenter	is	the	testable	object.	Its	job	is	to	accept	data	from	the	application
and	format	it	for	presentation	so	that	the	View	can	simply	move	it	to	the	screen.
For	example,	if	the	application	wants	a	date	displayed	in	a	field,	it	will	hand	the
Presenter	a	Date	object.	The	Presenter	will	then	format	that	data	into	an
appropriate	string	and	place	it	in	a	simple	data	structure	called	the	View	Model,
where	the	View	can	find	it.

If	the	application	wants	to	display	money	on	the	screen,	it	might	pass	a	Currency
object	to	the	Presenter.	The	Presenter	will	format	that	object	with	the	appropriate
decimal	places	and	currency	markers,	creating	a	string	that	it	can	place	in	the
View	Model.	If	that	currency	value	should	be	turned	red	if	it	is	negative,	then	a
simple	boolean	flag	in	the	View	model	will	be	set	appropriately.

Every	button	on	the	screen	will	have	a	name.	That	name	will	be	a	string	in	the
View	Model,	placed	there	by	the	presenter.	If	those	buttons	should	be	grayed	out,
the	Presenter	will	set	an	appropriate	boolean	flag	in	the	View	model.	Every
menu	item	name	is	a	string	in	the	View	model,	loaded	by	the	Presenter.	The
names	for	every	radio	button,	check	box,	and	text	field	are	loaded,	by	the
Presenter,	into	appropriate	strings	and	booleans	in	the	View	model.	Tables	of
numbers	that	should	be	displayed	on	the	screen	are	loaded,	by	the	Presenter,	into
tables	of	properly	formatted	strings	in	the	View	model.

Anything	and	everything	that	appears	on	the	screen,	and	that	the	application	has



some	kind	of	control	over,	is	represented	in	the	View	Model	as	a	string,	or	a
boolean,	or	an	enum.	Nothing	is	left	for	the	View	to	do	other	than	to	load	the
data	from	the	View	Model	into	the	screen.	Thus	the	View	is	humble.

TESTING	AND	ARCHITECTURE
It	has	long	been	known	that	testability	is	an	attribute	of	good	architectures.	The
Humble	Object	pattern	is	a	good	example,	because	the	separation	of	the
behaviors	into	testable	and	non-testable	parts	often	defines	an	architectural
boundary.	The	Presenter/View	boundary	is	one	of	these	boundaries,	but	there	are
many	others.

DATABASE	GATEWAYS
Between	the	use	case	interactors	and	the	database	are	the	database	gateways.2
These	gateways	are	polymorphic	interfaces	that	contain	methods	for	every
create,	read,	update,	or	delete	operation	that	can	be	performed	by	the	application
on	the	database.	For	example,	if	the	application	needs	to	know	the	last	names	of
all	the	users	who	logged	in	yesterday,	then	the	UserGateway	interface	will	have	a
method	named	getLastNamesOfUsersWhoLoggedInAfter	that	takes	a	Date	as	its
argument	and	returns	a	list	of	last	names.

Recall	that	we	do	not	allow	SQL	in	the	use	cases	layer;	instead,	we	use	gateway
interfaces	that	have	appropriate	methods.	Those	gateways	are	implemented	by
classes	in	the	database	layer.	That	implementation	is	the	humble	object.	It	simply
uses	SQL,	or	whatever	the	interface	to	the	database	is,	to	access	the	data	required
by	each	of	the	methods.	The	interactors,	in	contrast,	are	not	humble	because	they
encapsulate	application-specific	business	rules.	Although	they	are	not	humble,
those	interactors	are	testable,	because	the	gateways	can	be	replaced	with
appropriate	stubs	and	test-doubles.

DATA	MAPPERS
Going	back	to	the	topic	of	databases,	in	which	layer	do	you	think	ORMs	like
Hibernate	belong?



First,	let’s	get	something	straight:	There	is	no	such	thing	as	an	object	relational
mapper	(ORM).	The	reason	is	simple:	Objects	are	not	data	structures.	At	least,
they	are	not	data	structures	from	their	users’	point	of	view.	The	users	of	an	object
cannot	see	the	data,	since	it	is	all	private.	Those	users	see	only	the	public
methods	of	that	object.	So,	from	the	user’s	point	of	view,	an	object	is	simply	a
set	of	operations.

A	data	structure,	in	contrast,	is	a	set	of	public	data	variables	that	have	no	implied
behavior.	ORMs	would	be	better	named	“data	mappers,”	because	they	load	data
into	data	structures	from	relational	database	tables.

Where	should	such	ORM	systems	reside?	In	the	database	layer	of	course.
Indeed,	ORMs	form	another	kind	of	Humble	Object	boundary	between	the
gateway	interfaces	and	the	database.

SERVICE	LISTENERS
What	about	services?	If	your	application	must	communicate	with	other	services,
or	if	your	application	provides	a	set	of	services,	will	we	find	the	Humble	Object
pattern	creating	a	service	boundary?

Of	course!	The	application	will	load	data	into	simple	data	structures	and	then
pass	those	structures	across	the	boundary	to	modules	that	properly	format	the
data	and	send	it	to	external	services.	On	the	input	side,	the	service	listeners	will
receive	data	from	the	service	interface	and	format	it	into	a	simple	data	structure
that	can	be	used	by	the	application.	That	data	structure	is	then	passed	across	the
service	boundary.

CONCLUSION
At	each	architectural	boundary,	we	are	likely	to	find	the	Humble	Object	pattern
lurking	somewhere	nearby.	The	communication	across	that	boundary	will	almost
always	involve	some	kind	of	simple	data	structure,	and	the	boundary	will
frequently	divide	something	that	is	hard	to	test	from	something	that	is	easy	to
test.	The	use	of	this	pattern	at	architectural	boundaries	vastly	increases	the
testability	of	the	entire	system.



1.	xUnit	Patterns,	Meszaros,	Addison-Wesley,	2007,	p.	695.
2.	Patterns	of	Enterprise	Application	Architecture,	Martin	Fowler,	et.	al.,	Addison-Wesley,	2003,	p.	466.
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PARTIAL	BOUNDARIES

Full-fledged	architectural	boundaries	are	expensive.	They	require	reciprocal
polymorphic	Boundary	interfaces,	Input	and	Output	data	structures,	and	all	of
the	dependency	management	necessary	to	isolate	the	two	sides	into
independently	compilable	and	deployable	components.	That	takes	a	lot	of	work.
It’s	also	a	lot	of	work	to	maintain.

In	many	situations,	a	good	architect	might	judge	that	the	expense	of	such	a
boundary	is	too	high—but	might	still	want	to	hold	a	place	for	such	a	boundary	in
case	it	is	needed	later.

This	kind	of	anticipatory	design	is	often	frowned	upon	by	many	in	the	Agile
community	as	a	violation	of	YAGNI:	“You	Aren’t	Going	to	Need	It.”	Architects,



however,	sometimes	look	at	the	problem	and	think,	“Yeah,	but	I	might.”	In	that
case,	they	may	implement	a	partial	boundary.

SKIP	THE	LAST	STEP
One	way	to	construct	a	partial	boundary	is	to	do	all	the	work	necessary	to	create
independently	compilable	and	deployable	components,	and	then	simply	keep
them	together	in	the	same	component.	The	reciprocal	interfaces	are	there,	the
input/output	data	structures	are	there,	and	everything	is	all	set	up—but	we
compile	and	deploy	all	of	them	as	a	single	component.

Obviously,	this	kind	of	partial	boundary	requires	the	same	amount	of	code	and
preparatory	design	work	as	a	full	boundary.	However,	it	does	not	require	the
administration	of	multiple	components.	There’s	no	version	number	tracking	or
release	management	burden.	That	difference	should	not	be	taken	lightly.

This	was	the	early	strategy	behind	FitNesse.	The	web	server	component	of
FitNesse	was	designed	to	be	separable	from	the	wiki	and	testing	part	of
FitNesse.	The	idea	was	that	we	might	want	to	create	other	web-based
applications	by	using	that	web	component.	At	the	same,	we	did	not	want	users	to
have	to	download	two	components.	Recall	that	one	of	our	design	goals	was
“download	and	go.”	It	was	our	intent	that	users	would	download	one	jar	file	and
execute	it	without	having	to	hunt	for	other	jar	files,	work	out	version
compatibilities,	and	so	on.

The	story	of	FitNesse	also	points	out	one	of	the	dangers	of	this	approach.	Over
time,	as	it	became	clear	that	there	would	never	be	a	need	for	a	separate	web
component,	the	separation	between	the	web	component	and	the	wiki	component
began	to	weaken.	Dependencies	started	to	cross	the	line	in	the	wrong	direction.
Nowadays,	it	would	be	something	of	a	chore	to	re-separate	them.

ONE-DIMENSIONAL	BOUNDARIES
The	full-fledged	architectural	boundary	uses	reciprocal	boundary	interfaces	to
maintain	isolation	in	both	directions.	Maintaining	separation	in	both	directions	is
expensive	both	in	initial	setup	and	in	ongoing	maintenance.



A	simpler	structure	that	serves	to	hold	the	place	for	later	extension	to	a	full-
fledged	boundary	is	shown	in	Figure	24.1.	It	exemplifies	the	traditional	Strategy
pattern.	A	ServiceBoundary	interface	is	used	by	clients	and	implemented	by
ServiceImpl	classes.

Figure	24.1	The	Strategy	pattern

It	should	be	clear	that	this	sets	the	stage	for	a	future	architectural	boundary.	The
necessary	dependency	inversion	is	in	place	in	an	attempt	to	isolate	the	Client
from	the	ServiceImpl.	It	should	also	be	clear	that	the	separation	can	degrade
pretty	rapidly,	as	shown	by	the	nasty	dotted	arrow	in	the	diagram.	Without
reciprocal	interfaces,	nothing	prevents	this	kind	of	backchannel	other	than	the
diligence	and	discipline	of	the	developers	and	architects.

FACADES
An	even	simpler	boundary	is	the	Facade	pattern,	illustrated	in	Figure	24.2.	In
this	case,	even	the	dependency	inversion	is	sacrificed.	The	boundary	is	simply
defined	by	the	Facade	class,	which	lists	all	the	services	as	methods,	and	deploys
the	service	calls	to	classes	that	the	client	is	not	supposed	to	access.



Figure	24.2	The	Facade	pattern

Note,	however,	that	the	Client	has	a	transitive	dependency	on	all	those	service
classes.	In	static	languages,	a	change	to	the	source	code	in	one	of	the	Service
classes	will	force	the	Client	to	recompile.	Also,	you	can	imagine	how	easy
backchannels	are	to	create	with	this	structure.

CONCLUSION
We’ve	seen	three	simple	ways	to	partially	implement	an	architectural	boundary.
There	are,	of	course,	many	others.	These	three	strategies	are	simply	offered	as
examples.

Each	of	these	approaches	has	its	own	set	of	costs	and	benefits.	Each	is
appropriate,	in	certain	contexts,	as	a	placeholder	for	an	eventual	full-fledged
boundary.	Each	can	also	be	degraded	if	that	boundary	never	materializes.

It	is	one	of	the	functions	of	an	architect	to	decide	where	an	architectural
boundary	might	one	day	exist,	and	whether	to	fully	or	partially	implement	that
boundary.



25
LAYERS	AND	BOUNDARIES

It	is	easy	to	think	of	systems	as	being	composed	of	three	components:	UI,
business	rules,	and	database.	For	some	simple	systems,	this	is	sufficient.	For
most	systems,	though,	the	number	of	components	is	larger	than	that.

Consider,	for	example,	a	simple	computer	game.	It	is	easy	to	imagine	the	three
components.	The	UI	handles	all	messages	from	the	player	to	the	game	rules.	The
game	rules	store	the	state	of	the	game	in	some	kind	of	persistent	data	structure.
But	is	that	all	there	is?

HUNT	THE	WUMPUS



Let’s	put	some	flesh	on	these	bones.	Let’s	assume	that	the	game	is	the	venerable
Hunt	the	Wumpus	adventure	game	from	1972.	This	text-based	game	uses	very
simple	commands	like	GO	EAST	and	SHOOT	WEST.	The	player	enters	a
command,	and	the	computer	responds	with	what	the	player	sees,	smells,	hears,
and	experiences.	The	player	is	hunting	for	a	Wumpus	in	a	system	of	caverns,	and
must	avoid	traps,	pits,	and	other	dangers	lying	in	wait.	If	you	are	interested,	the
rules	of	the	game	are	easy	to	find	on	the	web.

Let’s	assume	that	we’ll	keep	the	text-based	UI,	but	decouple	it	from	the	game
rules	so	that	our	version	can	use	different	languages	in	different	markets.	The
game	rules	will	communicate	with	the	UI	component	using	a	language-
independent	API,	and	the	UI	will	translate	the	API	into	the	appropriate	human
language.

If	the	source	code	dependencies	are	properly	managed,	as	shown	in	Figure	25.1,
then	any	number	of	UI	components	can	reuse	the	same	game	rules.	The	game
rules	do	not	know,	nor	do	they	care,	which	human	language	is	being	used.

Figure	25.1	Any	number	of	UI	components	can	reuse	the	game	rules

Let’s	also	assume	that	the	state	of	the	game	is	maintained	on	some	persistent
store—perhaps	in	flash,	or	perhaps	in	the	cloud,	or	maybe	just	in	RAM.	In	any
of	those	cases,	we	don’t	want	the	game	rules	to	know	the	details.	So,	again,	we’ll
create	an	API	that	the	game	rules	can	use	to	communicate	with	the	data	storage
component.

We	don’t	want	the	game	rules	to	know	anything	about	the	different	kinds	of	data



storage,	so	the	dependencies	have	to	be	properly	directed	following	the
Dependency	Rule,	as	shown	in	Figure	25.2.

Figure	25.2	Following	the	Dependency	Rule

CLEAN	ARCHITECTURE?
It	should	be	clear	that	we	could	easily	apply	the	clean	architecture	approach	in
this	context,1	with	all	the	use	cases,	boundaries,	entities,	and	corresponding	data
structures.	But	have	we	really	found	all	the	significant	architectural	boundaries?

For	example,	language	is	not	the	only	axis	of	change	for	the	UI.	We	also	might
want	to	vary	the	mechanism	by	which	we	communicate	the	text.	For	example,
we	might	want	to	use	a	normal	shell	window,	or	text	messages,	or	a	chat
application.	There	are	many	different	possibilities.

That	means	that	there	is	a	potential	architectural	boundary	defined	by	this	axis	of
change.	Perhaps	we	should	construct	an	API	that	crosses	that	boundary	and
isolates	the	language	from	the	communications	mechanism;	that	idea	is
illustrated	in	Figure	25.3.



Figure	25.3	The	revised	diagram

The	diagram	in	Figure	25.3	has	gotten	a	little	complicated,	but	should	contain	no
surprises.	The	dashed	outlines	indicate	abstract	components	that	define	an	API
that	is	implemented	by	the	components	above	or	below	them.	For	example,	the
Language	API	is	implemented	by	English	and	Spanish.

GameRules	communicates	with	Language	through	an	API	that	GameRules	defines
and	Language	implements.	Language	communicates	with	TextDelivery	using	an
API	that	Language	defines	but	TextDelivery	implements.	The	API	is	defined
and	owned	by	the	user,	rather	than	by	the	implementer.

If	we	were	to	look	inside	GameRules,	we	would	find	polymorphic	Boundary
interfaces	used	by	the	code	inside	GameRules	and	implemented	by	the	code
inside	the	Language	component.	We	would	also	find	polymorphic	Boundary
interfaces	used	by	Language	and	implemented	by	code	inside	GameRules.

If	we	were	to	look	inside	of	Language,	we	would	find	the	same	thing:
Polymorphic	Boundary	interfaces	implemented	by	the	code	inside
TextDelivery,	and	polymorphic	Boundary	interfaces	used	by	TextDelivery	and
implemented	by	Language.

In	each	case,	the	API	defined	by	those	Boundary	interfaces	is	owned	by	the
upstream	component.

The	variations,	such	as	English,	SMS,	and	CloudData,	are	provided	by
polymorphic	interfaces	defined	in	the	abstract	API	component,	and	implemented
by	the	concrete	components	that	serve	them.	For	example,	we	would	expect
polymorphic	interfaces	defined	in	Language	to	be	implemented	by	English	and
Spanish.

We	can	simplify	this	diagram	by	eliminating	all	the	variations	and	focusing	on
just	the	API	components.	Figure	25.4	shows	this	diagram.



Figure	25.4	Simplified	diagram

Notice	that	the	diagram	is	oriented	in	Figure	25.4	so	that	all	the	arrows	point	up.
This	puts	GameRules	at	the	top.	This	orientation	makes	sense	because	GameRules
is	the	component	that	contains	the	highest-level	policies.

Consider	the	direction	of	information	flow.	All	input	comes	from	the	user
through	the	TextDelivery	component	at	the	bottom	left.	That	information	rises
through	the	Language	component,	getting	translated	into	commands	to
GameRules.	GameRules	processes	the	user	input	and	sends	appropriate	data	down
to	DataStorage	at	the	lower	right.

GameRules	then	sends	output	back	down	to	Language,	which	translates	the	API
back	to	the	appropriate	language	and	then	delivers	that	language	to	the	user
through	TextDelivery.

This	organization	effectively	divides	the	flow	of	data	into	two	streams.2	The
stream	on	the	left	is	concerned	with	communicating	with	the	user,	and	the	stream
on	the	right	is	concerned	with	data	persistence.	Both	streams	meet	at	the	top3	at
GameRules,	which	is	the	ultimate	processor	of	the	data	that	goes	through	both
streams.

CROSSING	THE	STREAMS
Are	there	always	two	data	streams	as	in	this	example?	No,	not	at	all.	Imagine



that	we	would	like	to	play	Hunt	the	Wumpus	on	the	net	with	multiple	players.	In
this	case,	we	would	need	a	network	component,	like	that	shown	in	Figure	25.5.
This	organization	divides	the	data	flow	into	three	streams,	all	controlled	by	the
GameRules.

Figure	25.5	Adding	a	network	component

So,	as	systems	become	more	complex,	the	component	structure	may	split	into
many	such	streams.

SPLITTING	THE	STREAMS
At	this	point	you	may	be	thinking	that	all	the	streams	eventually	meet	at	the	top
in	a	single	component.	If	only	life	were	so	simple!	The	reality,	of	course,	is
much	more	complex.

Consider	the	GameRules	component	for	Hunt	the	Wumpus.	Part	of	the	game
rules	deal	with	the	mechanics	of	the	map.	They	know	how	the	caverns	are
connected,	and	which	objects	are	located	in	each	cavern.	They	know	how	to
move	the	player	from	cavern	to	cavern,	and	how	to	determine	the	events	that	the
player	must	deal	with.

But	there	is	another	set	of	policies	at	an	even	higher	level—policies	that	know
the	health	of	the	player,	and	the	cost	or	benefit	of	a	particular	event.	These
policies	could	cause	the	player	to	gradually	lose	health,	or	to	gain	health	by
discovering	food.	The	lower-level	mechanics	policy	would	declare	events	to	this



higher-level	policy,	such	as	FoundFood	or	FellInPit.	The	higher-level	policy
would	then	manage	the	state	of	the	player	(as	shown	in	Figure	25.6).	Eventually
that	policy	would	decide	whether	the	player	wins	or	loses.

Figure	25.6	The	higher-level	policy	manages	the	player

Is	this	an	architectural	boundary?	Do	we	need	an	API	that	separates
MoveManagement	from	PlayerManagement?	Well,	let’s	make	this	a	bit	more
interesting	and	add	micro-services.

Let’s	assume	that	we’ve	got	a	massive	multiplayer	version	of	Hunt	the	Wumpus.
MoveManagement	is	handled	locally	within	the	player’s	computer,	but
PlayerManagement	is	handled	by	a	server.	PlayerManagement	offers	a	micro-
service	API	to	all	the	connected	MoveManagement	components.

The	diagram	in	Figure	25.7	depicts	this	scenario	in	a	somewhat	abbreviated
fashion.	The	Network	elements	are	a	bit	more	complex	than	depicted—but	you
can	probably	still	get	the	idea.	A	full-fledged	architectural	boundary	exists
between	MoveManagement	and	PlayerManagement	in	this	case.



Figure	25.7	Adding	a	micro-service	API

CONCLUSION
What	does	all	this	mean?	Why	have	I	taken	this	absurdly	simply	program,	which
could	be	implemented	in	200	lines	of	Kornshell,	and	extrapolated	it	out	with	all
these	crazy	architectural	boundaries?

This	example	is	intended	to	show	that	architectural	boundaries	exist	everywhere.
We,	as	architects,	must	be	careful	to	recognize	when	they	are	needed.	We	also
have	to	be	aware	that	such	boundaries,	when	fully	implemented,	are	expensive.
At	the	same	time,	we	have	to	recognize	that	when	such	boundaries	are	ignored,
they	are	very	expensive	to	add	in	later—even	in	the	presence	of	comprehensive
test-suites	and	refactoring	discipline.

So	what	do	we	do,	we	architects?	The	answer	is	dissatisfying.	On	the	one	hand,
some	very	smart	people	have	told	us,	over	the	years,	that	we	should	not
anticipate	the	need	for	abstraction.	This	is	the	philosophy	of	YAGNI:	“You	aren’t
going	to	need	it.”	There	is	wisdom	in	this	message,	since	over-engineering	is
often	much	worse	than	under-engineering.	On	the	other	hand,	when	you	discover
that	you	truly	do	need	an	architectural	boundary	where	none	exists,	the	costs	and
risks	can	be	very	high	to	add	such	a	boundary.

So	there	you	have	it.	O	Software	Architect,	you	must	see	the	future.	You	must
guess—intelligently.	You	must	weigh	the	costs	and	determine	where	the
architectural	boundaries	lie,	and	which	should	be	fully	implemented,	and	which



should	be	partially	implemented,	and	which	should	be	ignored.

But	this	is	not	a	one-time	decision.	You	don’t	simply	decide	at	the	start	of	a
project	which	boundaries	to	implement	and	which	to	ignore.	Rather,	you	watch.
You	pay	attention	as	the	system	evolves.	You	note	where	boundaries	may	be
required,	and	then	carefully	watch	for	the	first	inkling	of	friction	because	those
boundaries	don’t	exist.

At	that	point,	you	weigh	the	costs	of	implementing	those	boundaries	versus	the
cost	of	ignoring	them—and	you	review	that	decision	frequently.	Your	goal	is	to
implement	the	boundaries	right	at	the	inflection	point	where	the	cost	of
implementing	becomes	less	than	the	cost	of	ignoring.

It	takes	a	watchful	eye.

1.	It	should	be	just	as	clear	that	we	would	not	apply	the	clean	architecture	approach	to	something	as	trivial
as	this	game.	After	all,	the	entire	program	can	probably	be	written	in	200	lines	of	code	or	less.	In	this
case,	we’re	using	a	simple	program	as	a	proxy	for	a	much	larger	system	with	significant	architectural
boundaries.

2.	If	you	are	confused	by	the	direction	of	the	arrows,	remember	that	they	point	in	the	direction	of	source
code	dependencies,	not	in	the	direction	of	data	flow.

3.	In	days	long	past,	we	would	have	called	that	top	component	the	Central	Transform.	See	Practical	Guide
to	Structured	Systems	Design,	2nd	ed.,	Meilir	Page-Jones,	1988.



26
THE	MAIN	COMPONENT

In	every	system,	there	is	at	least	one	component	that	creates,	coordinates,	and
oversees	the	others.	I	call	this	component	Main.

THE	ULTIMATE	DETAIL
The	Main	component	is	the	ultimate	detail—the	lowest-level	policy.	It	is	the
initial	entry	point	of	the	system.	Nothing,	other	than	the	operating	system,
depends	on	it.	Its	job	is	to	create	all	the	Factories,	Strategies,	and	other	global
facilities,	and	then	hand	control	over	to	the	high-level	abstract	portions	of	the
system.



It	is	in	this	Main	component	that	dependencies	should	be	injected	by	a
Dependency	Injection	framework.	Once	they	are	injected	into	Main,	Main	should
distribute	those	dependencies	normally,	without	using	the	framework.

Think	of	Main	as	the	dirtiest	of	all	the	dirty	components.

Consider	the	following	Main	component	from	a	recent	version	of	Hunt	the
Wumpus.	Notice	how	it	loads	up	all	the	strings	that	we	don’t	want	the	main	body
of	the	code	to	know	about.

Click	here	to	view	code	image

public	class	Main	implements	HtwMessageReceiver	{

private	static	HuntTheWumpus	game;

private	static	int	hitPoints	=	10;

private	static	final	List<String>	caverns	=	new	ArrayList<>();

private	static	final	String[]	environments	=	new	String[]{

"bright",

"humid",

"dry",

"creepy",

"ugly",

"foggy",

"hot",

"cold",

"drafty",

"dreadful"

};

private	static	final	String[]	shapes	=	new	String[]	{

"round",

"square",

"oval",

"irregular",

"long",

"craggy",

"rough",

"tall",

"narrow"

};

private	static	final	String[]	cavernTypes	=	new	String[]	{

"cavern",

"room",

"chamber",

"catacomb",

"crevasse",

"cell",

"tunnel",



"passageway",

"hall",

"expanse"

};

private	static	final	String[]	adornments	=	new	String[]	{

"smelling	of	sulfur",

"with	engravings	on	the	walls",

"with	a	bumpy	floor",

"",

"littered	with	garbage",

"spattered	with	guano",

"with	piles	of	Wumpus	droppings",

"with	bones	scattered	around",

"with	a	corpse	on	the	floor",

"that	seems	to	vibrate",

"that	feels	stuffy",

"that	fills	you	with	dread"

};

Now	here’s	the	main	function.	Notice	how	it	uses	the	HtwFactory	to	create	the
game.	It	passes	in	the	name	of	the	class,	htw.game.HuntTheWumpusFacade,
because	that	class	is	even	dirtier	than	Main.	This	prevents	changes	in	that	class
from	causing	Main	to	recompile/redeploy.

Click	here	to	view	code	image

public	static	void	main(String[]	args)	throws	IOException	{

game	=	HtwFactory.makeGame("htw.game.HuntTheWumpusFacade",

new	Main());

createMap();

BufferedReader	br	=	

new	BufferedReader(new	InputStreamReader(System.in));

game.makeRestCommand().execute();

while	(true)	{

System.out.println(game.getPlayerCavern());

System.out.println("Health:	"	+	hitPoints	+	"	arrows:	"	+	

game.getQuiver());

HuntTheWumpus.Command	c	=	game.makeRestCommand();

System.out.println(">");

String	command	=	br.readLine();

if	(command.equalsIgnoreCase("e"))

c	=	game.makeMoveCommand(EAST);

else	if	(command.equalsIgnoreCase("w"))

c	=	game.makeMoveCommand(WEST);

else	if	(command.equalsIgnoreCase("n"))

c	=	game.makeMoveCommand(NORTH);

else	if	(command.equalsIgnoreCase("s"))

c	=	game.makeMoveCommand(SOUTH);

else	if	(command.equalsIgnoreCase("r"))



c	=	game.makeRestCommand();

else	if	(command.equalsIgnoreCase("sw"))

c	=	game.makeShootCommand(WEST);

else	if	(command.equalsIgnoreCase("se"))

c	=	game.makeShootCommand(EAST);

else	if	(command.equalsIgnoreCase("sn"))

c	=	game.makeShootCommand(NORTH);

else	if	(command.equalsIgnoreCase("ss"))

c	=	game.makeShootCommand(SOUTH);

else	if	(command.equalsIgnoreCase("q"))

return;

c.execute();

}

}

Notice	also	that	main	creates	the	input	stream	and	contains	the	main	loop	of	the
game,	interpreting	the	simple	input	commands,	but	then	defers	all	processing	to
other,	higher-level	components.

Finally,	notice	that	main	creates	the	map.

Click	here	to	view	code	image

private	static	void	createMap()	{

int	nCaverns	=	(int)	(Math.random()	*	30.0	+	10.0);

while	(nCaverns--	>	0)

caverns.add(makeName());

for	(String	cavern	:	caverns)	{

maybeConnectCavern(cavern,	NORTH);

maybeConnectCavern(cavern,	SOUTH);

maybeConnectCavern(cavern,	EAST);

maybeConnectCavern(cavern,	WEST);

}

String	playerCavern	=	anyCavern();

game.setPlayerCavern(playerCavern);

game.setWumpusCavern(anyOther(playerCavern));

game.addBatCavern(anyOther(playerCavern));

game.addBatCavern(anyOther(playerCavern));

game.addBatCavern(anyOther(playerCavern));

game.addPitCavern(anyOther(playerCavern));

game.addPitCavern(anyOther(playerCavern));

game.addPitCavern(anyOther(playerCavern));

game.setQuiver(5);

}



//	much	code	removed…

}

The	point	is	that	Main	is	a	dirty	low-level	module	in	the	outermost	circle	of	the
clean	architecture.	It	loads	everything	up	for	the	high	level	system,	and	then
hands	control	over	to	it.

CONCLUSION
Think	of	Main	as	a	plugin	to	the	application—a	plugin	that	sets	up	the	initial
conditions	and	configurations,	gathers	all	the	outside	resources,	and	then	hands
control	over	to	the	high-level	policy	of	the	application.	Since	it	is	a	plugin,	it	is
possible	to	have	many	Main	components,	one	for	each	configuration	of	your
application.

For	example,	you	could	have	a	Main	plugin	for	Dev,	another	for	Test,	and	yet
another	for	Production.	You	could	also	have	a	Main	plugin	for	each	country	you
deploy	to,	or	each	jurisdiction,	or	each	customer.

When	you	think	about	Main	as	a	plugin	component,	sitting	behind	an
architectural	boundary,	the	problem	of	configuration	becomes	a	lot	easier	to
solve.



27
SERVICES:	GREAT	AND	SMALL

Service-oriented	“architectures”	and	micro-service	“architectures”	have	become
very	popular	of	late.	The	reasons	for	their	current	popularity	include	the
following:

•	Services	seem	to	be	strongly	decoupled	from	each	other.	As	we	shall	see,	this
is	only	partially	true.

•	Services	appear	to	support	independence	of	development	and	deployment.
Again,	as	we	shall	see,	this	is	only	partially	true.

SERVICE	ARCHITECTURE?



First,	let’s	consider	the	notion	that	using	services,	by	their	nature,	is	an
architecture.	This	is	patently	untrue.	The	architecture	of	a	system	is	defined	by
boundaries	that	separate	high-level	policy	from	low-level	detail	and	follow	the
Dependency	Rule.	Services	that	simply	separate	application	behaviors	are	little
more	than	expensive	function	calls,	and	are	not	necessarily	architecturally
significant.

This	is	not	to	say	that	all	services	should	be	architecturally	significant.	There	are
often	substantial	benefits	to	creating	services	that	separate	functionality	across
processes	and	platforms—whether	they	obey	the	Dependency	Rule	or	not.	It’s
just	that	services,	in	and	of	themselves,	do	not	define	an	architecture.

A	helpful	analogy	is	the	organization	of	functions.	The	architecture	of	a
monolithic	or	component-based	system	is	defined	by	certain	function	calls	that
cross	architectural	boundaries	and	follow	the	Dependency	Rule.	Many	other
functions	in	those	systems,	however,	simply	separate	one	behavior	from	another
and	are	not	architecturally	significant.

So	it	is	with	services.	Services	are,	after	all,	just	function	calls	across	process
and/or	platform	boundaries.	Some	of	those	services	are	architecturally
significant,	and	some	aren’t.	Our	interest,	in	this	chapter,	is	with	the	former.

SERVICE	BENEFITS?
The	question	mark	in	the	preceding	heading	indicates	that	this	section	is	going	to
challenge	the	current	popular	orthodoxy	of	service	architecture.	Let’s	tackle	the
benefits	one	at	a	time.

THE	DECOUPLING	FALLACY

One	of	the	big	supposed	benefits	of	breaking	a	system	up	into	services	is	that
services	are	strongly	decoupled	from	each	other.	After	all,	each	service	runs	in	a
different	process,	or	even	a	different	processor;	therefore	those	services	do	not
have	access	to	each	other’s	variables.	What’s	more,	the	interface	of	each	service
must	be	well	defined.

There	is	certainly	some	truth	to	this—but	not	very	much	truth.	Yes,	services	are
decoupled	at	the	level	of	individual	variables.	However,	they	can	still	be	coupled



by	shared	resources	within	a	processor,	or	on	the	network.	What’s	more,	they	are
strongly	coupled	by	the	data	they	share.

For	example,	if	a	new	field	is	added	to	a	data	record	that	is	passed	between
services,	then	every	service	that	operates	on	the	new	field	must	be	changed.	The
services	must	also	strongly	agree	about	the	interpretation	of	the	data	in	that	field.
Thus	those	services	are	strongly	coupled	to	the	data	record	and,	therefore,
indirectly	coupled	to	each	other.

As	for	interfaces	being	well	defined,	that’s	certainly	true—but	it	is	no	less	true
for	functions.	Service	interfaces	are	no	more	formal,	no	more	rigorous,	and	no
better	defined	than	function	interfaces.	Clearly,	then,	this	benefit	is	something	of
an	illusion.

THE	FALLACY	OF	INDEPENDENT	DEVELOPMENT	AND
DEPLOYMENT

Another	of	the	supposed	benefits	of	services	is	that	they	can	be	owned	and
operated	by	a	dedicated	team.	That	team	can	be	responsible	for	writing,
maintaining,	and	operating	the	service	as	part	of	a	dev-ops	strategy.	This
independence	of	development	and	deployment	is	presumed	to	be	scalable.	It	is
believed	that	large	enterprise	systems	can	be	created	from	dozens,	hundreds,	or
even	thousands	of	independently	developable	and	deployable	services.
Development,	maintenance,	and	operation	of	the	system	can	be	partitioned
between	a	similar	number	of	independent	teams.

There	is	some	truth	to	this	belief—but	only	some.	First,	history	has	shown	that
large	enterprise	systems	can	be	built	from	monoliths	and	component-based
systems	as	well	as	service-based	systems.	Thus	services	are	not	the	only	option
for	building	scalable	systems.

Second,	the	decoupling	fallacy	means	that	services	cannot	always	be
independently	developed,	deployed,	and	operated.	To	the	extent	that	they	are
coupled	by	data	or	behavior,	the	development,	deployment,	and	operation	must
be	coordinated.

THE	KITTY	PROBLEM



As	an	example	of	these	two	fallacies,	let’s	look	at	our	taxi	aggregator	system
again.	Remember,	this	system	knows	about	many	taxi	providers	in	a	given	city,
and	allows	customers	to	order	rides.	Let’s	assume	that	the	customers	select	taxis
based	on	a	number	of	criteria,	such	as	pickup	time,	cost,	luxury,	and	driver
experience.

We	wanted	our	system	to	be	scalable,	so	we	chose	to	build	it	out	of	lots	of	little
micro-services.	We	subdivided	our	development	staff	into	many	small	teams,
each	of	which	is	responsible	for	developing,	maintaining,	and	operating	a
correspondingly1	small	number	of	services.

The	diagram	in	Figure	27.1	shows	how	our	fictitious	architects	arranged	services
to	implement	this	application.	The	TaxiUI	service	deals	with	the	customers,	who
use	mobile	devices	to	order	taxis.	The	TaxiFinder	service	examines	the
inventories	of	the	various	TaxiSuppliers	and	determines	which	taxies	are
possible	candidates	for	the	user.	It	deposits	these	into	a	short-term	data	record
attached	to	that	user.	The	TaxiSelector	service	takes	the	user’s	criteria	of	cost,
time,	luxury,	and	so	forth,	and	chooses	an	appropriate	taxi	from	among	the
candidates.	It	hands	that	taxi	off	to	the	TaxiDispatcher	service,	which	orders
the	appropriate	taxi.

Figure	27.1	Services	arranged	to	implement	the	taxi	aggregator	system

Now	let	us	suppose	that	this	system	has	been	in	operation	for	more	than	a	year.
Our	staff	of	developers	have	been	happily	developing	new	features	while
maintaining	and	operating	all	these	services.

One	bright	and	cheerful	day,	the	marketing	department	holds	a	meeting	with	the



development	team.	In	this	meeting,	they	announce	their	plans	to	offer	a	kitten
delivery	service	to	the	city.	Users	can	order	kittens	to	be	delivered	to	their	homes
or	to	their	places	of	business.

The	company	will	set	up	several	kitten	collection	points	across	the	city.	When	a
kitten	order	is	placed,	a	nearby	taxi	will	be	selected	to	collect	a	kitten	from	one
of	those	collection	points,	and	then	deliver	it	to	the	appropriate	address.

One	of	the	taxi	suppliers	has	agreed	to	participate	in	this	program.	Others	are
likely	to	follow.	Still	others	may	decline.

Of	course,	some	drivers	may	be	allergic	to	cats,	so	those	drivers	should	never	be
selected	for	this	service.	Also,	some	customers	will	undoubtedly	have	similar
allergies,	so	a	vehicle	that	has	been	used	to	deliver	kittens	within	the	last	3	days
should	not	be	selected	for	customers	who	declare	such	allergies.

Look	at	that	diagram	of	services.	How	many	of	those	services	will	have	to
change	to	implement	this	feature?	All	of	them.	Clearly,	the	development	and
deployment	of	the	kitty	feature	will	have	to	be	very	carefully	coordinated.

In	other	words,	the	services	are	all	coupled,	and	cannot	be	independently
developed,	deployed,	and	maintained.

This	is	the	problem	with	cross-cutting	concerns.	Every	software	system	must
face	this	problem,	whether	service	oriented	or	not.	Functional	decompositions,
of	the	kind	depicted	in	the	service	diagram	in	Figure	27.1,	are	very	vulnerable	to
new	features	that	cut	across	all	those	functional	behaviors.

OBJECTS	TO	THE	RESCUE
How	would	we	have	solved	this	problem	in	a	component-based	architecture?
Careful	consideration	of	the	SOLID	design	principles	would	have	prompted	us
to	create	a	set	of	classes	that	could	be	polymorphically	extended	to	handle	new
features.

The	diagram	in	Figure	27.2	shows	the	strategy.	The	classes	in	this	diagram
roughly	correspond	to	the	services	shown	in	Figure	27.1.	However,	note	the
boundaries.	Note	also	that	the	dependencies	follow	the	Dependency	Rule.



Much	of	the	logic	of	the	original	services	is	preserved	within	the	base	classes	of
the	object	model.	However,	that	portion	of	the	logic	that	was	specific	to	rides	has
been	extracted	into	a	Rides	component.	The	new	feature	for	kittens	has	been
placed	into	a	Kittens	component.	These	two	components	override	the	abstract
base	classes	in	the	original	components	using	a	pattern	such	as	Template	Method
or	Strategy.

Note	again	that	the	two	new	components,	Rides	and	Kittens,	follow	the
Dependency	Rule.	Note	also	that	the	classes	that	implement	those	features	are
created	by	factories	under	the	control	of	the	UI.

Clearly,	in	this	scheme,	when	the	Kitty	feature	is	implemented,	the	TaxiUI	must
change.	But	nothing	else	needs	to	be	changed.	Rather,	a	new	jar	file,	or	Gem,	or
DLL	is	added	to	the	system	and	dynamically	loaded	at	runtime.

Thus	the	Kitty	feature	is	decoupled,	and	independently	developable	and
deployable.



Figure	27.2	Using	an	object-oriented	approach	to	deal	with	cross-cutting	concerns

COMPONENT-BASED	SERVICES
The	obvious	question	is:	Can	we	do	that	for	services?	And	the	answer	is,	of
course:	Yes!	Services	do	not	need	to	be	little	monoliths.	Services	can,	instead,	be
designed	using	the	SOLID	principles,	and	given	a	component	structure	so	that
new	components	can	be	added	to	them	without	changing	the	existing
components	within	the	service.



Think	of	a	service	in	Java	as	a	set	of	abstract	classes	in	one	or	more	jar	files.
hink	of	each	new	feature	or	feature	extension	as	another	jar	file	that	contains
classes	that	extend	the	abstract	classes	in	the	first	jar	files.	Deploying	a	new
feature	then	becomes	not	a	matter	of	redeploying	the	services,	but	rather	a	matter
of	simply	adding	the	new	jar	files	to	the	load	paths	of	those	services.	In	other
words,	adding	new	features	conforms	to	the	Open-Closed	Principle.

The	service	diagram	in	Figure	27.3	shows	the	structure.	The	services	still	exist
as	before,	but	each	has	its	own	internal	component	design,	allowing	new	features
to	be	added	as	new	derivative	classes.	Those	derivative	classes	live	within	their
own	components.

Figure	27.3	Each	service	has	its	own	internal	component	design,	enabling	new	features	to	be	added	as	new
derivative	classes

CROSS-CUTTING	CONCERNS



What	we	have	learned	is	that	architectural	boundaries	do	not	fall	between
services.	Rather,	those	boundaries	run	through	the	services,	dividing	them	into
components.

To	deal	with	the	cross-cutting	concerns	that	all	significant	systems	face,	services
must	be	designed	with	internal	component	architectures	that	follow	the
Dependency	Rule,	as	shown	in	the	diagram	in	Figure	27.4.	Those	services	do	not
define	the	architectural	boundaries	of	the	system;	instead,	the	components	within
the	services	do.

Figure	27.4	Services	must	be	designed	with	internal	component	architectures	that	follow	the	Dependency
Rule

CONCLUSION
As	useful	as	services	are	to	the	scalability	and	develop-ability	of	a	system,	they
are	not,	in	and	of	themselves,	architecturally	significant	elements.	The
architecture	of	a	system	is	defined	by	the	boundaries	drawn	within	that	system,
and	by	the	dependencies	that	cross	those	boundaries.	That	architecture	is	not
defined	by	the	physical	mechanisms	by	which	elements	communicate	and
execute.

A	service	might	be	a	single	component,	completely	surrounded	by	an
architectural	boundary.	Alternatively,	a	service	might	be	composed	of	several
components	separated	by	architectural	boundaries.	In	rare2	cases,	clients	and



services	may	be	so	coupled	as	to	have	no	architectural	significance	whatever.

1.	Therefore	the	number	of	micro-services	will	be	roughly	equal	to	the	number	of	programmers.
2.	We	hope	they	are	rare.	Unfortunately,	experience	suggests	otherwise.



28
THE	TEST	BOUNDARY

Yes,	that’s	right:	The	tests	are	part	of	the	system,	and	they	participate	in	the
architecture	just	like	every	other	part	of	the	system	does.	In	some	ways,	that
participation	is	pretty	normal.	In	other	ways,	it	can	be	pretty	unique.

TESTS	AS	SYSTEM	COMPONENTS
There	is	a	great	deal	of	confusion	about	tests.	Are	they	part	of	the	system?	Are
they	separate	from	the	system?	Which	kinds	of	tests	are	there?	Are	unit	tests	and
integration	tests	different	things?	What	about	acceptance	tests,	functional	tests,
Cucumber	tests,	TDD	tests,	BDD	tests,	component	tests,	and	so	on?



It	is	not	the	role	of	this	book	to	get	embroiled	in	that	particular	debate,	and
fortunately	it	isn’t	necessary.	From	an	architectural	point	of	view,	all	tests	are	the
same.	Whether	they	are	the	tiny	little	tests	created	by	TDD,	or	large	FitNesse,
Cucumber,	SpecFlow,	or	JBehave	tests,	they	are	architecturally	equivalent.

Tests,	by	their	very	nature,	follow	the	Dependency	Rule;	they	are	very	detailed
and	concrete;	and	they	always	depend	inward	toward	the	code	being	tested.	In
fact,	you	can	think	of	the	tests	as	the	outermost	circle	in	the	architecture.
Nothing	within	the	system	depends	on	the	tests,	and	the	tests	always	depend
inward	on	the	components	of	the	system.

Tests	are	also	independently	deployable.	In	fact,	most	of	the	time	they	are
deployed	in	test	systems,	rather	than	in	production	systems.	So,	even	in	systems
where	independent	deployment	is	not	otherwise	necessary,	the	tests	will	still	be
independently	deployed.

Tests	are	the	most	isolated	system	component.	They	are	not	necessary	for	system
operation.	No	user	depends	on	them.	Their	role	is	to	support	development,	not
operation.	And	yet,	they	are	no	less	a	system	component	than	any	other.	In	fact,
in	many	ways	they	represent	the	model	that	all	other	system	components	should
follow.

DESIGN	FOR	TESTABILITY
The	extreme	isolation	of	the	tests,	combined	with	the	fact	that	they	are	not
usually	deployed,	often	causes	developers	to	think	that	tests	fall	outside	of	the
design	of	the	system.	This	is	a	catastrophic	point	of	view.	Tests	that	are	not	well
integrated	into	the	design	of	the	system	tend	to	be	fragile,	and	they	make	the
system	rigid	and	difficult	to	change.

The	issue,	of	course,	is	coupling.	Tests	that	are	strongly	coupled	to	the	system
must	change	along	with	the	system.	Even	the	most	trivial	change	to	a	system
component	can	cause	many	coupled	tests	to	break	or	require	changes.

This	situation	can	become	acute.	Changes	to	common	system	components	can
cause	hundreds,	or	even	thousands,	of	tests	to	break.	This	is	known	as	the
Fragile	Tests	Problem.



It	is	not	hard	to	see	how	this	can	happen.	Imagine,	for	example,	a	suite	of	tests
that	use	the	GUI	to	verify	business	rules.	Such	tests	may	start	on	the	login	screen
and	then	navigate	through	the	page	structure	until	they	can	check	particular
business	rules.	Any	change	to	the	login	page,	or	the	navigation	structure,	can
cause	an	enormous	number	of	tests	to	break.

Fragile	tests	often	have	the	perverse	effect	of	making	the	system	rigid.	When
developers	realize	that	simple	changes	to	the	system	can	cause	massive	test
failures,	they	may	resist	making	those	changes.	For	example,	imagine	the
conversation	between	the	development	team	and	a	marketing	team	that	requests
a	simple	change	to	the	page	navigation	structure	that	will	cause	1000	tests	to
break.

The	solution	is	to	design	for	testability.	The	first	rule	of	software	design—
whether	for	testability	or	for	any	other	reason—is	always	the	same:	Don’t
depend	on	volatile	things.	GUIs	are	volatile.	Test	suites	that	operate	the	system
through	the	GUI	must	be	fragile.	Therefore	design	the	system,	and	the	tests,	so
that	business	rules	can	be	tested	without	using	the	GUI.

THE	TESTING	API
The	way	to	accomplish	this	goal	is	to	create	a	specific	API	that	the	tests	can	use
to	verify	all	the	business	rules.	This	API	should	have	superpowers	that	allow	the
tests	to	avoid	security	constraints,	bypass	expensive	resources	(such	as
databases),	and	force	the	system	into	particular	testable	states.	This	API	will	be	a
superset	of	the	suite	of	interactors	and	interface	adapters	that	are	used	by	the
user	interface.

The	purpose	of	the	testing	API	is	to	decouple	the	tests	from	the	application.	This
decoupling	encompasses	more	than	just	detaching	the	tests	from	the	UI:	The
goal	is	to	decouple	the	structure	of	the	tests	from	the	structure	of	the	application.

STRUCTURAL	COUPLING

Structural	coupling	is	one	of	the	strongest,	and	most	insidious,	forms	of	test
coupling.	Imagine	a	test	suite	that	has	a	test	class	for	every	production	class,	and
a	set	of	test	methods	for	every	production	method.	Such	a	test	suite	is	deeply
coupled	to	the	structure	of	the	application.



When	one	of	those	production	methods	or	classes	changes,	a	large	number	of
tests	must	change	as	well.	Consequently,	the	tests	are	fragile,	and	they	make	the
production	code	rigid.

The	role	of	the	testing	API	is	to	hide	the	structure	of	the	application	from	the
tests.	This	allows	the	production	code	to	be	refactored	and	evolved	in	ways	that
don’t	affect	the	tests.	It	also	allows	the	tests	to	be	refactored	and	evolved	in	ways
that	don’t	affect	the	production	code.

This	separation	of	evolution	is	necessary	because	as	time	passes,	the	tests	tend	to
become	increasingly	more	concrete	and	specific.	In	contrast,	the	production	code
tends	to	become	increasingly	more	abstract	and	general.	Strong	structural
coupling	prevents—or	at	least	impedes—this	necessary	evolution,	and	prevents
the	production	code	from	being	as	general,	and	flexible,	as	it	could	be.

SECURITY

The	superpowers	of	the	testing	API	could	be	dangerous	if	they	were	deployed	in
production	systems.	If	this	is	a	concern,	then	the	testing	API,	and	the	dangerous
parts	of	its	implementation,	should	be	kept	in	a	separate,	independently
deployable	component.

CONCLUSION
Tests	are	not	outside	the	system;	rather,	they	are	parts	of	the	system	that	must	be
well	designed	if	they	are	to	provide	the	desired	benefits	of	stability	and
regression.	Tests	that	are	not	designed	as	part	of	the	system	tend	to	be	fragile	and
difficult	to	maintain.	Such	tests	often	wind	up	on	the	maintenance	room	floor—
discarded	because	they	are	too	difficult	to	maintain.



29
CLEAN	EMBEDDED	ARCHITECTURE

By	James	Grenning

A	while	ago	I	read	an	article	entitled	“The	Growing	Importance	of	Sustaining
Software	for	the	DoD”1	on	Doug	Schmidt’s	blog.	Doug	made	the	following
claim:

“Although	software	does	not	wear	out,	firmware	and	hardware	become	obsolete,	thereby
requiring	software	modifications.”

It	was	a	clarifying	moment	for	me.	Doug	mentioned	two	terms	that	I	would	have
thought	to	be	obvious—but	maybe	not.	Software	is	this	thing	that	can	have	a
long	useful	life,	but	firmware	will	become	obsolete	as	hardware	evolves.	If	you
have	spent	any	time	in	embedded	systems	development,	you	know	the	hardware



is	continually	evolving	and	being	improved.	At	the	same	time,	features	are	added
to	the	new	“software,”	and	it	continually	grows	in	complexity.

I’d	like	to	add	to	Doug’s	statement:

Although	software	does	not	wear	out,	it	can	be	destroyed	from	within	by	unmanaged	dependencies
on	firmware	and	hardware.

It	is	not	uncommon	for	embedded	software	to	be	denied	a	potentially	long	life
due	to	being	infected	with	dependencies	on	hardware.

I	like	Doug’s	definition	of	firmware,	but	let’s	see	which	other	definitions	are	out
there.	I	found	these	alternatives:

•	“Firmware	is	held	in	non-volatile	memory	devices	such	as	ROM,	EPROM,	or
flash	memory.”	(https://en.wikipedia.org/wiki/Firmware)

•	“Firmware	is	a	software	program	or	set	of	instructions	programmed	on	a
hardware	device.”	(https://techterms.com/definition/firmware)

•	“Firmware	is	software	that	is	embedded	in	a	piece	of	hardware.”
(https://www.lifewire.com/what-is-firmware-2625881)

•	Firmware	is	“Software	(programs	or	data)	that	has	been	written	onto	read-only
memory	(ROM).”	(http://www.webopedia.com/TERM/F/firmware.html)

Doug’s	statement	makes	me	realize	that	these	accepted	definitions	of	firmware
are	wrong,	or	at	least	obsolete.	Firmware	does	not	mean	code	lives	in	ROM.	It’s
not	firmware	because	of	where	it	is	stored;	rather,	it	is	firmware	because	of	what
it	depends	on	and	how	hard	it	is	to	change	as	hardware	evolves.	Hardware	does
evolve	(pause	and	look	at	your	for	phone	for	evidence),	so	we	should	structure
our	embedded	code	with	that	reality	in	mind.

I	have	nothing	against	firmware,	or	firmware	engineers	(I’ve	been	known	to
write	some	firmware	myself).	But	what	we	really	need	is	less	firmware	and	more
software.	Actually,	I	am	disappointed	that	firmware	engineers	write	so	much
firmware!

Non-embedded	engineers	also	write	firmware!	You	non-embedded	developers
essentially	write	firmware	whenever	you	bury	SQL	in	your	code	or	when	you
spread	platform	dependencies	throughout	your	code.	Android	app	developers
write	firmware	when	they	don’t	separate	their	business	logic	from	the	Android
API.

https://en.wikipedia.org/wiki/Firmware
https://techterms.com/definition/firmware
https://www.lifewire.com/what-is-firmware-2625881
http://www.webopedia.com/TERM/F/firmware.html


I’ve	been	involved	in	a	lot	of	efforts	where	the	line	between	the	product	code
(the	software)	and	the	code	that	interacts	with	the	product’s	hardware	(the
firmware)	is	fuzzy	to	the	point	of	nonexistence.	For	example,	in	the	late	1990s	I
had	the	fun	of	helping	redesign	a	communications	subsystem	that	was
transitioning	from	time-division	multiplexing	(TDM)	to	voice	over	IP	(VOIP).
VOIP	is	how	things	are	done	now,	but	TDM	was	considered	the	state	of	the	art
from	the	1950s	and	1960s,	and	was	widely	deployed	in	the	1980s	and	1990s.

Whenever	we	had	a	question	for	the	systems	engineer	about	how	a	call	should
react	to	a	given	situation,	he	would	disappear	and	a	little	later	emerge	with	a
very	detailed	answer.	“Where	did	he	get	that	answer?”	we	asked.	“From	the
current	product’s	code,”	he’d	answer.	The	tangled	legacy	code	was	the	spec	for
the	new	product!	The	existing	implementation	had	no	separation	between	TDM
and	the	business	logic	of	making	calls.	The	whole	product	was
hardware/technology	dependent	from	top	to	bottom	and	could	not	be	untangled.
The	whole	product	had	essentially	become	firmware.

Consider	another	example:	Command	messages	arrive	to	this	system	via	serial
port.	Unsurprisingly,	there	is	a	message	processor/dispatcher.	The	message
processor	knows	the	format	of	messages,	is	able	to	parse	them,	and	can	then
dispatch	the	message	to	the	code	that	can	handle	the	request.	None	of	this	is
surprising,	except	that	the	message	processor/dispatcher	resides	in	the	same	file
as	code	that	interacts	with	a	UART2	hardware.	The	message	processor	is
polluted	with	UART	details.	The	message	processor	could	have	been	software
with	a	potentially	long	useful	life,	but	instead	it	is	firmware.	The	message
processor	is	denied	the	opportunity	to	become	software—and	that	is	just	not
right!

I’ve	known	and	understood	the	need	for	separating	software	from	hardware	for	a
long	time,	but	Doug’s	words	clarified	how	to	use	the	terms	software	and
firmware	in	relationship	to	each	other.

For	engineers	and	programmers,	the	message	is	clear:	Stop	writing	so	much
firmware	and	give	your	code	a	chance	at	a	long	useful	life.	Of	course,
demanding	it	won’t	make	it	so.	Let’s	look	at	how	we	can	keep	embedded
software	architecture	clean	to	give	the	software	a	fighting	chance	of	having	a
long	and	useful	life.



APP-TITUDE	TEST
Why	does	so	much	potential	embedded	software	become	firmware?	It	seems	that
most	of	the	emphasis	is	on	getting	the	embedded	code	to	work,	and	not	so	much
emphasis	is	placed	on	structuring	it	for	a	long	useful	life.	Kent	Beck	describes
three	activities	in	building	software	(the	quoted	text	is	Kent’s	words	and	the
italics	are	my	commentary):

1.	“First	make	it	work.”	You	are	out	of	business	if	it	doesn’t	work.
2.	“Then	make	it	right.”	Refactor	the	code	so	that	you	and	others	can	understand
it	and	evolve	it	as	needs	change	or	are	better	understood.

3.	“Then	make	it	fast.”	Refactor	the	code	for	“needed”	performance.

Much	of	the	embedded	systems	software	that	I	see	in	the	wild	seems	to	have
been	written	with	“Make	it	work”	in	mind—and	perhaps	also	with	an	obsession
for	the	“Make	it	fast”	goal,	achieved	by	adding	micro-optimizations	at	every
opportunity.	In	The	Mythical	Man-Month,	Fred	Brooks	suggests	we	“plan	to
throw	one	away.”	Kent	and	Fred	are	giving	virtually	the	same	advice:	Learn
what	works,	then	make	a	better	solution.

Embedded	software	is	not	special	when	it	comes	to	these	problems.	Most	non-
embedded	apps	are	built	just	to	work,	with	little	regard	to	making	the	code	right
for	a	long	useful	life.

Getting	an	app	to	work	is	what	I	call	the	App-titude	test	for	a	programmer.
Programmers,	embedded	or	not,	who	just	concern	themselves	with	getting	their
app	to	work	are	doing	their	products	and	employers	a	disservice.	There	is	much
more	to	programming	than	just	getting	an	app	to	work.

As	an	example	of	code	produced	while	passing	the	App-titude	test,	check	out
these	functions	located	in	one	file	of	a	small	embedded	system:

Click	here	to	view	code	image

ISR(TIMER1_vect)	{	...	}

ISR(INT2_vect)	{	...	}

void	btn_Handler(void)	{	...	}

float	calc_RPM(void)	{	...	}

static	char	Read_RawData(void)	{	...	}

void	Do_Average(void)	{	...	}



void	Get_Next_Measurement(void)	{	...	}

void	Zero_Sensor_1(void)	{	...	}

void	Zero_Sensor_2(void)	{	...	}

void	Dev_Control(char	Activation)	{	...	}

char	Load_FLASH_Setup(void)	{	...	}

void	Save_FLASH_Setup(void)	{	...	}

void	Store_DataSet(void)	{	...	}

float	bytes2float(char	bytes[4])	{	...	}

void	Recall_DataSet(void)	{	...	}

void	Sensor_init(void)	{	...	}

void	uC_Sleep(void)	{	...	}

That	list	of	functions	is	in	the	order	I	found	them	in	the	source	file.	Now	I’ll
separate	them	and	group	them	by	concern:

•	Functions	that	have	domain	logic
Click	here	to	view	code	image
float	calc_RPM(void)	{	...	}

void	Do_Average(void)	{	...	}

void	Get_Next_Measurement(void)	{	...	}

void	Zero_Sensor_1(void)	{	...	}

void	Zero_Sensor_2(void)	{	...	}

•	Functions	that	set	up	the	hardware	platform
Click	here	to	view	code	image
ISR(TIMER1_vect)	{	...	}*

ISR(INT2_vect)	{	...	}

void	uC_Sleep(void)	{	...	}

Functions	that	react	to	the	on	off	button	press

void	btn_Handler(void)	{	...	}

void	Dev_Control(char	Activation)	{	...	}

A	Function	that	can	get	A/D	input	readings	from	the	hardware

static	char	Read_RawData(void)	{	...	}

•	Functions	that	store	values	to	the	persistent	storage
Click	here	to	view	code	image
char	Load_FLASH_Setup(void)	{	...	}

void	Save_FLASH_Setup(void)	{	...	}

void	Store_DataSet(void)	{	...	}

float	bytes2float(char	bytes[4])	{	...	}

void	Recall_DataSet(void)	{	...	}

•	Function	that	does	not	do	what	its	name	implies



Click	here	to	view	code	image
void	Sensor_init(void)	{	...	}

Looking	at	some	of	the	other	files	in	this	application,	I	found	many	impediments
to	understanding	the	code.	I	also	found	a	file	structure	that	implied	that	the	only
way	to	test	any	of	this	code	is	in	the	embedded	target.	Virtually	every	bit	of	this
code	knows	it	is	in	a	special	microprocessor	architecture,	using	“extended”	C
constructs3	that	tie	the	code	to	a	particular	tool	chain	and	microprocessor.	There
is	no	way	for	this	code	to	have	a	long	useful	life	unless	the	product	never	needs
to	be	moved	to	a	different	hardware	environment.

This	application	works:	The	engineer	passed	the	App-titude	test.	But	the
application	can’t	be	said	to	have	a	clean	embedded	architecture.

THE	TARGET-HARDWARE
BOTTLENECK
There	are	many	special	concerns	that	embedded	developers	have	to	deal	with
that	non-embedded	developers	do	not—for	example,	limited	memory	space,
real-time	constraints	and	deadlines,	limited	IO,	unconventional	user	interfaces,
and	sensors	and	connections	to	the	real	world.	Most	of	the	time	the	hardware	is
concurrently	developed	with	the	software	and	firmware.	As	an	engineer
developing	code	for	this	kind	of	system,	you	may	have	no	place	to	run	the	code.
If	that’s	not	bad	enough,	once	you	get	the	hardware,	it	is	likely	that	the	hardware
will	have	its	own	defects,	making	software	development	progress	even	slower
than	usual.

Yes,	embedded	is	special.	Embedded	engineers	are	special.	But	embedded
development	is	not	so	special	that	the	principles	in	this	book	are	not	applicable
to	embedded	systems.

One	of	the	special	embedded	problems	is	the	target-hardware	bottleneck.	When
embedded	code	is	structured	without	applying	clean	architecture	principles	and
practices,	you	will	often	face	the	scenario	in	which	you	can	test	your	code	only
on	the	target.	If	the	target	is	the	only	place	where	testing	is	possible,	the	target-
hardware	bottleneck	will	slow	you	down.



A	CLEAN	EMBEDDED	ARCHITECTURE	IS	A	TESTABLE
EMBEDDED	ARCHITECTURE

Let’s	see	how	to	apply	some	of	the	architectural	principles	to	embedded	software
and	firmware	to	help	you	eliminate	the	target-hardware	bottleneck.

Layers

Layering	comes	in	many	flavors.	Let’s	start	with	three	layers,	as	shown	in	Figure
29.1.	At	the	bottom,	there	is	the	hardware.	As	Doug	warns	us,	due	to	technology
advances	and	Moore’s	law,	the	hardware	will	change.	Parts	become	obsolete,
and	new	parts	use	less	power	or	provide	better	performance	or	are	cheaper.
Whatever	the	reason,	as	an	embedded	engineer,	I	don’t	want	to	have	a	bigger	job
than	is	necessary	when	the	inevitable	hardware	change	finally	happens.

Figure	29.1	Three	layers

The	separation	between	hardware	and	the	rest	of	the	system	is	a	given—at	least
once	the	hardware	is	defined	(Figure	29.2).	Here	is	where	the	problems	often
begin	when	you	are	trying	to	pass	the	App-titude	test.	There	is	nothing	that
keeps	hardware	knowledge	from	polluting	all	the	code.	If	you	are	not	careful
about	where	you	put	things	and	what	one	module	is	allowed	to	know	about
another	module,	the	code	will	be	very	hard	to	change.	I’m	not	just	talking	about
when	the	hardware	changes,	but	when	the	user	asks	for	a	change,	or	when	a	bug
needs	to	be	fixed.



Figure	29.2	Hardware	must	be	separated	from	the	rest	of	the	system

Software	and	firmware	intermingling	is	an	anti-pattern.	Code	exhibiting	this
anti-pattern	will	resist	changes.	In	addition,	changes	will	be	dangerous,	often
leading	to	unintended	consequences.	Full	regression	tests	of	the	whole	system
will	be	needed	for	minor	changes.	If	you	have	not	created	externally
instrumented	tests,	expect	to	get	bored	with	manual	tests—and	then	you	can
expect	new	bug	reports.

The	Hardware	Is	a	Detail

The	line	between	software	and	firmware	is	typically	not	so	well	defined	as	the
line	between	code	and	hardware,	as	shown	in	Figure	29.3.



Figure	29.3	The	line	between	software	and	firmware	is	a	bit	fuzzier	than	the	line	between	code	and
hardware

One	of	your	jobs	as	an	embedded	software	developer	is	to	firm	up	that	line.	The
name	of	the	boundary	between	the	software	and	the	firmware	is	the	hardware
abstraction	layer	(HAL)	(Figure	29.4).	This	is	not	a	new	idea:	It	has	been	in	PCs
since	the	days	before	Windows.

Figure	29.4	The	hardware	abstraction	layer

The	HAL	exists	for	the	software	that	sits	on	top	of	it,	and	its	API	should	be
tailored	to	that	software’s	needs.	As	an	example,	the	firmware	can	store	bytes
and	arrays	of	bytes	into	flash	memory.	In	contrast,	the	application	needs	to	store
and	read	name/value	pairs	to	some	persistence	mechanism.	The	software	should
not	be	concerned	that	the	name/value	pairs	are	stored	in	flash	memory,	a
spinning	disk,	the	cloud,	or	core	memory.	The	HAL	provides	a	service,	and	it
does	not	reveal	to	the	software	how	it	does	it.	The	flash	implementation	is	a
detail	that	should	be	hidden	from	software.

As	another	example,	an	LED	is	tied	to	a	GPIO	bit.	The	firmware	could	provide
access	to	the	GPIO	bits,	where	a	HAL	might	provide	Led_TurnOn(5).	That	is	a
pretty	low-level	hardware	abstraction	layer.	Let’s	consider	raising	the	level	of
abstraction	from	a	hardware	perspective	to	the	software/product	perspective.
What	is	the	LED	indicating?	Suppose	that	it	indicated	low	battery	power.	At
some	level,	the	firmware	(or	a	board	support	package)	could	provide
Led_TurnOn(5),	while	the	HAL	provides	Indicate_LowBattery().	You	can	see



the	HAL	expressing	services	needed	by	the	application.	You	can	also	see	that
layers	may	contain	layers.	It	is	more	of	a	repeating	fractal	pattern	than	a	limited
set	of	predefined	layers.	The	GPIO	assignments	are	details	that	should	be	hidden
from	the	software.

DON’T	REVEAL	HARDWARE	DETAILS	TO	THE	USER	OF
THE	HAL

A	clean	embedded	architecture’s	software	is	testable	off	the	target	hardware.	A
successful	HAL	provides	that	seam	or	set	of	substitution	points	that	facilitate	off-
target	testing.

The	Processor	Is	a	Detail

When	your	embedded	application	uses	a	specialized	tool	chain,	it	will	often
provide	header	files	to	<i>help	you</i>.4	These	compilers	often	take	liberties
with	the	C	language,	adding	new	keywords	to	access	their	processor	features.
The	code	will	look	like	C,	but	it	is	no	longer	C.

Sometimes	vendor-supplied	C	compilers	provide	what	look	like	global	variables
to	give	access	directly	to	processor	registers,	IO	ports,	clock	timers,	IO	bits,
interrupt	controllers,	and	other	processor	functions.	It	is	helpful	to	get	access	to
these	things	easily,	but	realize	that	any	of	your	code	that	uses	these	helpful
facilities	is	no	longer	C.	It	won’t	compile	for	another	processor,	or	maybe	even
with	a	different	compiler	for	the	same	processor.

I	would	hate	to	think	that	the	silicon	and	tool	provider	is	being	cynical,	tying
your	product	to	the	compiler.	Let’s	give	the	provider	the	benefit	of	a	doubt	by
assuming	that	it	is	truly	trying	to	help.	But	now	it’s	up	to	you	to	use	that	help	in	a
way	that	does	not	hurt	in	the	future.	You	will	have	to	limit	which	files	are
allowed	to	know	about	the	C	extensions.

Let’s	look	at	this	header	file	designed	for	the	ACME	family	of	DSPs—you
know,	the	ones	used	by	Wile	E.	Coyote:

Click	here	to	view	code	image

#ifndef	_ACME_STD_TYPES

#define	_ACME_STD_TYPES



Click	here	to	view	code	image

#if	defined(_ACME_X42)

typedef	unsigned	int	Uint_32;

typedef	unsigned	short	Uint_16;

typedef	unsigned	char	Uint_8;

typedef	int	Int_32;

typedef	short	Int_16;

typedef	char	Int_8;

#elif	defined(_ACME_A42)

typedef	unsigned	long	Uint_32;

typedef	unsigned	int	Uint_16;

typedef	unsigned	char	Uint_8;

typedef	long	Int_32;

typedef	int	Int_16;

typedef	char	Int_8;

#else

#error	<acmetypes.h>	is	not	supported	for	this	environment

#endif

#endif

The	acmetypes.h	header	file	should	not	be	used	directly.	If	you	do,	your	code
gets	tied	to	one	of	the	ACME	DSPs.	You	are	using	an	ACME	DSP,	you	say,	so
what	is	the	harm?	You	can’t	compile	your	code	unless	you	include	this	header.	If
you	use	the	header	and	define	_ACME_X42	or	_ACME_A42,	your	integers	will	be	the
wrong	size	if	you	try	to	test	your	code	off-target.	If	that	is	not	bad	enough,	one
day	you’ll	want	to	port	your	application	to	another	processor,	and	you	will	have
made	that	task	much	more	difficult	by	not	choosing	portability	and	by	not
limiting	what	files	know	about	ACME.

Instead	of	using	acmetypes.h,	you	should	try	to	follow	a	more	standardized	path
and	use	stdint.h.	But	what	if	the	target	compiler	does	not	provide	stdint.h?
You	can	write	this	header	file.	The	stdint.h	you	write	for	target	builds	uses	the
acmetypes.h	for	target	compiles	like	this:

Click	here	to	view	code	image

#ifndef	_STDINT_H_

#define	_STDINT_H_

#include	<acmetypes.h>

typedef	Uint_32	uint32_t;



typedef	Uint_16	uint16_t;

typedef	Uint_8	uint8_t;

typedef	Int_32	int32_t;

typedef	Int_16	int16_t;

typedef	Int_8	int8_t;

#endif

Having	your	embedded	software	and	firmware	use	stdint.h	helps	keep	your
code	clean	and	portable.	Certainly,	all	of	the	software	should	be	processor
independent,	but	not	all	of	the	firmware	can	be.	This	next	code	snippet	takes
advantage	of	special	extensions	to	C	that	gives	your	code	access	to	the
peripherals	in	the	micro-controller.	It’s	likely	your	product	uses	this	micro-
controller	so	that	you	can	use	its	integrated	peripherals.	This	function	outputs	a
line	that	says	"hi"	to	the	serial	output	port.	(This	example	is	based	on	real	code
from	the	wild.)

Click	here	to	view	code	image

void	say_hi()

{

IE	=	0b11000000;

SBUF0	=	(0x68);

while(TI_0	==	0);

TI_0	=	0;

SBUF0	=	(0x69);

while(TI_0	==	0);

TI_0	=	0;

SBUF0	=	(0x0a);

while(TI_0	==	0);

TI_0	=	0;

SBUF0	=	(0x0d);

while(TI_0	==	0);

TI_0	=	0;

IE	=	0b11010000;

}

There	are	lots	of	problems	with	this	small	function.	One	thing	that	might	jump
out	at	you	is	the	presence	of	0b11000000.	This	binary	notation	is	cool;	can	C	do
that?	Unfortunately,	no.	A	few	other	problems	relate	to	this	code	directly	using
the	custom	C	extensions:

IE:	Interrupt	enable	bits.



SBUF0:	Serial	output	buffer.

TI_0:	Serial	transmit	buffer	empty	interrupt.	Reading	a	1	indicates	the	buffer	is
empty.

The	uppercase	variables	actually	access	micro-controller	built-in	peripherals.	If
you	want	to	control	interrupts	and	output	characters,	you	must	use	these
peripherals.	Yes,	this	is	convenient—but	it’s	not	C.

A	clean	embedded	architecture	would	use	these	device	access	registers	directly
in	very	few	places	and	confine	them	totally	to	the	firmware.	Anything	that
knows	about	these	registers	becomes	firmware	and	is	consequently	bound	to	the
silicon.	Tying	code	to	the	processor	will	hurt	you	when	you	want	to	get	code
working	before	you	have	stable	hardware.	It	will	also	hurt	you	when	you	move
your	embedded	application	to	a	new	processor.

If	you	use	a	micro-controller	like	this,	your	firmware	could	isolate	these	low-
level	functions	with	some	form	of	a	processor	abstraction	layer	(PAL).
Firmware	above	the	PAL	could	be	tested	off-target,	making	it	a	little	less	firm.

The	Operating	System	Is	a	Detail

A	HAL	is	necessary,	but	is	it	sufficient?	In	bare-metal	embedded	systems,	a	HAL
may	be	all	you	need	to	keep	your	code	from	getting	too	addicted	to	the	operating
environment.	But	what	about	embedded	systems	that	use	a	real-time	operating
system	(RTOS)	or	some	embedded	version	of	Linux	or	Windows?

To	give	your	embedded	code	a	good	chance	at	a	long	life,	you	have	to	treat	the
operating	system	as	a	detail	and	protect	against	OS	dependencies.

The	software	accesses	the	services	of	the	operating	environment	through	the	OS.
The	OS	is	a	layer	separating	the	software	from	firmware	(Figure	29.5).	Using	an
OS	directly	can	cause	problems.	For	example,	what	if	your	RTOS	supplier	is
bought	by	another	company	and	the	royalties	go	up,	or	the	quality	goes	down?
What	if	your	needs	change	and	your	RTOS	does	not	have	the	capabilities	that
you	now	require?	You’ll	have	to	change	lots	of	code.	These	won’t	just	be	simple
syntactical	changes	due	to	the	new	OS’s	API,	but	will	likely	have	to	adapt
semantically	to	the	new	OS’s	different	capabilities	and	primitives.



Figure	29.5	Adding	in	an	operating	system

A	clean	embedded	architecture	isolates	software	from	the	operating	system,
through	an	operating	system	abstraction	layer	(OSAL)	(Figure	29.6).	In	some
cases,	implementing	this	layer	might	be	as	simple	as	changing	the	name	of	a
function.	In	other	cases,	it	might	involve	wrapping	several	functions	together.

Figure	29.6	The	operating	system	abstraction	layer

If	you	have	ever	moved	your	software	from	one	RTOS	to	another,	you	know	it	is
painful.	If	your	software	depended	on	an	OSAL	instead	of	the	OS	directly,	you
would	largely	be	writing	a	new	OSAL	that	is	compatible	with	the	old	OSAL.
Which	would	you	rather	do:	modify	a	bunch	of	complex	existing	code,	or	write



new	code	to	a	defined	interface	and	behavior?	This	is	not	a	trick	question.	I
choose	the	latter.

You	might	start	worrying	about	code	bloat	about	now.	Really,	though,	the	layer
becomes	the	place	where	much	of	the	duplication	around	using	an	OS	is	isolated.
This	duplication	does	not	have	to	impose	a	big	overhead.	If	you	define	an
OSAL,	you	can	also	encourage	your	applications	to	have	a	common	structure.
You	might	provide	message	passing	mechanisms,	rather	than	having	every
thread	handcraft	its	concurrency	model.

The	OSAL	can	help	provide	test	points	so	that	the	valuable	application	code	in
the	software	layer	can	be	tested	off-target	and	off-OS.	A	clean	embedded
architecture’s	software	is	testable	off	the	target	operating	system.	A	successful
OSAL	provides	that	seam	or	set	of	substitution	points	that	facilitate	off-target
testing.

PROGRAMMING	TO	INTERFACES	AND
SUBSTITUTABILITY

In	addition	to	adding	a	HAL	and	potentially	an	OSAL	inside	each	of	the	major
layers	(software,	OS,	firmware,	and	hardware),	you	can—and	should—apply	the
principles	described	throughout	this	book.	These	principles	encourage	separation
of	concerns,	programming	to	interfaces,	and	substitutability.

The	idea	of	a	layered	architecture	is	built	on	the	idea	of	programming	to
interfaces.	When	one	module	interacts	with	another	though	an	interface,	you	can
substitute	one	service	provider	for	another.	Many	readers	will	have	written	their
own	small	version	of	printf	for	deployment	in	the	target.	As	long	as	the
interface	to	your	printf	is	the	same	as	the	standard	version	of	printf,	you	can
override	the	service	one	for	the	other.

One	basic	rule	of	thumb	is	to	use	header	files	as	interface	definitions.	When	you
do	so,	however,	you	have	to	be	careful	about	what	goes	in	the	header	file.	Limit
header	file	contents	to	function	declarations	as	well	as	the	constants	and	struct
names	that	are	needed	by	the	function.

Don’t	clutter	the	interface	header	files	with	data	structures,	constants,	and
typedefs	that	are	needed	by	only	the	implementation.	It’s	not	just	a	matter	of
clutter:	That	clutter	will	lead	to	unwanted	dependencies.	Limit	the	visibility	of



the	implementation	details.	Expect	the	implementation	details	to	change.	The
fewer	places	where	code	knows	the	details,	the	fewer	places	where	code	will
have	to	be	tracked	down	and	modified.

A	clean	embedded	architecture	is	testable	within	the	layers	because	modules
interact	through	interfaces.	Each	interface	provides	that	seam	or	substitution
point	that	facilitates	off-target	testing.

DRY	CONDITIONAL	COMPILATION	DIRECTIVES

One	use	of	substitutability	that	is	often	overlooked	relates	to	how	embedded	C
and	C++	programs	handle	different	targets	or	operating	systems.	There	is	a
tendency	to	use	conditional	compilation	to	turn	on	and	off	segments	of	code.	I
recall	one	especially	problematic	case	where	the	statement	#ifdef	BOARD_V2
was	mentioned	several	thousand	times	in	a	telecom	application.

This	repetition	of	code	violates	the	Don’t	Repeat	Yourself	(DRY)	principle.5	If	I
see	#ifdef	BOARD_V2	once,	it’s	not	really	a	problem.	Six	thousand	times	is	an
extreme	problem.	Conditional	compilation	identifying	the	target-hardware’s	type
is	often	repeated	in	embedded	systems.	But	what	else	can	we	do?

What	if	there	is	a	hardware	abstraction	layer?	The	hardware	type	would	become
a	detail	hidden	under	the	HAL.	If	the	HAL	provides	a	set	of	interfaces,	instead	of
using	conditional	compilation,	we	could	use	the	linker	or	some	form	of	runtime
binding	to	connect	the	software	to	the	hardware.

CONCLUSION
People	who	are	developing	embedded	software	have	a	lot	to	learn	from
experiences	outside	of	embedded	software.	If	you	are	an	embedded	developer
who	has	picked	up	this	book,	you	will	find	a	wealth	of	software	development
wisdom	in	the	words	and	ideas.

Letting	all	code	become	firmware	is	not	good	for	your	product’s	long-term
health.	Being	able	to	test	only	in	the	target	hardware	is	not	good	for	your
product’s	long-term	health.	A	clean	embedded	architecture	is	good	for	your
product’s	long-term	health.
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THE	DATABASE	IS	A	DETAIL

From	an	architectural	point	of	view,	the	database	is	a	non-entity—it	is	a	detail
that	does	not	rise	to	the	level	of	an	architectural	element.	Its	relationship	to	the
architecture	of	a	software	system	is	rather	like	the	relationship	of	a	doorknob	to
the	architecture	of	your	home.

I	realize	that	these	are	fighting	words.	Believe	me,	I’ve	had	the	fight.	So	let	me
be	clear:	I	am	not	talking	about	the	data	model.	The	structure	you	give	to	the
data	within	your	application	is	highly	significant	to	the	architecture	of	your
system.	But	the	database	is	not	the	data	model.	The	database	is	piece	of
software.	The	database	is	a	utility	that	provides	access	to	the	data.	From	the
architecture’s	point	of	view,	that	utility	is	irrelevant	because	it’s	a	low-level
detail—a	mechanism.	And	a	good	architect	does	not	allow	low-level



mechanisms	to	pollute	the	system	architecture.

RELATIONAL	DATABASES
Edgar	Codd	defined	the	principles	of	relational	databases	in	1970.	By	the	mid-
1980s,	the	relational	model	had	grown	to	become	the	dominant	form	of	data
storage.	There	was	a	good	reason	for	this	popularity:	The	relational	model	is
elegant,	disciplined,	and	robust.	It	is	an	excellent	data	storage	and	access
technology.

But	no	matter	how	brilliant,	useful,	and	mathematically	sound	a	technology	it	is,
it	is	still	just	a	technology.	And	that	means	it’s	a	detail.

While	relational	tables	may	be	convenient	for	certain	forms	of	data	access,	there
is	nothing	architecturally	significant	about	arranging	data	into	rows	within
tables.	The	use	cases	of	your	application	should	neither	know	nor	care	about
such	matters.	Indeed,	knowledge	of	the	tabular	structure	of	the	data	should	be
restricted	to	the	lowest-level	utility	functions	in	the	outer	circles	of	the
architecture.

Many	data	access	frameworks	allow	database	rows	and	tables	to	be	passed
around	the	system	as	objects.	Allowing	this	is	an	architectural	error.	It	couples
the	use	cases,	business	rules,	and	in	some	cases	even	the	UI	to	the	relational
structure	of	the	data.

WHY	ARE	DATABASE	SYSTEMS	SO
PREVALENT?
Why	are	software	systems	and	software	enterprises	dominated	by	database
systems?	What	accounts	for	the	preeminence	of	Oracle,	MySQL,	and	SQL
Server?	In	a	word:	disks.

The	rotating	magnetic	disk	was	the	mainstay	of	data	storage	for	five	decades.
Several	generations	of	programmers	have	known	no	other	form	of	data	storage.
Disk	technology	has	grown	from	huge	stacks	of	massive	platters	48	inches	in
diameter	that	weighed	thousands	of	pounds	and	held	20	megabytes,	to	single



thin	circles,	3	inches	in	diameter,	that	weigh	just	a	few	grams	and	hold	a	terabyte
or	more.	It’s	been	a	wild	ride.	And	throughout	that	ride	programmers	have	been
plagued	by	one	fatal	trait	of	disk	technology:	Disks	are	slow.

On	a	disk,	data	is	stored	within	circular	tracks.	Those	tracks	are	divided	into
sectors	that	hold	a	convenient	number	of	bytes,	often	4K.	Each	platter	may	have
hundreds	of	tracks,	and	there	can	be	a	dozen	or	so	platters.	If	you	want	to	read	a
particular	byte	off	the	disk,	you	have	to	move	the	head	to	the	proper	track,	wait
for	the	disk	to	rotate	to	the	proper	sector,	read	all	4K	of	that	sector	into	RAM,
and	then	index	into	that	RAM	buffer	to	get	the	byte	you	want.	And	all	that	takes
time—milliseconds	of	times.

Milliseconds	might	not	seem	like	a	lot,	but	a	millisecond	is	a	million	times
longer	than	the	cycle	time	of	most	processors.	If	that	data	was	not	on	a	disk,	it
could	be	accessed	in	nanoseconds,	instead	of	milliseconds.

To	mitigate	the	time	delay	imposed	by	disks,	you	need	indexes,	caches,	and
optimized	query	schemes;	and	you	need	some	kind	of	regular	means	of
representing	the	data	so	that	these	indexes,	caches,	and	query	schemes	know
what	they	are	working	with.	In	short,	you	need	a	data	access	and	management
system.	Over	the	years	these	systems	have	split	into	two	distinct	kinds:	file
systems	and	relational	database	management	systems	(RDBMS).

File	systems	are	document	based.	They	provide	a	natural	and	convenient	way	to
store	whole	documents.	They	work	well	when	you	need	to	save	and	retrieve	a	set
of	documents	by	name,	but	they	don’t	offer	a	lot	of	help	when	you’re	searching
the	content	of	those	documents.	It’s	easy	to	find	a	file	named	login.c,	but	it’s
hard,	and	slow,	to	find	every	.c	file	that	has	a	variable	named	x	in	it.

Database	systems	are	content	based.	They	provide	a	natural	and	convenient	way
to	find	records	based	on	their	content.	They	are	very	good	at	associating	multiple
records	based	on	some	bit	of	content	that	they	all	share.	Unfortunately,	they	are
rather	poor	at	storing	and	retrieving	opaque	documents.

Both	of	these	systems	organize	the	data	on	disk	so	that	it	can	be	stored	and
retrieved	in	as	efficient	a	way	as	possible,	given	their	particular	access	needs.
Each	has	their	own	scheme	for	indexing	and	arranging	the	data.	In	addition,	each
eventually	brings	the	relevant	data	into	RAM,	where	it	can	be	quickly
manipulated.



WHAT	IF	THERE	WERE	NO	DISK?
As	prevalent	as	disks	once	were,	they	are	now	a	dying	breed.	Soon	they	will
have	gone	the	way	of	tape	drives,	floppy	drives,	and	CDs.	They	are	being
replaced	by	RAM.

Ask	yourself	this	question:	When	all	the	disks	are	gone,	and	all	your	data	is
stored	in	RAM,	how	will	you	organize	that	data?	Will	you	organize	it	into	tables
and	access	it	with	SQL?	Will	you	organize	it	into	files	and	access	it	through	a
directory?

Of	course	not.	You’ll	organize	it	into	linked	lists,	trees,	hash	tables,	stacks,
queues,	or	any	of	the	other	myriad	data	structures,	and	you’ll	access	it	using
pointers	or	references—because	that’s	what	programmers	do.

In	fact,	if	you	think	carefully	about	this	issue,	you’ll	realize	that	this	is	what	you
already	do.	Even	though	the	data	is	kept	in	a	database	or	a	file	system,	you	read
it	into	RAM	and	then	you	reorganize	it,	for	your	own	convenience,	into	lists,
sets,	stacks,	queues,	trees,	or	whatever	data	structure	meets	your	fancy.	It	is	very
unlikely	that	you	leave	the	data	in	the	form	of	files	or	tables.

DETAILS
This	reality	is	why	I	say	that	the	database	is	a	detail.	It’s	just	a	mechanism	we
use	to	move	the	data	back	and	forth	between	the	surface	of	the	disk	and	RAM.
The	database	is	really	nothing	more	than	a	big	bucket	of	bits	where	we	store	our
data	on	a	long-term	basis.	But	we	seldom	use	the	data	in	that	form.

Thus,	from	an	architectural	viewpoint,	we	should	not	care	about	the	form	that
the	data	takes	while	it	is	on	the	surface	of	a	rotating	magnetic	disk.	Indeed,	we
should	not	acknowledge	that	the	disk	exists	at	all.

BUT	WHAT	ABOUT	PERFORMANCE?
Isn’t	performance	an	architectural	concern?	Of	course	it	is—but	when	it	comes
to	data	storage,	it’s	a	concern	that	can	be	entirely	encapsulated	and	separated
from	the	business	rules.	Yes,	we	need	to	get	the	data	in	and	out	of	the	data	store



quickly,	but	that’s	a	low-level	concern.	We	can	address	that	concern	with	low-
level	data	access	mechanisms.	It	has	nothing	whatsoever	to	do	with	the	overall
architecture	of	our	systems.

ANECDOTE
In	the	late	1980s,	I	led	a	team	of	software	engineers	at	a	startup	company	that
was	trying	to	build	and	market	a	network	management	system	that	measured	the
communications	integrity	of	T1	telecommunication	lines.	The	system	retrieved
data	from	the	devices	at	the	endpoints	of	those	lines,	and	then	ran	a	series	of
predictive	algorithms	to	detect	and	report	problems.

We	were	using	UNIX	platforms,	and	we	stored	our	data	in	simple	random	access
files.	We	had	no	need	of	a	relational	database	because	our	data	had	few	content-
based	relationships.	It	was	better	kept	in	trees	and	linked	lists	in	those	random
access	files.	In	short,	we	kept	the	data	in	a	form	that	was	most	convenient	to	load
into	RAM	where	it	could	be	manipulated.

We	hired	a	marketing	manager	for	this	startup—a	nice	and	knowledgeable	guy.
But	he	immediately	told	me	that	we	had	to	have	a	relational	database	in	the
system.	It	wasn’t	an	option	and	it	wasn’t	an	engineering	issue—it	was	a
marketing	issue.

This	made	no	sense	to	me.	Why	in	the	world	would	I	want	to	rearrange	my
linked	lists	and	trees	into	a	bunch	of	rows	and	tables	accessed	through	SQL?
Why	would	I	introduce	all	the	overhead	and	expense	of	a	massive	RDBMS
when	a	simple	random	access	file	system	was	more	than	sufficient?	So	I	fought
him,	tooth	and	nail.

We	had	a	hardware	engineer	at	this	company	who	took	up	the	RDBMS	chant.	He
became	convinced	that	our	software	system	needed	an	RDBMS	for	technical
reasons.	He	held	meetings	behind	my	back	with	the	executives	of	the	company,
drawing	stick	figures	on	the	whiteboard	of	a	house	balancing	on	a	pole,	and	he
would	ask	the	executives,	“Would	you	build	a	house	on	a	pole?”	His	implied
message	was	that	an	RDBMS	that	keeps	its	tables	in	random	access	files	was
somehow	more	reliable	than	the	random	access	files	that	we	were	using.

I	fought	him.	I	fought	the	marketing	guy.	I	stuck	to	my	engineering	principles	in



the	face	of	incredible	ignorance.	I	fought,	and	fought,	and	fought.

In	the	end,	the	hardware	developer	was	promoted	over	my	head	to	become	the
software	manager.	In	the	end,	they	put	a	RDBMS	into	that	poor	system.	And,	in
the	end,	they	were	absolutely	right	and	I	was	wrong.

Not	for	engineering	reasons,	mind	you:	I	was	right	about	that.	I	was	right	to	fight
against	putting	an	RDBMS	into	the	architectural	core	of	the	system.	The	reason	I
was	wrong	was	because	our	customers	expected	us	to	have	a	relational	database.
They	didn’t	know	what	they	would	do	with	it.	They	didn’t	have	any	realistic	way
of	using	the	relational	data	in	our	system.	But	it	didn’t	matter:	Our	customers
fully	expected	an	RDBMS.	It	had	become	a	check	box	item	that	all	the	software
purchasers	had	on	their	list.	There	was	no	engineering	rationale—rationality	had
nothing	to	do	with	it.	It	was	an	irrational,	external,	and	entirely	baseless	need,
but	it	was	no	less	real.

Where	did	that	need	come	from?	It	originated	from	the	highly	effective
marketing	campaigns	employed	by	the	database	vendors	at	the	time.	They	had
managed	to	convince	high-level	executives	that	their	corporate	“data	assets”
needed	protection,	and	that	the	database	systems	they	offered	were	the	ideal
means	of	providing	that	protection.

We	see	the	same	kind	of	marketing	campaigns	today.	The	word	“enterprise”	and
the	notion	of	“Service-Oriented	Architecture”	have	much	more	to	do	with
marketing	than	with	reality.

What	should	I	have	done	in	that	long-ago	scenario?	I	should	have	bolted	an
RDBMS	on	the	side	of	the	system	and	provided	some	narrow	and	safe	data
access	channel	to	it,	while	maintaining	the	random	access	files	in	the	core	of	the
system.	What	did	I	do?	I	quit	and	became	a	consultant.

CONCLUSION
The	organizational	structure	of	data,	the	data	model,	is	architecturally
significant.	The	technologies	and	systems	that	move	data	on	and	off	a	rotating
magnetic	surface	are	not.	Relational	database	systems	that	force	the	data	to	be
organized	into	tables	and	accessed	with	SQL	have	much	more	to	do	with	the
latter	than	with	the	former.	The	data	is	significant.	The	database	is	a	detail.
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THE	WEB	IS	A	DETAIL

Were	you	a	developer	in	the	1990s?	Do	you	remember	how	the	web	changed
everything?	Do	you	remember	how	we	looked	at	our	old	client–server
architectures	with	disdain	in	the	face	of	the	shiny	new	technology	of	The	Web?

Actually	the	web	didn’t	change	anything.	Or,	at	least,	it	shouldn’t	have.	The	web
is	just	the	latest	in	a	series	of	oscillations	that	our	industry	has	gone	through
since	the	1960s.	These	oscillations	move	back	and	forth	between	putting	all	the
computer	power	in	central	servers	and	putting	all	computer	power	out	at	the
terminals.

We’ve	seen	several	of	these	oscillations	just	in	the	last	decade	or	so	since	the
web	became	prominent.	At	first	we	thought	all	the	computer	power	would	be	in



server	farms,	and	the	browsers	would	be	stupid.	Then	we	started	putting	applets
in	the	browsers.	But	we	didn’t	like	that,	so	we	moved	dynamic	content	back	to
the	servers.	But	then	we	didn’t	like	that,	so	we	invented	Web	2.0	and	moved	lots
of	processing	back	into	the	browser	with	Ajax	and	JavaScript.	We	went	so	far	as
to	create	whole	huge	applications	written	to	execute	in	the	browsers.	And	now
we’re	all	excited	about	pulling	that	JavaScript	back	into	the	server	with	Node.

(Sigh.)

THE	ENDLESS	PENDULUM
Of	course,	it	would	be	incorrect	to	think	that	those	oscillations	started	with	the
web.	Before	the	web,	there	was	client–server	architecture.	Before	that,	there
were	central	minicomputers	with	arrays	of	dumb	terminals.	Before	that,	there
were	mainframes	with	smart	green-screen	terminals	(that	were	very	much
analogous	to	modern-day	browsers).	Before	that,	there	were	computer	rooms	and
punched	cards	…

And	so	the	story	goes.	We	can’t	seem	to	figure	out	where	we	want	the	computer
power.	We	go	back	and	forth	between	centralizing	it	and	distributing	it.	And,	I
imagine,	those	oscillations	will	continue	for	some	time	to	come.

When	you	look	at	it	in	the	overall	scope	of	IT	history,	the	web	didn’t	change
anything	at	all.	The	web	was	simply	one	of	many	oscillations	in	a	struggle	that
began	before	most	of	us	were	born	and	will	continue	well	after	most	of	us	have
retired.

As	architects,	though,	we	have	to	look	at	the	long	term.	Those	oscillations	are
just	short-term	issues	that	we	want	to	push	away	from	the	central	core	of	our
business	rules.

Let	me	tell	you	the	story	of	company	Q.	Company	Q	built	a	very	popular
personal	finance	system.	It	was	a	desktop	app	with	a	very	useful	GUI.	I	loved
using	it.

Then	came	the	web.	In	its	next	release,	company	Q	changed	the	GUI	to	look,
and	behave,	like	a	browser.	I	was	thunderstruck!	What	marketing	genius	decided
that	personal	finance	software,	running	on	a	desktop,	should	have	the	look	and



feel	of	a	web	browser?

Of	course,	I	hated	the	new	interface.	Apparently	everyone	else	did,	too—because
after	a	few	releases,	company	Q	gradually	removed	the	browser-like	feel	and
turned	its	personal	finance	system	back	into	a	regular	desktop	GUI.

Now	imagine	you	were	a	software	architect	at	Q.	Imagine	that	some	marketing
genius	convinces	upper	management	that	the	whole	UI	has	to	change	to	look
more	like	the	web.	What	do	you	do?	Or,	rather,	what	should	you	have	done
before	this	point	to	protect	your	application	from	that	marketing	genius?

You	should	have	decoupled	your	business	rules	from	your	UI.	I	don’t	know
whether	the	Q	architects	had	done	that.	One	day	I’d	love	to	hear	their	story.	Had
I	been	there	at	the	time,	I	certainly	would	have	lobbied	very	hard	to	isolate	the
business	rules	from	the	GUI,	because	you	never	know	what	the	marketing
geniuses	will	do	next.

Now	consider	company	A,	which	makes	a	lovely	smartphone.	Recently	it
released	an	upgraded	version	of	its	“operating	system”	(it’s	so	strange	that	we
can	talk	about	the	operating	system	inside	a	phone).	Among	other	things,	that
“operating	system”	upgrade	completely	changed	the	look	and	feel	of	all	the
applications.	Why?	Some	marketing	genius	said	so,	I	suppose.

I’m	not	an	expert	on	the	software	within	that	device,	so	I	don’t	know	if	that
change	caused	any	significant	difficulties	for	the	programmers	of	the	apps	that
run	in	company	A’s	phone.	I	do	hope	the	architects	at	A,	and	the	architects	of	the
apps,	keep	their	UI	and	business	rules	isolated	from	each	other,	because	there	are
always	marketing	geniuses	out	there	just	waiting	to	pounce	on	the	next	little	bit
of	coupling	you	create.

THE	UPSHOT
The	upshot	is	simply	this:	The	GUI	is	a	detail.	The	web	is	a	GUI.	So	the	web	is	a
detail.	And,	as	an	architect,	you	want	to	put	details	like	that	behind	boundaries
that	keep	them	separate	from	your	core	business	logic.

Think	about	it	this	way:	The	WEB	is	an	IO	device.	In	the	1960s,	we	learned	the
value	of	writing	applications	that	were	device	independent.	The	motivation	for



that	independence	has	not	changed.	The	web	is	not	an	exception	to	that	rule.

Or	is	it?	The	argument	can	be	made	that	a	GUI,	like	the	web,	is	so	unique	and
rich	that	it	is	absurd	to	pursue	a	device-independent	architecture.	When	you
think	about	the	intricacies	of	JavaScript	validation	or	drag-and-drop	AJAX	calls,
or	any	of	the	plethora	of	other	widgets	and	gadgets	you	can	put	on	a	web	page,
it’s	easy	to	argue	that	device	independence	is	impractical.

To	some	extent,	this	is	true.	The	interaction	between	the	application	and	the	GUI
is	“chatty”	in	ways	that	are	quite	specific	to	the	kind	of	GUI	you	have.	The
dance	between	a	browser	and	a	web	application	is	different	from	the	dance
between	a	desktop	GUI	and	its	application.	Trying	to	abstract	out	that	dance,	the
way	devices	are	abstracted	out	of	UNIX,	seems	unlikely	to	be	possible.

But	another	boundary	between	the	UI	and	the	application	can	be	abstracted.	The
business	logic	can	be	thought	of	as	a	suite	of	use	cases,	each	of	which	performs
some	function	on	behalf	of	a	user.	Each	use	case	can	be	described	based	on	the
input	data,	the	processing	preformed,	and	the	output	data.

At	some	point	in	the	dance	between	the	UI	and	the	application,	the	input	data
can	be	said	to	be	complete,	allowing	the	use	case	to	be	executed.	Upon
completion,	the	resultant	data	can	be	fed	back	into	the	dance	between	the	UI	and
the	application.

The	complete	input	data	and	the	resultant	output	data	can	be	placed	into	data
structures	and	used	as	the	input	values	and	output	values	for	a	process	that
executes	the	use	case.	With	this	approach,	we	can	consider	each	use	case	to	be
operating	the	IO	device	of	the	UI	in	a	device-independent	manner.

CONCLUSION
This	kind	of	abstraction	is	not	easy,	and	it	will	likely	take	several	iterations	to	get
just	right.	But	it	is	possible.	And	since	the	world	is	full	of	marketing	geniuses,
it’s	not	hard	to	make	the	case	that	it’s	often	very	necessary.
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FRAMEWORKS	ARE	DETAILS

Frameworks	have	become	quite	popular.	Generally	speaking,	this	is	a	good
thing.	There	are	many	frameworks	out	there	that	are	free,	powerful,	and	useful.

However,	frameworks	are	not	architectures—though	some	try	to	be.

FRAMEWORK	AUTHORS
Most	framework	authors	offer	their	work	for	free	because	they	want	to	be
helpful	to	the	community.	They	want	to	give	back.	This	is	laudable.	However,
regardless	of	their	high-minded	motives,	those	authors	do	not	have	your	best
interests	at	heart.	They	can’t,	because	they	don’t	know	you,	and	they	don’t	know



your	problems.

Framework	authors	know	their	own	problems,	and	the	problems	of	their
coworkers	and	friends.	And	they	write	their	frameworks	to	solve	those	problems
—not	yours.

Of	course,	your	problems	will	likely	overlap	with	those	other	problems	quite	a
bit.	If	this	were	not	the	case,	frameworks	would	not	be	so	popular.	To	the	extent
that	such	overlap	exists,	frameworks	can	be	very	useful	indeed.

ASYMMETRIC	MARRIAGE
The	relationship	between	you	and	the	framework	author	is	extraordinarily
asymmetric.	You	must	make	a	huge	commitment	to	the	framework,	but	the
framework	author	makes	no	commitment	to	you	whatsoever.

Think	about	this	point	carefully.	When	you	use	a	framework,	you	read	through
the	documentation	that	the	author	of	that	framework	provides.	In	that
documentation,	the	author,	and	other	users	of	that	framework,	advise	you	on	how
to	integrate	your	software	with	the	framework.	Typically,	this	means	wrapping
your	architecture	around	that	framework.	The	author	recommends	that	you
derive	from	the	framework’s	base	classes,	and	import	the	framework’s	facilities
into	your	business	objects.	The	author	urges	you	to	couple	your	application	to
the	framework	as	tightly	as	possible.

For	the	framework	author,	coupling	to	his	or	her	own	framework	is	not	a	risk.
The	author	wants	to	couple	to	that	framework,	because	the	author	has	absolute
control	over	that	framework.

What’s	more,	the	author	wants	you	to	couple	to	the	framework,	because	once
coupled	in	this	way,	it	is	very	hard	to	break	away.	Nothing	feels	more	validating
to	a	framework	author	than	a	bunch	of	users	willing	to	inextricably	derive	from
the	author’s	base	classes.

In	effect,	the	author	is	asking	you	to	marry	the	framework—to	make	a	huge,
long-term	commitment	to	that	framework.	And	yet,	under	no	circumstances	will
the	author	make	a	corresponding	commitment	to	you.	It’s	a	one-directional
marriage.	You	take	on	all	the	risk	and	burden;	the	framework	author	takes	on



nothing	at	all.

THE	RISKS
What	are	the	risks?	Here	are	just	a	few	for	you	to	consider.

•	The	architecture	of	the	framework	is	often	not	very	clean.	Frameworks	tend	to
violate	he	Dependency	Rule.	They	ask	you	to	inherit	their	code	into	your
business	objects—your	Entities!	They	want	their	framework	coupled	into	that
innermost	circle.	Once	in,	that	framework	isn’t	coming	back	out.	The	wedding
ring	is	on	your	finger;	and	it’s	going	to	stay	there.

•	The	framework	may	help	you	with	some	early	features	of	your	application.
However,	as	your	product	matures,	it	may	outgrow	the	facilities	of	the
framework.	If	you’ve	put	on	that	wedding	ring,	you’ll	find	the	framework
fighting	you	more	and	more	as	time	passes.

•	The	framework	may	evolve	in	a	direction	that	you	don’t	find	helpful.	You	may
be	stuck	upgrading	to	new	versions	that	don’t	help	you.	You	may	even	find	old
features,	which	you	made	use	of,	disappearing	or	changing	in	ways	that	are
difficult	for	you	to	keep	up	with.

•	A	new	and	better	framework	may	come	along	that	you	wish	you	could	switch
to.

THE	SOLUTION
What	is	the	solution?

Don’t	marry	the	framework!

Oh,	you	can	use	the	framework—just	don’t	couple	to	it.	Keep	it	at	arm’s	length.
Treat	the	framework	as	a	detail	that	belongs	in	one	of	the	outer	circles	of	the
architecture.	Don’t	let	it	into	the	inner	circles.

If	the	framework	wants	you	to	derive	your	business	objects	from	its	base	classes,
say	no!	Derive	proxies	instead,	and	keep	those	proxies	in	components	that	are
plugins	to	your	business	rules.

Don’t	let	frameworks	into	your	core	code.	Instead,	integrate	them	into



components	that	plug	in	to	your	core	code,	following	the	Dependency	Rule.

For	example,	maybe	you	like	Spring.	Spring	is	a	good	dependency	injection
framework.	Maybe	you	use	Spring	to	auto-wire	your	dependencies.	That’s	fine,
but	you	should	not	sprinkle	@autowired	annotations	all	throughout	your	business
objects.	Your	business	objects	should	not	know	about	Spring.

Instead,	you	can	use	Spring	to	inject	dependencies	into	your	Main	component.
It’s	OK	for	Main	to	know	about	Spring	since	Main	is	the	dirtiest,	lowest-level
component	in	the	architecture.

I	NOW	PRONOUNCE	YOU	…
There	are	some	frameworks	that	you	simply	must	marry.	If	you	are	using	C++,
for	example,	you	will	likely	have	to	marry	STL—it’s	hard	to	avoid.	If	you	are
using	Java,	you	will	almost	certainly	have	to	marry	the	standard	library.

That’s	normal—but	it	should	still	be	a	decision.	You	must	understand	that	when
you	marry	a	framework	to	your	application,	you	will	be	stuck	with	that
framework	for	the	rest	of	the	life	cycle	of	that	application.	For	better	or	for
worse,	in	sickness	and	in	health,	for	richer,	for	poorer,	forsaking	all	others,	you
will	be	using	that	framework.	This	is	not	a	commitment	to	be	entered	into	lightly.

CONCLUSION
When	faced	with	a	framework,	try	not	to	marry	it	right	away.	See	if	there	aren’t
ways	to	date	it	for	a	while	before	you	take	the	plunge.	Keep	the	framework
behind	an	architectural	boundary	if	at	all	possible,	for	as	long	as	possible.
Perhaps	you	can	find	a	way	to	get	the	milk	without	buying	the	cow.
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CASE	STUDY:	VIDEO	SALES

Now	it’s	time	to	put	these	rules	and	thoughts	about	architecture	together	into	a
case	study.	This	case	study	will	be	short	and	simple,	yet	will	depict	both	the
process	a	good	architect	uses	and	the	decisions	that	such	an	architect	makes.

THE	PRODUCT
For	this	case	study,	I’ve	chosen	a	product	with	which	I	am	rather	intimately
familiar:	the	software	for	a	website	that	sells	videos.	Of	course,	it	is	reminiscent
of	cleancoders.com,	the	site	where	I	sell	my	software	tutorial	videos.

The	basic	idea	is	trivial.	We	have	a	batch	of	videos	we	want	to	sell.	We	sell

http://cleancoders.com


them,	on	the	web,	to	both	individuals	and	businesses.	Individuals	can	pay	one
price	to	stream	the	videos,	and	another,	higher	price	to	download	those	videos
and	own	them	permanently.	Business	licenses	are	streaming	only,	and	are
purchased	in	batches	that	allow	quantity	discounts.

Individuals	typically	act	as	both	the	viewers	and	the	purchasers.	Businesses,	in
contrast,	often	have	people	who	buy	the	videos	that	other	people	will	watch.

Video	authors	need	to	supply	their	video	files,	written	descriptions,	and	ancillary
files	with	exams,	problems,	solutions,	source	code,	and	other	materials.

Administrators	need	to	add	new	video	series,	add	and	delete	videos	to	and	from
the	series,	and	establish	prices	for	various	licenses.

Our	first	step	in	determining	the	initial	architecture	of	the	system	is	to	identify
the	actors	and	use	cases.

USE	CASE	ANALYSIS
Figure	33.1	shows	a	typical	use-case	analysis.



Figure	33.1	A	typical	use-case	analysis

The	four	main	actors	are	evident.	According	to	the	Single	Responsibility
Principle,	these	four	actors	will	be	the	four	primary	sources	of	change	for	the
system.	Every	time	some	new	feature	is	added,	or	some	existing	feature	is
changed,	that	step	will	be	taken	to	serve	one	of	these	actors.	Therefore	we	want
to	partition	the	system	such	that	a	change	to	one	actor	does	not	affect	any	of	the
other	actors.

The	use	cases	shown	in	Figure	33.1	are	not	a	complete	list.	For	example,	you
won’t	find	log-in	or	log-out	use	cases.	The	reason	for	this	omission	is	simply	to
manage	the	size	of	the	problem	in	this	book.	If	I	were	to	include	all	the	different



use	cases,	then	this	chapter	would	have	to	turn	into	a	book	in	its	own	right.

Note	the	dashed	use	cases	in	the	center	of	Figure	33.1.	They	are	abstract1	use
cases.	An	abstract	use	case	is	one	that	sets	a	general	policy	that	another	use	case
will	flesh	out.	As	you	can	see,	the	View	Catalog	as	Viewer	and	View	Catalog	as
Purchaser	use	cases	both	inherit	from	the	View	Catalog	abstract	use	case.

On	the	one	hand,	it	was	not	strictly	necessary	for	me	to	create	that	abstraction.	I
could	have	left	the	abstract	use	case	out	of	the	diagram	without	compromising
any	of	the	features	of	the	overall	product.	On	the	other	hand,	these	two	use	cases
are	so	similar	that	I	thought	it	wise	to	recognize	the	similarity	and	find	a	way	to
unify	it	early	in	the	analysis.

COMPONENT	ARCHITECTURE
Now	that	we	know	the	actors	and	use	cases,	we	can	create	a	preliminary
component	architecture	(Figure	33.2).

The	double	lines	in	the	drawing	represent	architectural	boundaries	as	usual.	You
can	see	the	typical	partitioning	of	views,	presenters,	interactors,	and	controllers.
You	can	also	see	that	I’ve	broken	each	of	those	categories	up	by	their
corresponding	actors.

Each	of	the	components	in	Figure	33.2	represents	a	potential	.jar	file	or	.dll
file.	Each	of	those	components	will	contain	the	views,	presenters,	interactors,
and	controllers	that	have	been	allocated	to	it.

Note	the	special	components	for	the	Catalog	View	and	the	Catalog	Presenter.
This	is	how	I	dealt	with	the	abstract	View	Catalog	use	case.	I	assume	that	those
views	and	presenters	will	be	coded	into	abstract	classes	within	those
components,	and	that	the	inheriting	components	will	contain	view	and	presenter
classes	that	will	inherit	from	those	abstract	classes.



Figure	33.2	A	preliminary	component	architecture

Would	I	really	break	the	system	up	into	all	these	components,	and	deliver	them
as	.jar	or	.dll	files?	Yes	and	no.	I	would	certainly	break	the	compile	and	build
environment	up	this	way,	so	that	I	could	build	independent	deliverables	like	that.
I	would	also	reserve	the	right	to	combine	all	those	deliverables	into	a	smaller
number	of	deliverables	if	necessary.	For	example,	given	the	partitioning	in
Figure	33.2,	it	would	be	easy	to	combine	them	into	five	.jar	files—one	for
views,	presenters,	interactors,	controllers,	and	utilities,	respectively.	I	could	then
independently	deploy	the	components	that	are	most	likely	to	change
independently	of	each	other.

Another	possible	grouping	would	be	to	put	the	views	and	presenters	together
into	the	same	.jar	file,	and	put	the	interactors,	controllers,	and	utilities	in	their
own	.jar	file.	Still	another,	even	more	primitive,	grouping	would	be	to	create
two	.jar	files,	with	views	and	presenters	in	one	file,	and	everything	else	in	the
other.

Keeping	these	options	open	will	allow	us	to	adapt	the	way	we	deploy	the	system



based	on	how	the	system	changes	over	time.

DEPENDENCY	MANAGEMENT
The	flow	of	control	in	Figure	33.2	proceeds	from	right	to	left.	Input	occurs	at	the
controllers,	and	that	input	is	processed	into	a	result	by	the	interactors.	The
presenters	then	format	the	results,	and	the	views	display	those	presentations.

Notice	that	the	arrows	do	not	all	flow	from	the	right	to	the	left.	In	fact,	most	of
them	point	from	left	to	right.	This	is	because	the	architecture	is	following	the
Dependency	Rule.	All	dependencies	cross	the	boundary	lines	in	one	direction,
and	they	always	point	toward	the	components	containing	the	higher-level	policy.

Also	notice	that	the	using	relationships	(open	arrows)	point	with	the	flow	of
control,	and	that	the	inheritance	relationships	(closed	arrows)	point	against	the
flow	of	control.	This	depicts	our	use	of	the	Open–Closed	Principle	to	make	sure
that	the	dependencies	flow	in	the	right	direction,	and	that	changes	to	low-level
details	do	not	ripple	upward	to	affect	high-level	policies.

CONCLUSION
The	architecture	diagram	in	Figure	33.2	includes	two	dimensions	of	separation.
The	first	is	the	separation	of	actors	based	on	the	Single	Responsibility	Principle;
the	second	is	the	Dependency	Rule.	The	goal	of	both	is	to	separate	components
that	change	for	different	reasons,	and	at	different	rates.	The	different	reasons
correspond	to	the	actors;	the	different	rates	correspond	to	the	different	levels	of
policy.

Once	you	have	structured	the	code	this	way,	you	can	mix	and	match	how	you
want	to	actually	deploy	the	system.	You	can	group	the	components	into
deployable	deliverables	in	any	way	that	makes	sense,	and	easily	change	that
grouping	when	conditions	change.

1.	This	is	my	own	notation	for	“abstract”	use	cases.	It	would	have	been	more	standard	to	use	a	UML
stereotype	such	as	<<abstract>>,	but	I	don‘t	find	adhering	to	such	standards	very	useful	nowadays.



34
THE	MISSING	CHAPTER

By	Simon	Brown

All	of	the	advice	you’ve	read	so	far	will	certainly	help	you	design	better
software,	composed	of	classes	and	components	with	well-defined	boundaries,
clear	responsibilities,	and	controlled	dependencies.	But	it	turns	out	that	the	devil
is	in	the	implementation	details,	and	it’s	really	easy	to	fall	at	the	last	hurdle	if
you	don’t	give	that	some	thought,	too.

Let’s	imagine	that	we’re	building	an	online	book	store,	and	one	of	the	use	cases
we’ve	been	asked	to	implement	is	about	customers	being	able	to	view	the	status
of	their	orders.	Although	this	is	a	Java	example,	the	principles	apply	equally	to
other	programming	languages.	Let’s	put	the	Clean	Architecture	to	one	side	for	a



moment	and	look	at	a	number	of	approaches	to	design	and	code	organization.

PACKAGE	BY	LAYER
The	first,	and	perhaps	simplest,	design	approach	is	the	traditional	horizontal
layered	architecture,	where	we	separate	our	code	based	on	what	it	does	from	a
technical	perspective.	This	is	often	called	“package	by	layer.”	Figure	34.1	shows
what	this	might	look	like	as	a	UML	class	diagram.

In	this	typical	layered	architecture,	we	have	one	layer	for	the	web	code,	one
layer	for	our	“business	logic,”	and	one	layer	for	persistence.	In	other	words,	code
is	sliced	horizontally	into	layers,	which	are	used	as	a	way	to	group	similar	types
of	things.	In	a	“strict	layered	architecture,”	layers	should	depend	only	on	the
next	adjacent	lower	layer.	In	Java,	layers	are	typically	implemented	as	packages.
As	you	can	see	in	Figure	34.1,	all	of	the	dependencies	between	layers	(packages)
point	downward.	In	this	example,	we	have	the	following	Java	types:

•	OrdersController:	A	web	controller,	something	like	a	Spring	MVC	controller,
that	handles	requests	from	the	web.

•	OrdersService:	An	interface	that	defines	the	“business	logic”	related	to
orders.

•	OrdersServiceImpl:	The	implementation	of	the	orders	service.1

•	OrdersRepository:	An	interface	that	defines	how	we	get	access	to	persistent
order	information.

•	JdbcOrdersRepository:	An	implementation	of	the	repository	interface.



Figure	34.1	Package	by	layer

In	“Presentation	Domain	Data	Layering,”2	Martin	Fowler	says	that	adopting
such	a	layered	architecture	is	a	good	way	to	get	started.	He’s	not	alone.	Many	of
the	books,	tutorials,	training	courses,	and	sample	code	you’ll	find	will	also	point
you	down	the	path	of	creating	a	layered	architecture.	It’s	a	very	quick	way	to	get
something	up	and	running	without	a	huge	amount	of	complexity.	The	problem,
as	Martin	points	out,	is	that	once	your	software	grows	in	scale	and	complexity,
you	will	quickly	find	that	having	three	large	buckets	of	code	isn’t	sufficient,	and
you	will	need	to	think	about	modularizing	further.



Another	problem	is	that,	as	Uncle	Bob	has	already	said,	a	layered	architecture
doesn’t	scream	anything	about	the	business	domain.	Put	the	code	for	two	layered
architectures,	from	two	very	different	business	domains,	side	by	side	and	they
will	likely	look	eerily	similar:	web,	services,	and	repositories.	There’s	also
another	huge	problem	with	layered	architectures,	but	we’ll	get	to	that	later.

PACKAGE	BY	FEATURE
Another	option	for	organizing	your	code	is	to	adopt	a	“package	by	feature”	style.
This	is	a	vertical	slicing,	based	on	related	features,	domain	concepts,	or
aggregate	roots	(to	use	domain-driven	design	terminology).	In	the	typical
implementations	that	I’ve	seen,	all	of	the	types	are	placed	into	a	single	Java
package,	which	is	named	to	reflect	the	concept	that	is	being	grouped.

With	this	approach,	as	shown	in	Figure	34.2,	we	have	the	same	interfaces	and
classes	as	before,	but	they	are	all	placed	into	a	single	Java	package	rather	than
being	split	among	three	packages.	This	is	a	very	simple	refactoring	from	the
“package	by	layer”	style,	but	the	top-level	organization	of	the	code	now	screams
something	about	the	business	domain.	We	can	now	see	that	this	code	base	has
something	to	do	with	orders	rather	than	the	web,	services,	and	repositories.
Another	benefit	is	that	it’s	potentially	easier	to	find	all	of	the	code	that	you	need
to	modify	in	the	event	that	the	“view	orders”	use	case	changes.	It’s	all	sitting	in	a
single	Java	package	rather	than	being	spread	out.3

I	often	see	software	development	teams	realize	that	they	have	problems	with
horizontal	layering	(“package	by	layer”)	and	switch	to	vertical	layering
(“package	by	feature”)	instead.	In	my	opinion,	both	are	suboptimal.	If	you’ve
read	this	book	so	far,	you	might	be	thinking	that	we	can	do	much	better—and
you’re	right.



Figure	34.2	Package	by	feature

PORTS	AND	ADAPTERS
As	Uncle	Bob	has	said,	approaches	such	as	“ports	and	adapters,”	the	“hexagonal
architecture,”	“boundaries,	controllers,	entities,”	and	so	on	aim	to	create
architectures	where	business/domain-focused	code	is	independent	and	separate
from	the	technical	implementation	details	such	as	frameworks	and	databases.	To
summarize,	you	often	see	such	code	bases	being	composed	of	an	“inside”



(domain)	and	an	“outside”	(infrastructure),	as	suggested	in	Figure	34.3.

Figure	34.3	A	code	base	with	an	inside	and	an	outside

The	“inside”	region	contains	all	of	the	domain	concepts,	whereas	the	“outside”
region	contains	the	interactions	with	the	outside	world	(e.g.,	UIs,	databases,
third-party	integrations).	The	major	rule	here	is	that	the	“outside”	depends	on	the
“inside”—never	the	other	way	around.	Figure	34.4	shows	a	version	of	how	the
“view	orders”	use	case	might	be	implemented.

The	com.mycompany.myapp.domain	package	here	is	the	“inside,”	and	the	other
packages	are	the	“outside.”	Notice	how	the	dependencies	flow	toward	the
“inside.”	The	keen-eyed	reader	will	notice	that	the	OrdersRepository	from
previous	diagrams	has	been	renamed	to	simply	be	Orders.	This	comes	from	the
world	of	domain-driven	design,	where	the	advice	is	that	the	naming	of
everything	on	the	“inside”	should	be	stated	in	terms	of	the	“ubiquitous	domain
language.”	To	put	that	another	way,	we	talk	about	“orders”	when	we’re	having	a
discussion	about	the	domain,	not	the	“orders	repository.”



Figure	34.4	View	orders	use	case

It’s	also	worth	pointing	out	that	this	is	a	simplified	version	of	what	the	UML
class	diagram	might	look	like,	because	it’s	missing	things	like	interactors	and
objects	to	marshal	the	data	across	the	dependency	boundaries.

PACKAGE	BY	COMPONENT
Although	I	agree	wholeheartedly	with	the	discussions	about	SOLID,	REP,	CCP,



and	CRP	and	most	of	the	advice	in	this	book,	I	come	to	a	slightly	different
conclusion	about	how	to	organize	code.	So	I’m	going	to	present	another	option
here,	which	I	call	“package	by	component.”	To	give	you	some	background,	I’ve
spent	most	of	my	career	building	enterprise	software,	primarily	in	Java,	across	a
number	of	different	business	domains.	Those	software	systems	have	varied
immensely,	too.	A	large	number	have	been	web-based,	but	others	have	been
client–server4,	distributed,	message-based,	or	something	else.	Although	the
technologies	differed,	the	common	theme	was	that	the	architecture	for	most	of
these	software	systems	was	based	on	a	traditional	layered	architecture.

I’ve	already	mentioned	a	couple	of	reasons	why	layered	architectures	should	be
considered	bad,	but	that’s	not	the	whole	story.	The	purpose	of	a	layered
architecture	is	to	separate	code	that	has	the	same	sort	of	function.	Web	stuff	is
separated	from	business	logic,	which	is	in	turn	separated	from	data	access.	As
we	saw	from	the	UML	class	diagram,	from	an	implementation	perspective,	a
layer	typically	equates	to	a	Java	package.	From	a	code	accessibility	perspective,
for	the	OrdersController	to	be	able	to	have	a	dependency	on	the
OrdersService	interface,	the	OrdersService	interface	needs	to	be	marked	as
public,	because	they	are	in	different	packages.	Likewise,	the	OrdersRepository
interface	needs	to	be	marked	as	public	so	that	it	can	be	seen	outside	of	the
repository	package,	by	the	OrdersServiceImpl	class.

In	a	strict	layered	architecture,	the	dependency	arrows	should	always	point
downward,	with	layers	depending	only	on	the	next	adjacent	lower	layer.	This
comes	back	to	creating	a	nice,	clean,	acyclic	dependency	graph,	which	is
achieved	by	introducing	some	rules	about	how	elements	in	a	code	base	should
depend	on	each	other.	The	big	problem	here	is	that	we	can	cheat	by	introducing
some	undesirable	dependencies,	yet	still	create	a	nice,	acyclic	dependency	graph.

Suppose	that	you	hire	someone	new	who	joins	your	team,	and	you	give	the
newcomer	another	orders-related	use	case	to	implement.	Since	the	person	is
new,	he	wants	to	make	a	big	impression	and	get	this	use	case	implemented	as
quickly	as	possible.	After	sitting	down	with	a	cup	of	coffee	for	a	few	minutes,
the	newcomer	discovers	an	existing	OrdersController	class,	so	he	decides
that’s	where	the	code	for	the	new	orders-related	web	page	should	go.	But	it
needs	some	orders	data	from	the	database.	The	newcomer	has	an	epiphany:
“Oh,	there’s	an	OrdersRepository	interface	already	built,	too.	I	can	simply
dependency-inject	the	implementation	into	my	controller.	Perfect!”	After	a	few
more	minutes	of	hacking,	the	web	page	is	working.	But	the	resulting	UML



diagram	looks	like	Figure	34.5.

The	dependency	arrows	still	point	downward,	but	the	OrdersController	is	now
additionally	bypassing	the	OrdersService	for	some	use	cases.	This	organization
is	often	called	a	relaxed	layered	architecture,	as	layers	are	allowed	to	skip
around	their	adjacent	neighbor(s).	In	some	situations,	this	is	the	intended
outcome—if	you’re	trying	to	follow	the	CQRS5	pattern,	for	example.	In	many
other	cases,	bypassing	the	business	logic	layer	is	undesirable,	especially	if	that
business	logic	is	responsible	for	ensuring	authorized	access	to	individual
records,	for	example.

While	the	new	use	case	works,	it’s	perhaps	not	implemented	in	the	way	that	we
were	expecting.	I	see	this	happen	a	lot	with	teams	that	I	visit	as	a	consultant,	and
it’s	usually	revealed	when	teams	start	to	visualize	what	their	code	base	really
looks	like,	often	for	the	first	time.



Figure	34.5	Relaxed	layered	architecture

What	we	need	here	is	a	guideline—an	architectural	principle—that	says
something	like,	“Web	controllers	should	never	access	repositories	directly.”	The
question,	of	course,	is	enforcement.	Many	teams	I’ve	met	simply	say,	“We
enforce	this	principle	through	good	discipline	and	code	reviews,	because	we
trust	our	developers.”	This	confidence	is	great	to	hear,	but	we	all	know	what
happens	when	budgets	and	deadlines	start	looming	ever	closer.

A	far	smaller	number	of	teams	tell	me	that	they	use	static	analysis	tools	(e.g.,



NDepend,	Structure101,	Checkstyle)	to	check	and	automatically	enforce
architecture	violations	at	build	time.	You	may	have	seen	such	rules	yourself;
they	usually	manifest	themselves	as	regular	expressions	or	wildcard	strings	that
state	“types	in	package	**/web	should	not	access	types	in	**/data”;	and	they	are
executed	after	the	compilation	step.

This	approach	is	a	little	crude,	but	it	can	do	the	trick,	reporting	violations	of	the
architecture	principles	that	you’ve	defined	as	a	team	and	(you	hope)	failing	the
build.	The	problem	with	both	approaches	is	that	they	are	fallible,	and	the
feedback	loop	is	longer	than	it	should	be.	If	left	unchecked,	this	practice	can	turn
a	code	base	into	a	“big	ball	of	mud.”6	I’d	personally	like	to	use	the	compiler	to
enforce	my	architecture	if	at	all	possible.

This	brings	us	to	the	“package	by	component”	option.	It’s	a	hybrid	approach	to
everything	we’ve	seen	so	far,	with	the	goal	of	bundling	all	of	the	responsibilities
related	to	a	single	coarse-grained	component	into	a	single	Java	package.	It’s
about	taking	a	service-centric	view	of	a	software	system,	which	is	something
we’re	seeing	with	micro-service	architectures	as	well.	In	the	same	way	that	ports
and	adapters	treat	the	web	as	just	another	delivery	mechanism,	“package	by
component”	keeps	the	user	interface	separate	from	these	coarse-grained
components.	Figure	34.6	shows	what	the	“view	orders”	use	case	might	look	like.

In	essence,	this	approach	bundles	up	the	“business	logic”	and	persistence	code
into	a	single	thing,	which	I’m	calling	a	“component.”	Uncle	Bob	presented	his
definition	of	“component”	earlier	in	the	book,	saying:

Components	are	the	units	of	deployment.	They	are	the	smallest	entities	that	can	be	deployed	as
part	of	a	system.	In	Java,	they	are	jar	files.



Figure	34.6	View	orders	use	case

My	definition	of	a	component	is	slightly	different:	“A	grouping	of	related
functionality	behind	a	nice	clean	interface,	which	resides	inside	an	execution
environment	like	an	application.”	This	definition	comes	from	my	“C4	software
architecture	model,”7	which	is	a	simple	hierarchical	way	to	think	about	the	static
structures	of	a	software	system	in	terms	of	containers,	components,	and	classes
(or	code).	It	says	that	a	software	system	is	made	up	of	one	or	more	containers
(e.g.,	web	applications,	mobile	apps,	stand-alone	applications,	databases,	file
systems),	each	of	which	contains	one	or	more	components,	which	in	turn	are



implemented	by	one	or	more	classes	(or	code).	Whether	each	component	resides
in	a	separate	jar	file	is	an	orthogonal	concern.

A	key	benefit	of	the	“package	by	component”	approach	is	that	if	you’re	writing
code	that	needs	to	do	something	with	orders,	there’s	just	one	place	to	go—the
OrdersComponent.	Inside	the	component,	the	separation	of	concerns	is	still
maintained,	so	the	business	logic	is	separate	from	data	persistence,	but	that’s	a
component	implementation	detail	that	consumers	don’t	need	to	know	about.	This
is	akin	to	what	you	might	end	up	with	if	you	adopted	a	micro-services	or
Service-Oriented	Architecture—a	separate	OrdersService	that	encapsulates
everything	related	to	handling	orders.	The	key	difference	is	the	decoupling
mode.	You	can	think	of	well-defined	components	in	a	monolithic	application	as
being	a	stepping	stone	to	a	micro-services	architecture.

THE	DEVIL	IS	IN	THE
IMPLEMENTATION	DETAILS
On	the	face	of	it,	the	four	approaches	do	all	look	like	different	ways	to	organize
code	and,	therefore,	could	be	considered	different	architectural	styles.	This
perception	starts	to	unravel	very	quickly	if	you	get	the	implementation	details
wrong,	though.

Something	I	see	on	a	regular	basis	is	an	overly	liberal	use	of	the	public	access
modifier	in	languages	such	as	Java.	It’s	almost	as	if	we,	as	developers,
instinctively	use	the	public	keyword	without	thinking.	It’s	in	our	muscle
memory.	If	you	don’t	believe	me,	take	a	look	at	the	code	samples	for	books,
tutorials,	and	open	source	frameworks	on	GitHub.	This	tendency	is	apparent,
regardless	of	which	architectural	style	a	code	base	is	aiming	to	adopt—
horizontal	layers,	vertical	layers,	ports	and	adapters,	or	something	else.	Marking
all	of	your	types	as	public	means	you’re	not	taking	advantage	of	the	facilities
that	your	programming	language	provides	with	regard	to	encapsulation.	In	some
cases,	there’s	literally	nothing	preventing	somebody	from	writing	some	code	to
instantiate	a	concrete	implementation	class	directly,	violating	the	intended
architecture	style.

ORGANIZATION	VERSUS



ENCAPSULATION
Looking	at	this	issue	another	way,	if	you	make	all	types	in	your	Java	application
public,	the	packages	are	simply	an	organization	mechanism	(a	grouping,	like
folders),	rather	than	being	used	for	encapsulation.	Since	public	types	can	be	used
from	anywhere	in	a	code	base,	you	can	effectively	ignore	the	packages	because
they	provide	very	little	real	value.	The	net	result	is	that	if	you	ignore	the
packages	(because	they	don’t	provide	any	means	of	encapsulation	and	hiding),	it
doesn’t	really	matter	which	architectural	style	you’re	aspiring	to	create.	If	we
look	back	at	the	example	UML	diagrams,	the	Java	packages	become	an
irrelevant	detail	if	all	of	the	types	are	marked	as	public.	In	essence,	all	four
architectural	approaches	presented	earlier	in	this	chapter	are	exactly	the	same
when	we	overuse	this	designation	(Figure	34.7).

Take	a	close	look	at	the	arrows	between	each	of	the	types	in	Figure	34.7:
They’re	all	identical	regardless	of	which	architectural	approach	you’re	trying	to
adopt.	Conceptually	the	approaches	are	very	different,	but	syntactically	they	are
identical.	Furthermore,	you	could	argue	that	when	you	make	all	of	the	types
public,	what	you	really	have	are	just	four	ways	to	describe	a	traditional
horizontally	layered	architecture.	This	is	a	neat	trick,	and	of	course	nobody
would	ever	make	all	of	their	Java	types	public.	Except	when	they	do.	And	I’ve
seen	it.

The	access	modifiers	in	Java	are	not	perfect,8	but	ignoring	them	is	just	asking	for
trouble.	The	way	Java	types	are	placed	into	packages	can	actually	make	a	huge
difference	to	how	accessible	(or	inaccessible)	those	types	can	be	when	Java’s
access	modifiers	are	applied	appropriately.	If	I	bring	the	packages	back	and	mark
(by	graphically	fading)	those	types	where	the	access	modifier	can	be	made	more
restrictive,	the	picture	becomes	pretty	interesting	(Figure	34.8).



Figure	34.7	All	four	architectural	approaches	are	the	same

Moving	from	left	to	right,	in	the	“package	by	layer”	approach,	the
OrdersService	and	OrdersRepository	interfaces	need	to	be	public,	because
they	have	inbound	dependencies	from	classes	outside	of	their	defining	package.
In	contrast,	the	implementation	classes	(OrdersServiceImpl	and
JdbcOrdersRepository)	can	be	made	more	restrictive	(package	protected).
Nobody	needs	to	know	about	them;	they	are	an	implementation	detail.

In	the	“package	by	feature”	approach,	the	OrdersController	provides	the	sole
entry	point	into	the	package,	so	everything	else	can	be	made	package	protected.
The	big	caveat	here	is	that	nothing	else	in	the	code	base,	outside	of	this	package,
can	access	information	related	to	orders	unless	they	go	through	the	controller.
This	may	or	may	not	be	desirable.

In	the	ports	and	adapters	approach,	the	OrdersService	and	Orders	interfaces
have	inbound	dependencies	from	other	packages,	so	they	need	to	be	made
public.	Again,	the	implementation	classes	can	be	made	package	protected	and
dependency	injected	at	runtime.



Figure	34.8	Grayed-out	types	are	where	the	access	modifier	can	be	made	more	restrictive

Finally,	in	the	“package	by	component”	approach,	the	OrdersComponent
interface	has	an	inbound	dependency	from	the	controller,	but	everything	else	can
be	made	package	protected.	The	fewer	public	types	you	have,	the	smaller	the
number	of	potential	dependencies.	There’s	now	no	way9	that	code	outside	this
package	can	use	the	OrdersRepository	interface	or	implementation	directly,	so
we	can	rely	on	the	compiler	to	enforce	this	architectural	principle.	You	can	do
the	same	thing	in	.NET	with	the	internal	keyword,	although	you	would	need	to
create	a	separate	assembly	for	every	component.

Just	to	be	absolutely	clear,	what	I’ve	described	here	relates	to	a	monolithic
application,	where	all	of	the	code	resides	in	a	single	source	code	tree.	If	you	are
building	such	an	application	(and	many	people	are),	I	would	certainly	encourage
you	to	lean	on	the	compiler	to	enforce	your	architectural	principles,	rather	than
relying	on	self-discipline	and	post-compilation	tooling.



OTHER	DECOUPLING	MODES
In	addition	to	the	programming	language	you’re	using,	there	are	often	other
ways	that	you	can	decouple	your	source	code	dependencies.	With	Java,	you	have
module	frameworks	like	OSGi	and	the	new	Java	9	module	system.	With	module
systems,	when	used	properly,	you	can	make	a	distinction	between	types	that	are
public	and	types	that	are	published.	For	example,	you	could	create	an	Orders
module	where	all	of	the	types	are	marked	as	public,	but	publish	only	a	small
subset	of	those	types	for	external	consumption.	It’s	been	a	long	time	coming,	but
I’m	enthusiastic	that	the	Java	9	module	system	will	give	us	another	tool	to	build
better	software,	and	spark	people’s	interest	in	design	thinking	once	again.

Another	option	is	to	decouple	your	dependencies	at	the	source	code	level,	by
splitting	code	across	different	source	code	trees.	If	we	take	the	ports	and	adapters
example,	we	could	have	three	source	code	trees:

•	The	source	code	for	the	business	and	domain	(i.e.,	everything	that	is
independent	of	technology	and	framework	choices):	OrdersService,
OrdersServiceImpl,	and	Orders

•	The	source	code	for	the	web:	OrdersController
•	The	source	code	for	the	data	persistence:	JdbcOrdersRepository

The	latter	two	source	code	trees	have	a	compile-time	dependency	on	the
business	and	domain	code,	which	itself	doesn’t	know	anything	about	the	web	or
the	data	persistence	code.	From	an	implementation	perspective,	you	can	do	this
by	configuring	separate	modules	or	projects	in	your	build	tool	(e.g.,	Maven,
Gradle,	MSBuild).	Ideally	you	would	repeat	this	pattern,	having	a	separate
source	code	tree	for	each	and	every	component	in	your	application.	This	is	very
much	an	idealistic	solution,	though,	because	there	are	real-world	performance,
complexity,	and	maintenance	issues	associated	with	breaking	up	your	source
code	in	this	way.

A	simpler	approach	that	some	people	follow	for	their	ports	and	adapters	code	is
to	have	just	two	source	code	trees:

•	Domain	code	(the	“inside”)
•	Infrastructure	code	(the	“outside”)



This	maps	on	nicely	to	the	diagram	(Figure	34.9)	that	many	people	use	to
summarize	the	ports	and	adapters	architecture,	and	there	is	a	compile-time
dependency	from	the	infrastructure	to	the	domain.

Figure	34.9	Domain	and	infrastructure	code

This	approach	to	organizing	source	code	will	also	work,	but	be	aware	of	the
potential	trade-off.	It’s	what	I	call	the	“Périphérique	anti-pattern	of	ports	and
adapters.”	The	city	of	Paris,	France,	has	a	ring	road	called	the	Boulevard
Périphérique,	which	allows	you	to	circumnavigate	Paris	without	entering	the
complexities	of	the	city.	Having	all	of	your	infrastructure	code	in	a	single	source
code	tree	means	that	it’s	potentially	possible	for	infrastructure	code	in	one	area
of	your	application	(e.g.,	a	web	controller)	to	directly	call	code	in	another	area	of
your	application	(e.g.,	a	database	repository),	without	navigating	through	the
domain.	This	is	especially	true	if	you’ve	forgotten	to	apply	appropriate	access
modifiers	to	that	code.



CONCLUSION:	THE	MISSING	ADVICE
The	whole	point	of	this	chapter	is	to	highlight	that	your	best	design	intentions
can	be	destroyed	in	a	flash	if	you	don’t	consider	the	intricacies	of	the
implementation	strategy.	Think	about	how	to	map	your	desired	design	on	to	code
structures,	how	to	organize	that	code,	and	which	decoupling	modes	to	apply
during	runtime	and	compile-time.	Leave	options	open	where	applicable,	but	be
pragmatic,	and	take	into	consideration	the	size	of	your	team,	their	skill	level,	and
the	complexity	of	the	solution	in	conjunction	with	your	time	and	budgetary
constraints.	Also	think	about	using	your	compiler	to	help	you	enforce	your
chosen	architectural	style,	and	watch	out	for	coupling	in	other	areas,	such	as	data
models.	The	devil	is	in	the	implementation	details.

1.	This	is	arguably	a	horrible	way	to	name	a	class,	but	as	we’ll	see	later,	perhaps	it	doesn’t	really	matter.
2.	https://martinfowler.com/bliki/PresentationDomainDataLayering.html.
3.	This	benefit	is	much	less	relevant	with	the	navigation	facilities	of	modern	IDEs,	but	it	seems	there	has
been	a	renaissance	moving	back	to	lightweight	text	editors,	for	reasons	I	am	clearly	too	old	to	understand.

4.	My	first	job	after	graduating	from	university	in	1996	was	building	client–server	desktop	applications
with	a	technology	called	PowerBuilder,	a	super-productive	4GL	that	exceled	at	building	database-driven
applications.	A	couple	of	years	later,	I	was	building	client–server	applications	with	Java,	where	we	had	to
build	our	own	database	connectivity	(this	was	pre-JDBC)	and	our	own	GUI	toolkits	on	top	of	AWT.
That’s	“progress“	for	you!

5.	In	the	Command	Query	Responsibility	Segregation	pattern,	you	have	separate	patterns	for	updating	and
reading	data.

6.	http://www.laputan.org/mud/
7.	See	https://www.structurizr.com/help/c4	for	more	information.
8.	In	Java,	for	example,	although	we	tend	to	think	of	packages	as	being	hierarchical,	it’s	not	possible	to
create	access	restrictions	based	on	a	package	and	subpackage	relationship.	Any	hierarchy	that	you	create
is	in	the	name	of	those	packages,	and	the	directory	structure	on	disk,	only.

9.	Unless	you	cheat	and	use	Java’s	reflection	mechanism,	but	please	don’t	do	that!

https://martinfowler.com/bliki/PresentationDomainDataLayering.html
http://www.laputan.org/mud/
https://www.structurizr.com/help/c4
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Appendix



A
ARCHITECTURE	ARCHAEOLOGY

To	unearth	the	principles	of	good	architecture,	let’s	take	a	45-year	journey
through	some	of	the	projects	I	have	worked	on	since	1970.	Some	of	these
projects	are	interesting	from	an	architectural	point	of	view.	Others	are	interesting
because	of	the	lessons	learned	and	because	of	how	they	fed	into	subsequent
projects.

This	appendix	is	somewhat	autobiographical.	I’ve	tried	to	keep	the	discussion
relevant	to	the	topic	of	architecture;	but,	as	in	anything	autobiographical,	other
factors	sometimes	intrude.	;-)

UNION	ACCOUNTING	SYSTEM



In	the	late	1960s,	a	company	by	the	name	of	ASC	Tabulating	signed	a	contract
with	Local	705	of	the	Teamsters	Union	to	provide	an	accounting	system.	The
computer	ASC	chose	to	implement	this	system	on	was	a	GE	Datanet	30,	as
shown	in	Figure	A.1.

Figure	A.1	GE	Datanet	30

Courtesy	Ed	Thelen,	ed-thelen.org

As	you	can	see	from	the	picture,	this	was	a	huge1	machine.	It	filled	a	room,	and
the	room	needed	strict	environmental	controls.

This	computer	was	built	in	the	days	before	integrated	circuits.	It	was	built	out	of
discrete	transistors.	There	were	even	some	vacuum	tubes	in	it	(albeit	only	in	the
sense	amplifiers	of	the	tape	drives).

By	today’s	standards	the	machine	was	huge,	slow,	small,	and	primitive.	It	had
16K	×	18	bits	of	core,	with	a	cycle	time	of	about	7	microseconds.2	It	filled	a	big,
environmentally	controlled	room.	It	had	7	track	magnetic	tape	drives	and	a	disk
drive	with	a	capacity	of	20	megabytes	or	so.

That	disk	was	a	monster.	You	can	see	it	in	the	picture	in	Figure	A.2—but	that
doesn’t	quite	give	you	the	scale	of	the	beast.	The	top	of	that	cabinet	was	over	my
head.	The	platters	were	36	inches	in	diameter,	and	3/8	of	an	inch	thick.	One	of
the	platters	is	pictured	in	Figure	A.3.

Now	count	the	platters	in	that	first	picture.	There	are	more	than	a	dozen.	Each



one	had	its	own	individual	seek	arm	that	was	driven	by	pneumatic	actuators.	You
could	watch	those	seek	heads	move	across	the	platters.	The	seek	time	was
probably	about	half	a	second	to	a	second.

When	this	beast	was	turned	on,	it	sounded	like	a	jet	engine.	The	floor	would
rumble	and	shake	until	it	got	up	to	speed.3

Figure	A.2	The	data	storage	unit	with	its	platters

Courtesy	Ed	Thelen,	ed-thelen.org

The	great	claim	to	fame	of	the	Datanet	30	was	its	capability	to	drive	a	large
number	of	asynchronous	terminals	at	relatively	high	speed.	That’s	exactly	what
ASC	needed.

ASC	was	based	in	Lake	Bluff,	Illinois,	30	miles	north	of	Chicago.	The	Local	705
office	was	in	downtown	Chicago.	The	union	wanted	a	dozen	or	so	of	their	data
entry	clerks	to	use	CRT4	terminals	(Figure	A.4)	to	enter	data	into	the	system.
They	would	print	reports	on	ASR35	teletypes	(Figure	A.5).



Figure	A.3	One	platter	of	that	disk:	3/8	inch	thick,	36	inches	in	diameter

Courtesy,	Ed	Thelen,	ed-thelen.org

The	CRT	terminals	ran	at	30	characters	per	second.	This	was	a	pretty	good	rate
for	the	late	1960s	because	modems	were	relatively	unsophisticated	in	those	days.

ASC	leased	a	dozen	or	so	dedicated	phone	lines	and	twice	that	number	of	300
baud	modems	from	the	phone	company	to	connect	the	Datanet	30	to	these
terminals.

These	computers	did	not	come	with	operating	systems.	They	didn’t	even	come
with	file	systems.	What	you	got	was	an	assembler.

If	you	needed	to	store	data	on	the	disk,	you	stored	data	on	the	disk.	Not	in	a	file.
Not	in	a	directory.	You	figured	out	which	track,	platter,	and	sector	to	put	the	data
into,	and	then	you	operated	the	disk	to	put	the	data	there.	Yes,	that	means	we
wrote	our	own	disk	driver.



Figure	A.4	Datapoint	CRT	terminal

Courtesy	of	Bill	Degnan,	vintagecomputer.net

The	Union	Accounting	system	had	three	kinds	of	records:	Agents,	Employers,
and	Members.	The	system	was	a	CRUD	system	for	these	records,	but	also
included	operations	for	posting	dues,	computing	changes	in	the	general	ledger,
and	so	on.

The	original	system	was	written	in	assembler	by	a	consultant	who	somehow
managed	to	cram	the	whole	thing	into	16K.

As	you	might	imagine,	that	big	Datanet	30	was	an	expensive	machine	to	operate
and	maintain.	The	software	consultant	who	kept	the	software	running	was
expensive,	too.	What’s	more,	minicomputers	were	becoming	popular,	and	were
much	cheaper.



Figure	A.5	ASR35	teletype

Joe	Mabel,	with	permission

In	1971,	when	I	was	18	years	old,	ASC	hired	me	and	two	of	my	geeky	friends	to
replace	the	whole	union	accounting	system	with	one	that	was	based	on	a	Varian
620/f	minicomputer	(Figure	A.6).	The	computer	was	cheap.	We	were	cheap.	So
it	seemed	like	a	good	deal	for	ASC.

The	Varian	machine	had	a	16-bit	bus	and	32K	*	16	core	memory.	It	had	a	cycle
time	of	about	1	microsecond.	It	was	much	more	powerful	than	the	Datanet	30.	It
used	IBM’s	wildly	successful	2314	disk	technology,	allowing	us	to	store	30
megabytes	on	platters	that	were	only	14	inches	in	diameter	and	could	not
explode	through	concrete	block	walls!

Of	course,	we	still	had	no	operating	system.	No	file	system.	No	high-level
language.	All	we	had	was	an	assembler.	But	we	made	do.



Figure	A.6	Varian	620/f	minicomputer

The	Minicomputer	Orphanage

Instead	of	trying	to	cram	the	whole	system	into	32K,	we	created	an	overlay
system.	Applications	would	be	loaded	from	disk	into	a	block	of	memory
dedicated	to	overlays.	They	would	be	executed	in	that	memory,	and
preemptively	swapped	back	out	onto	disk,	with	their	local	RAM,	to	allow	other
programs	to	execute.

Programs	would	get	swapped	into	the	overlay	area,	execute	enough	to	fill	the
output	buffers,	and	then	get	swapped	out	so	that	another	program	could	be
swapped	in.

Of	course,	when	your	UI	runs	at	30	characters	per	second,	your	programs	spend
a	lot	of	time	waiting.	We	had	plenty	of	time	to	swap	the	programs	in	and	off	the
disk	to	keep	all	of	the	terminals	running	as	fast	as	they	could	go.	Nobody	ever
complained	of	response	time	issues.

We	wrote	a	preemptive	supervisor	that	managed	the	interrupts	and	IO.	We	wrote
the	applications;	we	wrote	the	disk	drivers,	the	terminal	drivers,	the	tape	drivers,
and	everything	else	in	that	system.	There	was	not	a	single	bit	in	that	system	that
we	did	not	write.	Though	it	was	a	struggle	involving	far	too	many	80-hour
weeks,	we	got	the	beast	up	and	running	in	a	matter	of	8	or	9	months.

The	architecture	of	the	system	was	simple	(Figure	A.7).	When	an	application
was	started,	it	would	generate	output	until	its	particular	terminal	buffer	was	full.



Then	the	supervisor	would	swap	the	application	out,	and	swap	a	new	application
in.	The	supervisor	would	continue	to	dribble	out	the	contents	of	the	terminal
buffer	at	30	cps	until	it	was	nearly	empty.	Then	it	would	swap	the	application
back	in	to	fill	the	buffer	again.

Figure	A.7	The	system	architecture

There	are	two	boundaries	in	this	system.	The	first	is	the	character	output
boundary.	The	applications	had	no	idea	that	their	output	was	going	to	a	30-cps
terminal.	Indeed,	the	character	output	was	entirely	abstract	from	the	applications’
point	of	view.	The	applications	simply	passed	strings	to	the	supervisor,	and	the
supervisor	took	care	of	loading	the	buffers,	sending	the	characters	to	the
terminals,	and	swapping	the	applications	in	and	out	of	memory.

This	boundary	was	dependency	normal—that	is,	dependencies	pointed	with	the
flow	of	control.	The	applications	had	compile-time	dependencies	on	the
supervisor,	and	the	flow	of	control	passed	from	the	applications	to	the
supervisor.	The	boundary	prevented	the	applications	from	knowing	which	kind
of	device	the	output	was	going	to.

The	second	boundary	was	dependency	inverted.	The	supervisor	could	start	the
applications,	but	had	no	compile-time	dependencies	upon	them.	The	flow	of
control	passed	from	the	supervisor	to	the	applications.	The	polymorphic
interface	that	inverted	the	dependency	was	simply	this:	Every	application	was
started	by	jumping	to	the	exact	same	memory	address	within	the	overlay	area.
The	boundary	prevented	the	supervisor	from	knowing	anything	about	the



applications	other	than	the	starting	point.

LASER	TRIM
In	1973,	I	joined	a	company	in	Chicago	called	Teradyne	Applied	Systems
(TAS).	This	was	a	division	of	Teradyne	Inc.,	which	was	headquartered	in
Boston.	Our	product	was	a	system	that	used	relatively	high-powered	lasers	to
trim	electronic	components	to	very	fine	tolerances.

Back	in	those	days,	manufacturers	would	silk-screen	electronic	components	onto
ceramic	substrates.	Those	substrates	were	on	the	order	of	1	inch	square.	The
components	were	typically	resistors—devices	that	resist	the	flow	of	current.

The	resistance	of	a	resistor	depends	on	a	number	of	factors,	including	its
composition	and	its	geometry.	The	wider	the	resistor,	the	less	resistance	it	has.

Our	system	would	position	the	ceramic	substrate	in	a	harness	that	had	probes
that	made	contact	with	the	resistors.	The	system	would	measure	the	resistance	of
the	resistors,	and	then	use	a	laser	to	burn	off	parts	of	the	resistor,	making	it
thinner	and	thinner	until	it	reached	the	desired	resistance	value	within	a	tenth	of
a	percent	or	so.

We	sold	these	systems	to	manufacturers.	We	also	used	some	in-house	systems	to
trim	relatively	small	batches	for	small	manufacturers.

The	computer	was	an	M365.	This	was	in	the	days	when	many	companies	built
their	own	computers:	Teradyne	built	the	M365	and	supplied	it	to	all	its	divisions.
The	M365	was	an	enhanced	version	of	a	PDP-8—a	popular	minicomputer	of	the
day.

The	M365	controlled	the	positioning	table,	which	moved	the	ceramic	substrates
under	the	probes.	It	controlled	the	measurement	system	and	the	laser.	The	laser
was	positioned	using	X-Y	mirrors	that	could	rotate	under	program	control.	The
computer	could	also	control	the	power	setting	of	the	laser.

The	development	environment	of	the	M365	was	relatively	primitive.	There	was
no	disk.	Mass	storage	was	on	tape	cartridges	that	looked	like	old	8-track	audio
tape	cassettes.	The	tapes	and	drives	were	made	by	Tri-Data.



Like	the	8-track	audio	cassettes	of	the	day,	the	tape	was	oriented	in	a	loop.	The
drive	moved	the	tape	in	only	one	direction—there	was	no	rewind!	If	you	wanted
to	position	the	tape	at	the	beginning,	you	had	to	send	it	forward	to	its	“load
point.”

The	tape	moved	at	a	speed	of	approximately	1	foot	per	second.	Thus,	if	the	tape
loop	was	25	feet	long,	it	could	take	as	long	as	25	seconds	to	send	it	to	the	load
point.	For	this	reason	Tridata	made	cartridges	in	several	lengths,	ranging	from	10
feet	to	100	feet.

The	M365	had	a	button	on	the	front	that	would	load	memory	with	a	little
bootstrap	program	and	execute	it.	This	program	would	read	the	first	block	of
data	from	the	tape,	and	execute	that.	Typically	this	block	held	a	loader	that
loaded	the	operating	system	that	lived	on	the	rest	of	the	tape.

The	operating	system	would	prompt	the	user	for	the	name	of	a	program	to	run.
Those	programs	were	stored	on	the	tape,	just	after	the	operating	system.	We
would	type	in	the	name	of	the	program—for	example,	the	ED-402	Editor—and
the	operating	system	would	search	the	tape	for	that	program,	load	it,	and	execute
it.

The	console	was	an	ASCII	CRT	with	green	phosphors,	72	characters	wide5	by
24	lines.	The	characters	were	all	uppercase.

To	edit	a	program,	you	would	load	the	ED-402	Editor,	and	then	insert	the	tape
that	held	your	source	code.	You	would	read	one	tape	block	of	that	source	code
into	memory,	and	it	would	be	displayed	on	the	screen.	The	tape	block	might	hold
50	lines	of	code.	You	would	make	your	edits	by	moving	the	cursor	around	on	the
screen	and	typing	in	a	manner	similar	to	vi.	When	you	were	done,	you	would
write	that	block	onto	a	different	tape,	and	read	the	next	block	from	the	source
tape.	You	kept	on	doing	this	until	you	were	done.

There	was	no	scrolling	back	to	previous	blocks.	You	edited	your	program	in	a
straight	line,	from	beginning	to	end.	Going	back	to	the	beginning	forced	you	to
finish	copying	the	source	code	onto	the	output	tape	and	then	start	a	new	editing
session	on	that	tape.	Perhaps	not	surprisingly,	given	these	constraints,	we	printed
our	programs	out	on	paper,	marked	all	the	edits	by	hand	in	red	ink,	and	then
edited	our	programs	block	by	block	by	consulting	our	markups	on	the	listing.



Once	the	program	was	edited,	we	returned	to	the	OS	and	invoked	the	assembler.
The	assembler	read	the	source	code	tape,	and	wrote	a	binary	tape,	while	also
producing	a	listing	on	our	data	products	line	printer.

The	tapes	weren’t	100%	reliable,	so	we	always	wrote	two	tapes	at	the	same	time.
That	way,	at	least	one	of	them	had	a	high	probability	of	being	free	of	errors.

Our	program	was	approximately	20,000	lines	of	code,	and	took	nearly	30
minutes	to	compile.	The	odds	that	we	would	get	a	tape	read	error	during	that
time	were	roughly	1	in	10.	If	the	assembler	got	a	tape	error,	it	would	ring	the	bell
on	the	console	and	then	start	printing	a	stream	of	errors	on	the	printer.	You	could
hear	this	maddening	bell	all	across	the	lab.	You	could	also	hear	the	cursing	of	the
poor	programmer	who	just	learned	that	the	30-minute	compile	needed	to	start
over.

The	architecture	of	the	program	was	typical	for	those	days.	There	was	a	Master
Operating	Program,	appropriately	called	“the	MOP.”	Its	job	was	to	manage	basic
IO	functions	and	provide	the	rudiments	of	a	console	“shell.”	Many	of	the
divisions	of	Teradyne	shared	the	MOP	source	code,	but	each	had	forked	it	for	its
own	uses.	Consequently,	we	would	send	source	code	updates	around	to	each
other	in	the	form	of	marked-up	listings	that	we	would	then	integrate	manually
(and	very	carefully).

A	special-purpose	utility	layer	controlled	the	measurement	hardware,	the
positioning	tables,	and	the	laser.	The	boundary	between	this	layer	and	the	MOP
was	muddled	at	best.	While	the	utility	layer	called	the	MOP,	the	MOP	had	been
specifically	modified	for	that	layer,	and	often	called	back	into	it.	Indeed,	we
didn’t	really	think	of	these	two	as	separate	layers.	To	us,	it	was	just	some	code
that	we	added	to	the	MOP	in	a	highly	coupled	way.

Next	came	the	isolation	layer.	This	layer	provided	a	virtual	machine	interface	for
the	application	programs,	which	were	written	in	a	completely	different	domain-
specific	data-driven	language	(DSL).	The	language	had	operations	for	moving
the	laser,	moving	the	table,	making	cuts,	making	measurements,	and	so	on.	Our
customers	would	write	their	laser	trimming	application	programs	in	this
language,	and	the	isolation	layer	would	execute	them.

This	approach	was	not	intended	to	create	a	machine-independent	laser	trim
language.	Indeed,	the	language	had	many	idiosyncrasies	that	were	deeply



coupled	to	the	layers	below.	Rather,	this	approach	gave	the	application
programmers	a	“simpler”	language	than	M356	assembler	in	which	to	program
their	trim	jobs.

Trim	jobs	could	be	loaded	from	tape	and	executed	by	the	system.	Essentially,	our
system	was	an	operating	system	for	trim	applications.

The	system	was	written	in	M365	assembler	and	compiled	in	a	single	compilation
unit	that	produced	absolute	binary	code.

The	boundaries	in	this	application	were	soft	at	best.	Even	the	boundary	between
the	system	code	and	the	applications	written	in	the	DSL	was	not	well	enforced.
There	were	couplings	everywhere.

But	that	was	typical	of	software	in	the	early	1970s.

ALUMINUM	DIE-CAST	MONITORING
In	the	middle	of	the	1970s,	while	OPEC	was	placing	an	embargo	on	oil,	and
gasoline	shortages	were	causing	angry	drivers	to	get	into	fights	at	gas	stations,	I
began	working	at	Outboard	Marine	Corporation	(OMC).	This	is	the	parent
company	of	Johnson	Motors	and	Lawnboy	lawnmowers.

OMC	maintained	a	huge	facility	in	Waukegan,	Illinois,	for	creating	die-cast
aluminum	parts	for	all	of	the	company’s	motors	and	products.	Aluminum	was
melted	down	in	huge	furnaces,	and	then	carried	in	large	buckets	to	dozens	upon
dozens	of	individually	operated	aluminum	die-cast	machines.	Each	machine	had
a	human	operator	responsible	for	setting	the	molds,	cycling	the	machine,	and
extracting	the	newly	cast	parts.	These	operators	were	paid	based	on	how	many
parts	they	produced.

I	was	hired	to	work	on	a	shop-floor	automation	project.	OMC	had	purchased	an
IBM	System/7—which	was	IBM’s	answer	to	the	minicomputer.	They	tied	this
computer	to	all	the	die-cast	machines	on	the	floor,	so	that	we	could	count,	and
time,	the	cycles	of	each	machine.	Our	role	was	to	gather	all	that	information	and
present	it	on	3270	green-screen	displays.

The	language	was	assembler.	And,	again,	every	bit	of	code	that	executed	in	this
computer	was	code	that	we	wrote.	There	was	no	operating	system,	no	subroutine



libraries,	and	no	framework.	It	was	just	raw	code.

It	was	also	interrupt-driven	real-time	code.	Every	time	a	die-cast	machine
cycled,	we	had	to	update	a	batch	of	statistics,	and	send	messages	to	a	great	IBM
370	in-the-sky,	running	a	CICS-COBOL	program	that	presented	those	statistics
on	the	green	screens.

I	hated	this	job.	Oh,	boy,	did	I.	Oh,	the	work	was	fun!	But	the	culture	…	Suffice
it	to	say	that	I	was	required	to	wear	a	tie.

Oh,	I	tried.	I	really	did.	But	I	was	clearly	unhappy	working	there,	and	my
colleagues	knew	it.	They	knew	it	because	I	couldn’t	remember	critical	dates	or
manage	to	get	up	early	enough	to	attend	important	meetings.	This	was	the	only
programming	job	I	was	ever	fired	from—and	I	deserved	it.

From	an	architectural	point	of	view,	there’s	not	a	lot	to	learn	here	except	for	one
thing.	The	System/7	had	a	very	interesting	instruction	called	set	program
interrupt	(SPI).	This	allowed	you	to	trigger	an	interrupt	of	the	processor,
allowing	it	to	handle	any	other	queued	lower-priority	interrupts.	Nowadays,	in
Java	we	call	this	Thread.yield().

4-TEL
In	October	1976,	having	been	fired	from	OMC,	I	returned	to	a	different	division
of	Teradyne—a	division	I	would	stay	with	for	12	years.	The	product	I	worked	on
was	named	4-TEL.	Its	purpose	was	to	test	every	telephone	line	in	a	telephone
service	area,	every	night,	and	produce	a	report	of	all	lines	requiring	repair.	It	also
allowed	telephone	test	personnel	to	test	specific	telephone	lines	in	detail.

This	system	started	its	life	with	the	same	kind	of	architecture	as	the	Laser	Trim
system.	It	was	a	monolithic	application	written	in	assembly	language	without
any	significant	boundaries.	But	at	the	time	I	joined	the	company,	that	was	about
to	change.

The	system	was	used	by	testers	located	in	a	service	center	(SC).	A	service	center
covered	many	central	offices	(CO),	each	of	which	could	handle	as	many	as
10,000	phone	lines.	The	dialing	and	measurement	hardware	had	to	be	located
inside	the	CO.	So	that’s	where	the	M365	computers	were	put.	We	called	those



computers	the	central	office	line	testers	(COLTs).	Another	M365	was	placed	at
the	SC;	it	was	called	the	service	area	computer	(SAC).	The	SAC	had	several
modems	that	it	could	use	to	dial	up	the	COLTs	and	communicate	at	300	baud	(30
cps).

At	first,	the	COLT	computers	did	everything,	including	all	the	console
communication,	menus,	and	reports.	The	SAC	was	just	a	simple	multiplexor	that
took	the	output	from	the	COLTs	and	put	it	on	a	screen.

The	problem	with	this	setup	was	that	30	cps	is	really	slow.	The	testers	didn’t	like
watching	the	characters	trickle	across	the	screen,	especially	since	they	were	only
interested	in	a	few	key	bits	of	data.	Also,	in	those	days,	the	core	memory	in	the
M365	was	expensive,	and	the	program	was	big.

The	solution	was	to	separate	the	part	of	the	software	that	dialed	and	measured
lines	from	the	part	that	analyzed	the	results	and	printed	the	reports.	The	latter
would	be	moved	into	the	SAC,	and	the	former	would	remain	behind	in	the
COLTs.	This	would	allow	the	COLT	to	be	a	smaller	machine,	with	much	less
memory,	and	would	greatly	speed	up	the	response	at	the	terminal,	since	the
reports	would	be	generated	in	the	SAC.

The	result	was	remarkably	successful.	Screen	updates	were	very	fast	(once	the
appropriate	COLT	had	been	dialed),	and	the	memory	footprint	of	the	COLTs
shrank	a	lot.

The	boundary	was	very	clean	and	highly	decoupled.	Very	short	packets	of	data
were	exchanged	between	the	SAC	and	COLT.	These	packets	were	a	very	simple
form	of	DSL,	representing	primitive	commands	like	“DIAL	XXXX”	or
“MEASURE.”

The	M365	was	loaded	from	tape.	Those	tape	drives	were	expensive	and	weren’t
very	reliable—especially	in	the	industrial	environment	of	a	telephone	central
office.	Also,	the	M365	was	an	expensive	machine	relative	to	the	rest	of	the
electronics	within	the	COLT.	So	we	embarked	upon	a	project	to	replace	the
M365	with	a	microcomputer	based	on	an	8085	µprocessor.

The	new	computer	was	composed	of	a	processor	board	that	held	the	8085,	a
RAM	board	that	held	32K	of	RAM,	and	three	ROM	boards	that	held	12K	of
read-only	memory	apiece.	All	these	boards	fit	into	the	same	chassis	as	the
measurement	hardware,	thereby	eliminating	the	bulky	extra	chassis	that	had



housed	the	M365.

The	ROM	boards	held	12	Intel	2708	EPROM	(Erasable	Programmable	Read-
Only	Memory)	chips.6	Figure	A.8	shows	an	example	of	such	a	chip.	We	loaded
those	chips	with	software	by	inserting	them	into	special	devices	called	PROM
burners	that	were	driven	by	our	development	environment.	The	chips	could	be
erased	by	exposing	them	to	high-intensity	ultraviolet	light.7

My	buddy	CK	and	I	translated	the	M365	assembly	language	program	for	the
COLT	into	8085	assembly	language.	This	translation	was	done	by	hand	and	took
us	about	6	months.	The	end	result	was	approximately	30K	of	8085	code.

Our	development	environment	had	64K	of	RAM	and	no	ROM,	so	we	could
quickly	download	our	compiled	binaries	into	RAM	and	test	them.

Once	we	got	the	program	working,	we	switched	to	using	the	EPROMs.	We
burned	30	chips	and	inserted	them	into	just	the	right	slots	in	the	three	ROM
boards.	Each	chip	was	labeled	so	we	could	tell	which	chip	went	into	which	slot.

The	30K	program	was	a	single	binary,	30K	long.	To	burn	the	chips,	we	simply
divided	that	binary	image	into	30	different	1K	segments,	and	burned	each
segment	onto	the	appropriately	labeled	chip.

Figure	A.8	EPROM	chip

This	worked	very	well,	and	we	began	to	mass-produce	the	hardware	and	deploy



the	system	into	the	field.

But	software	is	soft.8	Features	needed	to	be	added.	Bugs	needed	to	be	fixed.	And
as	the	installed	base	grew,	the	logistics	of	updating	the	software	by	burning	30
chips	per	installation,	and	having	field	service	people	replace	all	30	chips	at	each
site	became	a	nightmare.

There	were	all	kinds	of	problems.	Sometimes	chips	would	be	mislabeled,	or	the
labels	would	fall	off.	Sometimes	the	field	service	engineer	would	mistakenly
replace	the	wrong	chip.	Sometimes	the	field	service	engineer	would
inadvertently	break	a	pin	off	one	of	the	new	chips.	Consequently,	the	field
engineers	had	to	carry	extras	of	all	30	chips	with	them.

Why	did	we	have	to	change	all	30	chips?	Every	time	we	added	or	removed	code
from	our	30K	executable,	it	changed	the	addresses	in	which	each	instruction	was
loaded.	It	also	changed	the	addresses	of	the	subroutines	and	functions	that	we
called.	So	every	chip	was	affected,	no	matter	how	trivial	the	change.

One	day,	my	boss	came	to	me	and	asked	me	to	solve	that	problem.	He	said	we
needed	a	way	to	make	a	change	to	the	firmware	without	replacing	all	30	chips
every	time.	We	brainstormed	this	issue	for	a	while,	and	then	embarked	upon	the
“Vectorization”	project.	It	took	me	three	months.

The	idea	was	beautifully	simple.	We	divided	the	30K	program	into	32
independently	compilable	source	files,	each	less	than	1K.	At	the	beginning	of
each	source	file,	we	told	the	compiler	in	which	address	to	load	the	resulting
program	(e.g.,	ORG	C400	for	the	chip	that	was	to	be	inserted	into	the	C4
position).

Also	at	the	beginning	of	each	source	file,	we	created	a	simple,	fixed-size	data
structure	that	contained	all	the	addresses	of	all	the	subroutines	on	that	chip.	This
data	structure	was	40	bytes	long,	so	it	could	hold	no	more	than	20	addresses.
This	meant	that	no	chip	could	have	more	than	20	subroutines.

Next,	we	created	a	special	area	in	RAM	known	as	the	vectors.	It	contained	32
tables	of	40	bytes—exactly	enough	RAM	to	hold	the	pointers	at	the	start	of	each
chip.

Finally,	we	changed	every	call	to	every	subroutine	on	every	chip	into	an	indirect
call	through	the	appropriate	RAM	vector.



When	our	processor	booted,	it	would	scan	each	chip	and	load	the	vector	table	at
the	start	of	each	chip	into	the	RAM	vectors.	Then	it	would	jump	into	the	main
program.

This	worked	very	well.	Now,	when	we	fixed	a	bug,	or	added	a	feature,	we	could
simply	recompile	one	or	two	chips,	and	send	just	those	chips	to	the	field	service
engineers.

We	had	made	the	chips	independently	deployable.	We	had	invented	polymorphic
dispatch.	We	had	invented	objects.

This	was	a	plugin	architecture,	quite	literally.	We	plugged	those	chips	in.	We
eventually	engineered	it	so	that	a	feature	could	be	installed	into	our	products	by
plugging	the	chip	with	that	feature	into	one	of	the	open	chip	sockets.	The	menu
control	would	automatically	appear,	and	the	binding	into	the	main	application
would	happen	automatically.

Of	course,	we	didn’t	know	about	object-oriented	principles	at	the	time,	and	we
knew	nothing	about	separating	user	interface	from	business	rules.	But	the
rudiments	were	there,	and	they	were	very	powerful.

One	unexpected	side	benefit	of	the	approach	was	that	we	could	patch	the
firmware	over	a	dial-up	connection.	If	we	found	a	bug	in	the	firmware,	we	could
dial	up	our	devices	and	use	the	on-board	monitor	program	to	alter	the	RAM
vector	for	the	faulty	subroutine	to	point	to	a	bit	of	empty	RAM.	Then	we’d	enter
the	repaired	subroutine	into	that	RAM	area,	by	typing	it	in	machine	code,	in
hexadecimal.

This	was	a	great	boon	to	our	field	service	operation,	and	to	our	customers.	If
they	had	a	problem,	they	didn’t	need	us	to	ship	new	chips	and	schedule	an	urgent
field	service	call.	The	system	could	be	patched,	and	a	new	chip	could	be
installed	at	the	next	regularly	scheduled	maintenance	visit.

THE	SERVICE	AREA	COMPUTER
The	4-TEL	service	area	computer	(SAC)	was	based	on	an	M365	minicomputer.
This	system	communicated	with	all	the	COLTs	out	in	the	field,	through	either
dedicated	or	dial-up	modems.	It	would	command	those	COLTs	to	measure



telephone	lines,	would	receive	back	the	raw	results,	and	would	then	perform	a
complex	analysis	of	those	results	to	identify	and	locate	any	faults.

DISPATCH	DETERMINATION

One	of	the	economic	foundations	for	this	system	was	based	on	the	correct
allocation	of	repair	craftsmen.	Repair	craft	were	separated,	by	union	rules,	into
three	categories:	central	office,	cable,	and	drop.	CO	craftsmen	fixed	problems
inside	the	central	office.	Cable	craftsmen	fixed	problems	in	the	cable	plant	that
connected	the	CO	to	the	customer.	Drop	craftsmen	fixed	problems	inside	the
customer’s	premises,	and	in	the	lines	connecting	the	external	cable	to	that
premises	(the	“drop”).

When	a	customer	complained	about	a	problem,	our	system	could	diagnose	that
problem	and	determine	which	kind	of	craftsman	to	dispatch.	This	saved	the
phone	companies	lots	of	money	because	incorrect	dispatches	meant	delays	for
the	customer	and	wasted	trips	for	the	craftsmen.

The	code	that	made	this	dispatch	determination	was	designed	and	written	by
someone	who	was	very	bright,	but	a	terrible	communicator.	The	process	of
writing	the	code	has	been	described	as	“Three	weeks	of	staring	at	the	ceiling	and
two	days	of	code	pouring	out	of	every	orifice	of	his	body—after	which	he	quit.”

Nobody	understood	this	code.	Every	time	we	tried	to	add	a	feature	or	fix	a
defect,	we	broke	it	in	some	way.	And	since	it	was	upon	this	code	that	one	of	the
primary	economic	benefits	our	system	rested,	every	new	defect	was	deeply
embarrassing	to	the	company.

In	the	end,	our	management	simply	told	us	to	lock	that	code	down	and	never
modify	it.	That	code	became	officially	rigid.

This	experience	impressed	upon	me	the	value	of	good,	clean	code.

ARCHITECTURE

The	system	was	written	in	1976	in	M365	assembler.	It	was	a	single,	monolithic
program	of	roughly	60,000	lines.	The	operating	system	was	a	home-grown,
nonpreemptive,	task-switcher	based	on	polling.	We	called	it	MPS	for
multiprocessing	system.	The	M365	computer	had	no	built-in	stack,	so	task-



specific	variables	were	kept	in	a	special	area	of	memory	and	swapped	out	at
every	context	switch.	Shared	variables	were	managed	with	locks	and
semaphores.	Reentrancy	issues	and	race	conditions	were	constant	problems.

There	was	no	isolation	of	device	control	logic,	or	UI	logic,	from	the	business
rules	of	the	system.	For	example,	modem	control	code	could	be	found	smeared
throughout	the	bulk	of	the	business	rules	and	UI	code.	There	was	no	attempt	to
gather	it	into	a	module	or	abstract	the	interface.	The	modems	were	controlled,	at
the	bit	level,	by	code	that	was	scattered	everywhere	around	the	system.

The	same	was	true	for	the	terminal	UI.	Messages	and	formatting	control	code
were	not	isolated.	They	ranged	far	and	wide	throughout	the	60,000-line	code
base.

The	modem	modules	we	were	using	were	designed	to	be	mounted	on	PC	boards.
We	bought	those	units	from	a	third	party,	and	integrated	them	with	other
circuitry	onto	a	board	that	fit	into	our	custom	backplane.	These	units	were
expensive.	So,	after	a	few	years,	we	decided	to	design	our	own	modems.	We,	in
the	software	group,	begged	the	hardware	designer	to	use	the	same	bit	formats	for
controlling	the	new	modem.	We	explained	that	the	modem	control	code	was
smeared	everywhere,	and	that	our	system	would	have	to	deal	with	both	kinds	of
modems	in	the	future.	So,	we	begged	and	cajoled,	“Please	make	the	new	modem
look	just	like	the	old	modem	from	a	software	control	point	of	view.”

But	when	we	got	the	new	modem,	the	control	structured	was	entirely	different.	It
was	not	just	a	little	different.	It	was	entirely,	and	completely,	different.

Thanks,	hardware	engineer.

What	were	we	to	do?	We	were	not	simply	replacing	all	the	old	modems	with
new	modems.	Instead,	we	were	mixing	old	and	new	modems	in	our	systems.	The
software	needed	to	be	able	to	handle	both	kinds	of	modems	at	the	same	time.
Were	we	doomed	to	surround	every	place	in	the	code	that	manipulated	the
modems	with	flags	and	special	cases?	There	were	hundreds	of	such	places!

In	the	end,	we	opted	for	an	even	worse	solution.

One	particular	subroutine	wrote	data	to	the	serial	communication	bus	that	was
used	to	control	all	our	devices,	including	our	modems.	We	modified	that
subroutine	to	recognize	the	bit	patterns	that	were	specific	to	the	old	modem,	and



translate	them	into	the	bit	patterns	needed	by	the	new	modem.

This	was	not	straightforward.	Commands	to	the	modem	consisted	of	sequences
of	writes	to	different	IO	addresses	on	the	serial	bus.	Our	hack	had	to	interpret
these	commands,	in	sequence,	and	translate	them	into	a	different	sequence	using
different	IO	addresses,	timings,	and	bit	positions.

We	got	it	to	work,	but	it	was	the	worst	hack	imaginable.	It	was	because	of	this
fiasco	that	I	learned	the	value	of	isolating	hardware	from	business	rules,	and	of
abstracting	interfaces.

THE	GRAND	REDESIGN	IN	THE	SKY

By	the	time	the	1980s	rolled	around,	the	idea	of	producing	your	own
minicomputer	and	your	own	computer	architecture	was	beginning	to	fall	out	of
fashion.	There	were	many	microcomputers	on	the	market,	and	getting	them	to
work	was	cheaper	and	more	standard	then	continuing	to	rely	on	proprietary
computer	architectures	from	the	late	1960s.	That,	plus	the	horrible	architecture
of	the	SAC	software,	induced	our	technical	management	to	start	a	complete	re-
architecture	of	the	SAC	system.

The	new	system	was	to	be	written	in	C	using	a	UNIX	O/S	on	disk,	running	on	an
Intel	8086	microcomputer.	Our	hardware	guys	started	working	on	the	new
computer	hardware,	and	a	select	group	of	software	developers,	“The	Tiger
Team,”	was	commissioned	with	the	rewrite.

I	won’t	bore	you	with	the	details	of	the	initial	fiasco.	Suffice	it	to	say	that	the
first	Tiger	Team	failed	entirely	after	burning	two	or	three	man-years	on	a
software	project	that	never	delivered	anything.

A	year	or	two	later,	probably	1982,	the	process	was	started	again.	The	goal	was
the	total	and	complete	redesign	of	the	SAC	in	C	and	UNIX	on	our	own,	newly
designed,	impressively	powerful	80286	hardware.	We	called	that	computer
“Deep	Thought.”

It	took	years,	then	more	years,	and	then	even	more	years.	I	don’t	know	when	the
first	UNIX-based	SAC	was	finally	deployed;	I	believe	I	had	left	the	company	by
then	(1988).	Indeed,	I’m	not	at	all	sure	it	ever	was	deployed.

Why	the	delay?	In	short,	it	is	very	difficult	for	a	redesign	team	to	catch	up	with	a



large	staff	of	programmers	who	are	actively	maintaining	the	old	system.	Here’s
just	one	example	of	the	difficulties	they	encountered.

EUROPE

At	about	the	same	time	that	the	SAC	was	being	redesigned	in	C,	the	company
started	to	expand	sales	into	Europe.	They	could	not	wait	for	the	redesigned
software	to	be	finished,	so	of	course,	they	deployed	the	old	M365	systems	into
Europe.

The	problem	was	that	the	phone	systems	in	Europe	were	very	different	from	the
phone	systems	in	the	United	States.	The	organization	of	the	craft	and	of	the
bureaucracies	were	different	as	well.	So	one	of	our	best	programmers	was	sent	to
the	United	Kingdom	to	lead	a	team	of	U.K.	developers	to	modify	the	SAC
software	to	deal	with	all	these	European	issues.

Of	course,	no	serious	attempt	was	made	to	integrate	these	changes	into	the	U.S.-
based	software.	This	was	long	before	networks	made	it	feasible	to	transmit	large
code	bases	across	the	ocean.	These	U.K.	developers	simply	forked	the	U.S.-
based	code	and	modified	it	as	needed.

This,	of	course,	caused	difficulties.	Bugs	were	found	on	both	sides	of	the
Atlantic	that	needed	repair	on	the	other	side.	But	the	modules	had	changed
significantly,	so	it	was	very	difficult	to	determine	whether	the	fix	made	in	the
United	States	would	work	in	the	United	Kingdom.

After	a	few	years	of	heartburn,	and	the	installation	of	a	high-throughput	line
connecting	the	U.S.	and	U.K.	offices,	a	serious	attempt	was	made	to	integrate
these	two	forks	back	together	again,	making	the	differences	a	matter	of
configuration.	This	effort	failed	the	first,	second,	and	third	times	it	was	tried.	The
two	code	bases,	though	remarkably	similar,	were	still	too	different	to	reintegrate
—especially	in	the	rapidly	changing	market	environment	that	existed	at	that
time.

Meanwhile,	the	“Tiger	Team,”	trying	to	rewrite	everything	in	C	and	UNIX,
realized	that	it	also	had	to	deal	with	this	European/US	dichotomy.	And,	of
course,	that	did	nothing	to	accelerate	their	progress.

SAC	CONCLUSION



There	are	many	other	stories	I	could	tell	you	about	this	system,	but	it’s	just	too
depressing	for	me	to	continue.	Suffice	it	to	say	that	many	of	the	hard	lessons	of
my	software	life	were	learned	while	immersed	in	the	horrible	assembler	code	of
the	SAC.

C	LANGUAGE
The	8085	computer	hardware	that	we	used	in	the	4-Tel	Micro	project	gave	us	a
relatively	low-cost	computing	platform	for	many	different	projects	that	could	be
embedded	into	industrial	environments.	We	could	load	it	up	with	32K	of	RAM
and	another	32K	of	ROM,	and	we	had	an	extremely	flexible	and	powerful
scheme	for	controlling	peripherals.	What	we	did	not	have	was	a	flexible	and
convenient	language	with	which	to	program	the	machine.	The	8085	assembler
was	simply	not	fun	to	write	code	in.

On	top	of	that,	the	assembler	we	were	using	was	written	by	our	own
programmers.	It	ran	on	our	M365	computers,	using	the	cartridge	tape	operating
system	described	in	the	“Laser	Trim”	section.

As	fate	would	have	it,	our	lead	hardware	engineer	convinced	our	CEO	that	we
needed	a	real	computer.	He	didn’t	actually	know	what	he	would	do	with	it,	but
he	had	a	lot	of	political	clout.	So	we	purchased	a	PDP-11/60.

I,	a	lowly	software	developer	at	the	time,	was	ecstatic.	I	knew	precisely	what	I
wanted	to	do	with	that	computer.	I	was	determined	that	this	was	going	to	be	my
machine.

When	the	manuals	arrived,	many	months	before	the	delivery	of	the	machine,	I
took	them	home	and	devoured	them.	By	the	time	the	computer	was	delivered,	I
knew	how	to	operate	both	the	hardware	and	the	software	at	an	intimate	level—at
least,	as	intimate	as	home	study	can	make	it.

I	helped	to	write	the	purchase	order.	In	particular,	I	specified	the	disk	storage
that	the	new	computer	would	have.	I	decided	we	should	buy	two	disk	drives	that
could	take	removable	disk	packs	that	held	25	megabytes	each.9

Fifty	megabytes!	The	number	seemed	infinite!	I	remember	walking	through	the
halls	of	the	office,	late	at	night,	cackling	like	the	Wicked	Witch	of	the	West:



“Fifty	megabytes!	Hahahahahahahahahah!”

I	had	the	facilities	manager	build	a	little	room	that	would	house	six	VT100
terminals.	I	decorated	it	with	pictures	from	space.	Our	software	developers
would	use	this	room	to	write	and	compile	code.

When	the	machine	arrived,	I	spent	several	days	setting	it	up,	wiring	all	the
terminals,	and	getting	everything	to	work.	It	was	a	joy—a	labor	of	love.

We	purchased	standard	assemblers	for	the	8085	from	Boston	Systems	Office,
and	we	translated	the	4-Tel	Micro	code	into	that	syntax.	We	built	a	cross-
compilation	system	that	allowed	us	to	download	compiled	binaries	from	the
PDP-11	to	our	8085	development	environments,	and	ROM	burners.	And—Bob’s
your	Uncle—it	all	worked	like	a	champ.

C

But	that	left	us	with	the	problem	of	still	using	8085	assembler.	That	was	not	a
situation	that	I	was	happy	with.	I	had	heard	that	there	was	this	“new”	language
that	was	heavily	used	at	Bell	Labs.	They	called	it	“C.”	So	I	purchased	a	copy	of
The	C	Programming	Language	by	Kernighan	and	Ritchie.	Like	the	PDP-11
manuals	a	few	months	before,	I	inhaled	this	book.

I	was	astounded	by	the	simple	elegance	of	this	language.	It	sacrificed	none	of	the
power	of	assembly	language,	and	provided	access	to	that	power	with	a	much
more	convenient	syntax.	I	was	sold.

I	purchased	a	C	compiler	from	Whitesmiths,	and	got	it	running	on	the	PDP-11.
The	output	of	the	compiler	was	assembler	syntax	that	was	compatible	with	the
Boston	Systems	Office	8085	compiler.	So	we	had	a	pathway	to	go	from	C	to	the
8085	hardware!	We	were	in	business.

Now	the	only	problem	was	convincing	a	group	of	embedded	assembly	language
programmers	that	they	should	be	using	C.	But	that’s	a	nightmare	tale	for	another
time	…

BOSS



Our	8085	platform	had	no	operating	system.	My	experience	with	the	MPS
system	of	the	M365,	and	the	primitive	interrupt	mechanisms	of	the	IBM	System
7,	convinced	me	that	we	needed	a	simple	task	switcher	for	the	8085.	So	I
conceived	of	BOSS:	Basic	Operating	System	and	Scheduler.10

The	vast	majority	of	BOSS	was	written	in	C.	It	provided	the	ability	to	create
concurrent	tasks.	Those	tasks	were	not	preemptive—task	switching	did	not	take
place	based	on	interrupts.	Instead,	and	just	like	with	the	MPS	system	on	the
M365,	tasks	were	switched	based	on	a	simple	polling	mechanism.	The	polling
happened	whenever	a	task	blocked	for	an	event.

The	BOSS	call	to	block	a	task	looked	like	this:

block(eventCheckFunction);

This	call	suspended	the	current	task,	placed	the	eventCheckFunction	in	the
polling	list,	and	associated	it	with	the	newly	blocked	task.	It	then	waited	in	the
polling	loop,	calling	each	of	the	functions	in	the	polling	list	until	one	of	them
returned	true.	The	task	associated	with	that	function	was	then	allowed	to	run.

In	other	words,	as	I	said	before,	it	was	a	simple,	nonpreemptive	task	switcher.

This	software	became	the	basis	for	a	vast	number	of	projects	over	the	following
years.	But	one	of	the	first	was	the	pCCU.

pCCU
The	late	1970s	and	early	1980s	were	a	tumultuous	time	for	telephone	companies.
One	of	the	sources	of	that	tumult	was	the	digital	revolution.

For	the	preceding	century,	the	connection	between	the	central	switching	office
and	the	customer’s	telephone	had	been	a	pair	of	copper	wires.	These	wires	were
bundled	into	cables	that	spread	in	a	huge	network	across	the	countryside.	They
were	sometimes	carried	on	poles,	and	sometimes	buried	underground.

Copper	is	a	precious	metal,	and	the	phone	company	had	tons	(literally	tons)	of	it
covering	the	country.	The	capital	investment	was	enormous.	Much	of	that	capital
could	be	reclaimed	by	transporting	the	telephone	conversation	over	digital



connections.	A	single	pair	of	copper	wires	could	carry	hundreds	of	conversations
in	digital	form.

In	response,	the	phone	companies	embarked	upon	the	process	of	replacing	their
old	analog	central	switching	equipment	with	modern	digital	switches.

Our	4-Tel	product	tested	copper	wires,	not	digital	connections.	There	were	still
plenty	of	copper	wires	in	a	digital	environment,	but	they	were	much	shorter	than
before,	and	they	were	localized	near	the	customer’s	telephones.	The	signal
would	be	carried	digitally	from	the	central	office	to	a	local	distribution	point,
where	it	would	be	converted	back	to	an	analog	signal	and	distributed	to	the
customer	over	standard	copper	wires.	This	meant	that	our	measurement	device
needed	to	be	located	out	where	the	copper	wires	began,	but	our	dialing	device
needed	to	remain	at	the	central	office.	The	problem	was	that	all	our	COLTs
embodied	both	dialing	and	measurement	in	the	same	device.	(We	could	have
saved	ourselves	a	fortune	had	we	recognized	that	obvious	architectural	boundary
a	few	years	earlier!)

Thus	we	conceived	of	a	new	product	architecture:	the	CCU/CMU	(the	COLT
control	unit	and	the	COLT	measurement	unit).	The	CCU	would	be	located	at	the
central	switching	office,	and	would	handle	the	dialing	of	the	phone	lines	to	be
tested.	The	CMU	would	be	located	at	the	local	distribution	points,	and	would
measure	the	copper	wires	that	led	to	the	customer’s	phone.

The	problem	was	that	for	each	CCU,	there	were	many	CMUs.	The	information
about	which	CMU	should	be	used	for	each	phone	number	was	held	by	the	digital
switch	itself.	Thus	the	CCU	had	to	interrogate	the	digital	switch	to	determine
which	CMU	to	communicate	with	and	control.

We	promised	the	phone	companies	that	we	would	have	this	new	architecture
working	in	time	for	their	transition.	We	knew	they	were	months,	if	not	years
away,	so	we	did	not	feel	rushed.	We	also	knew	that	it	would	take	several	man-
years	to	develop	this	new	CCU/CMU	hardware	and	software.

THE	SCHEDULE	TRAP

As	time	went	on,	we	found	that	there	were	always	urgent	matters	that	required	us
to	postpone	development	of	the	CCU/CMU	architecture.	We	felt	safe	about	this
decision	because	the	phone	companies	were	consistently	delaying	the



deployment	of	digital	switches.	As	we	looked	at	their	schedules,	we	felt
confident	that	we	had	plenty	of	time,	so	we	consistently	delayed	our
development.

Then	came	the	day	that	my	boss	called	me	into	his	office	and	said:	“One	of	our
customers	is	deploying	a	digital	switch	next	month.	We	have	to	have	a	working
CCU/CMU	by	then.”

I	was	aghast!	How	could	we	possibly	do	man-years	of	development	in	a	month?
But	my	boss	had	a	plan	…

We	did	not,	in	fact,	need	a	full	CCU/CMU	architecture.	The	phone	company	that
was	deploying	the	digital	switch	was	tiny.	They	had	only	one	central	office,	and
only	two	local	distribution	points.	More	importantly,	the	“local”	distribution
points	were	not	particularly	local.	They	actually	had	regular-old	analog	switches
in	them	that	switched	to	several	hundred	customers.	Better	yet,	those	switches
were	of	a	kind	that	could	be	dialed	by	a	normal	COLT.	Better	even	still,	the
customer’s	phone	number	contained	all	the	information	necessary	to	decide
which	local	distribution	point	to	use.	If	the	phone	number	had	a	5,	6,	or	7	in	a
certain	position,	it	went	to	distribution	point	1;	otherwise,	it	went	to	distribution
point	2.

So,	as	my	boss	explained	to	me,	we	did	not	actually	need	a	CCU/CMU.	What	we
needed	was	a	simple	computer	at	the	central	office	connected	by	modem	lines	to
two	standard	COLTs	at	the	distribution	points.	The	SAC	would	communicate
with	our	computer	at	the	central	office,	and	that	computer	would	decode	the
phone	number	and	then	relay	the	dialing	and	measurement	commands	to	the
COLT	at	the	appropriate	distribution	point.

Thus	was	born	the	pCCU.

This	was	the	first	product	written	in	C	and	using	BOSS	that	was	deployed	to	a
customer.	It	took	me	about	a	week	to	develop.	There	is	no	deep	architectural
significance	to	this	tale,	but	it	makes	a	nice	preface	to	the	next	project.

DLU/DRU
In	the	early	1980s,	one	of	our	customers	was	a	telephone	company	in	Texas.



They	had	large	geographic	areas	to	cover.	In	fact,	the	areas	were	so	large	that	a
single	service	area	required	several	different	offices	from	which	to	dispatch
craftsmen.	Those	offices	had	test	craftspeople	who	needed	terminals	into	our
SAC.

You	might	think	that	this	was	a	simple	problem	to	solve—but	remember	that	this
story	takes	place	in	the	early	1980s.	Remote	terminals	were	not	very	common.
To	make	matters	worse,	the	hardware	of	the	SAC	presumed	that	all	the	terminals
were	local.	Our	terminals	actually	sat	on	a	proprietary,	high-speed,	serial	bus.

We	had	remote	terminal	capability,	but	it	was	based	on	modems,	and	in	the	early
1980s	modems	were	generally	limited	to	300	bits	per	second.	Our	customers
were	not	happy	with	that	slow	speed.

High-speed	modems	were	available,	but	they	were	very	expensive,	and	they
needed	to	run	on	“conditioned”	permanent	connections.	Dial-up	quality	was
definitely	not	good	enough.

Our	customers	demanded	a	solution.	Our	response	was	DLU/DRU.

DLU/DRU	stood	for	“Display	Local	Unit”	and	“Display	Remote	Unit.”	The
DLU	was	a	computer	board	that	plugged	into	the	SAC	computer	chassis	and
pretended	to	be	a	terminal	manager	board.	Instead	of	controlling	the	serial	bus
for	local	terminals,	however,	it	took	the	character	stream	and	multiplexed	it	over
a	single	9600-bps	conditioned	modem	link.

The	DRU	was	a	box	placed	at	the	customer’s	remote	location.	It	connected	to	the
other	end	of	the	9600-bps	link,	and	had	the	hardware	to	control	the	terminals	on
our	proprietary	serial	bus.	It	demultiplexed	the	characters	received	from	the
9600-bps	link	and	sent	them	to	the	appropriate	local	terminals.

Strange,	isn’t	it?	We	had	to	engineer	a	solution	that	nowadays	is	so	ubiquitous
we	never	even	think	about	it.	But	back	then	…

We	even	had	to	invent	our	own	communications	protocol	because,	in	those	days,
standard	communications	protocols	were	not	open	source	shareware.	Indeed,	this
was	long	before	we	had	any	kind	of	Internet	connection.

ARCHITECTURE



The	architecture	of	this	system	was	very	simple,	but	there	are	some	interesting
quirks	I	want	to	highlight.	First,	both	units	used	our	8085	technology,	and	both
were	written	in	C	and	used	BOSS.	But	that’s	where	the	similarity	ended.

There	were	two	of	us	on	the	project.	I	was	the	project	lead,	and	Mike	Carew	was
my	close	associate.	I	took	on	the	design	and	coding	of	the	DLU;	Mike	did	the
DRU.

The	architecture	of	the	DLU	was	based	on	a	dataflow	model.	Each	task	did	a
small	and	focused	job,	and	then	passed	its	output	to	the	next	task	in	line,	using	a
queue.	Think	of	a	pipes	and	filters	model	in	UNIX.	The	architecture	was
intricate.	One	task	might	feed	a	queue	that	many	others	would	service.	Other
tasks	would	feed	a	queue	that	just	one	task	would	service.

Think	of	an	assembly	line.	Each	position	on	the	assembly	line	has	a	single,
simple,	highly	focused	job	to	perform.	Then	the	product	moves	to	the	next
position	in	line.	Sometimes	the	assembly	line	splits	into	many	lines.	Sometimes
those	lines	merge	back	into	a	single	line.	That	was	the	DLU.

Mike’s	DRU	used	a	remarkably	different	scheme.	He	created	one	task	per
terminal,	and	simply	did	the	entire	job	for	that	terminal	in	that	task.	No	queues.
No	data	flow.	Just	many	identical	large	tasks,	each	managing	its	own	terminal.

This	is	the	opposite	of	an	assembly	line.	In	this	case	the	analogy	is	many	expert
builders,	each	of	whom	builds	an	entire	product.

At	the	time	I	thought	my	architecture	was	superior.	Mike,	of	course,	thought	his
was	better.	We	had	many	entertaining	discussions	about	this.	In	the	end,	of
course,	both	worked	quite	well.	And	I	was	left	with	the	realization	that	software
architectures	can	be	wildly	different,	yet	equally	effective.

VRS
As	the	1980s	progressed,	newer	and	newer	technologies	appeared.	One	of	those
technologies	was	the	computer	control	of	voice.

One	of	the	features	of	the	4-Tel	system	was	the	ability	of	the	craftsman	to	locate
a	fault	in	a	cable.	The	procedure	was	as	follows:



•	The	tester,	in	the	central	office,	would	use	our	system	to	determine	the
approximate	distance,	in	feet,	to	the	fault.	This	would	be	accurate	to	within
20%	or	so.	The	tester	would	dispatch	a	cable	repair	craftsman	to	an	appropriate
access	point	near	that	position.

•	The	cable	repair	craftsman,	upon	arrival,	would	call	the	tester	and	ask	to	begin
the	fault	location	process.	The	tester	would	invoke	the	fault	location	feature	of
the	4-Tel	system.	The	system	would	begin	measuring	the	electronic
characteristics	of	that	faulty	line,	and	would	print	messages	on	the	screen
requesting	that	certain	operations	be	performed,	such	as	opening	the	cable	or
shorting	the	cable.

•	The	tester	would	tell	the	craftsman	which	operations	the	system	wanted,	and
the	craftsman	would	tell	the	tester	when	the	operation	was	complete.	The	tester
would	then	tell	the	system	that	the	operation	was	complete,	and	the	system
would	continue	with	the	test.

•	After	two	or	three	such	interactions,	the	system	would	calculate	a	new	distance
to	the	fault.	The	cable	craftsman	would	then	drive	to	that	location	and	begin
the	process	again.

Imagine	how	much	better	that	would	be	if	the	cable	craftsmen,	up	on	the	pole	or
standing	at	a	pedestal,	could	operate	the	system	themselves.	And	that	is	exactly
what	the	new	voice	technologies	allowed	us	to	do.	The	cable	craftsmen	could
call	directly	into	our	system,	direct	the	system	with	touch	tones,	and	listen	to	the
results	being	read	back	to	them	in	a	pleasant	voice.

THE	NAME

The	company	held	a	little	contest	to	select	a	name	for	the	new	system.	One	of
the	most	creative	of	the	names	suggested	was	SAM	CARP.	This	stood	for	“Still
Another	Manifestation	of	Capitalist	Avarice	Repressing	the	Proletariat.”
Needless	to	say,	that	wasn’t	selected.

Another	was	the	Teradyne	Interactive	Test	System.	That	one	was	also	not
selected.

Still	another	was	Service	Area	Test	Access	Network.	That,	too,	was	not	selected.

The	winner,	in	the	end,	was	VRS:	Voice	Response	System.



ARCHITECTURE

I	did	not	work	on	this	system,	but	I	heard	about	what	happened.	The	story	I	am
going	to	relate	to	you	is	second-hand,	but	for	the	most	part,	I	believe	it	to	be
correct.

These	were	the	heady	days	of	microcomputers,	UNIX	operating	systems,	C,	and
SQL	databases.	We	were	determined	to	use	them	all.

From	the	many	database	vendors	out	there,	we	eventually	chose	UNIFY.	UNIFY
was	a	database	system	that	worked	with	UNIX,	which	was	perfect	for	us.

UNIFY	also	supported	a	new	technology	called	Embedded	SQL.	This	technology
allowed	us	to	embed	SQL	commands,	as	strings,	right	into	our	C	code.	And	so
we	did—everywhere.

I	mean,	it	was	just	so	cool	that	you	could	put	your	SQL	right	into	your	code,
anywhere	you	wanted.	And	where	did	we	want	to?	Everywhere!	And	so	there
was	SQL	smeared	throughout	the	body	of	that	code.

Of	course,	in	those	days	SQL	was	hardly	a	solid	standard.	There	were	lots	of
special	vendor-specific	quirks.	So	the	special	SQL	and	special	UNIFY	API	calls
were	also	smeared	throughout	the	code.

This	worked	great!	The	system	was	a	success.	The	craftsmen	used	it,	and	the
telephone	companies	loved	it.	Life	was	all	smiles.

Then	the	UNIFY	product	we	were	using	was	cancelled.

Oh.	Oh.

So	we	decided	to	switch	to	SyBase.	Or	was	it	Ingress?	I	don’t	remember.	Suffice
it	to	say,	we	had	to	search	through	all	that	C	code,	find	all	the	embedded	SQL
and	special	API	calls,	and	replace	them	with	corresponding	gestures	for	the	new
vendor.

After	three	months	of	effort	or	so,	we	gave	up.	We	couldn’t	make	it	work.	We
were	so	coupled	to	UNIFY	that	there	was	no	serious	hope	of	restructuring	the
code	at	any	practical	expense.



So,	we	hired	a	third	party	to	maintain	UNIFY	for	us,	based	on	a	maintenance
contract.	And,	of	course,	the	maintenance	rates	went	up	year	after	year	after
year.

VRS	CONCLUSION

This	is	one	of	the	ways	that	I	learned	that	databases	are	details	that	should	be
isolated	from	the	overall	business	purpose	of	the	system.	This	is	also	one	of	the
reasons	that	I	don’t	like	strongly	coupling	to	third-party	software	systems.

THE	ELECTRONIC	RECEPTIONIST
In	1983,	our	company	sat	at	the	confluence	of	computer	systems,
telecommunications	systems,	and	voice	systems.	Our	CEO	thought	this	might	be
a	fertile	position	from	which	to	develop	new	products.	To	address	this	goal,	he
commissioned	a	team	of	three	(which	included	me)	to	conceive,	design,	and
implement	a	new	product	for	the	company.

It	didn’t	take	us	long	to	come	up	with	The	Electronic	Receptionist	(ER).

The	idea	was	simple.	When	you	called	a	company,	ER	would	answer	and	ask
you	who	you	wanted	to	speak	with.	You	would	use	touch	tones	to	spell	the	name
of	that	person,	and	ER	would	then	connect	you.	The	users	of	ER	could	dial	in
and,	by	using	simple	touch-tone	commands,	tell	it	which	phone	number	the
desired	person	could	be	reached	at,	anywhere	in	the	world.	In	fact,	the	system
could	list	several	alternate	numbers.

When	you	called	ER	and	dialed	RMART	(my	code),	ER	would	call	the	first
number	on	my	list.	If	I	failed	to	answer	and	identify	myself,	it	would	call	the
next	number,	and	the	next.	If	I	still	wasn’t	reached,	ER	would	record	a	message
from	the	caller.

ER	would	then,	periodically,	try	to	find	me	to	deliver	that	message,	and	any
other	message	left	for	me	by	anyone	else.

This	was	the	first	voice	mail	system	ever,	and	we11	held	the	patent	to	it.

We	built	all	the	hardware	for	this	system—the	computer	board,	the	memory



board,	the	voice/telecom	boards,	everything.	The	main	computer	board	was
Deep	Thought,	the	Intel	80286	processor	that	I	mentioned	earlier.

The	voice	boards	each	supported	one	telephone	line.	They	consisted	of	a
telephone	interface,	a	voice	encoder/decoder,	some	memory,	and	an	Intel	80186
microcomputer.

The	software	for	the	main	computer	board	was	written	in	C.	The	operating
system	was	MP/M-86,	an	early	command-line–driven,	multiprocessing,	disk
operating	system.	MP/M	was	the	poor	man’s	UNIX.

The	software	for	the	voice	boards	was	written	in	assembler,	and	had	no
operating	system.	Communication	between	Deep	Thought	and	the	voice	boards
occurred	through	shared	memory.

The	architecture	of	this	system	would	today	be	called	service	oriented.	Each
telephone	line	was	monitored	by	a	listener	process	running	under	MP/M.	When
a	call	came	in,	an	initial	handler	process	was	started	and	the	call	was	passed	to	it.
As	the	call	proceeded	from	state	to	state,	the	appropriate	handler	process	would
be	started	and	take	control.

Messages	were	passed	between	these	services	through	disk	files.	The	currently
running	service	would	determine	what	the	next	service	should	be;	would	write
the	necessary	state	information	into	a	disk	file;	would	issue	the	command	line	to
start	that	service;	and	then	would	exit.

This	was	the	first	time	I	had	built	a	system	like	this.	Indeed,	this	was	the	first
time	I	had	been	the	principal	architect	of	an	entire	product.	Everything	having	to
do	with	software	was	mine—and	it	worked	like	a	champ.

I	would	not	say	that	the	architecture	of	this	system	was	“clean”	in	the	sense	of
this	book;	it	was	not	a	“plugin”	architecture.	However,	it	definitely	showed	signs
of	true	boundaries.	The	services	were	independently	deployable,	and	lived
within	their	own	domain	of	responsibility.	There	were	high-level	processes	and
low-level	processes,	and	many	of	the	dependencies	ran	in	the	right	direction.

ER	DEMISE

Unfortunately,	the	marketing	of	this	product	did	not	go	very	well.	Teradyne	was
a	company	that	sold	test	equipment.	We	did	not	understand	how	to	break	into	the



office	equipment	market.

After	repeated	attempts	over	two	years,	our	CEO	gave	up	and—unfortunately—
dropped	the	patent	application.	The	patent	was	picked	up	by	the	company	that
filed	three	months	after	we	filed;	thus	we	surrendered	the	entire	voice	mail	and
electronic	call-forwarding	market.

Ouch!

On	the	other	hand,	you	can’t	blame	me	for	those	annoying	machines	that	now
plague	our	existence.

CRAFT	DISPATCH	SYSTEM
ER	had	failed	as	a	product,	but	we	still	had	all	this	hardware	and	software	that
we	could	use	to	enhance	our	existing	product	lines.	Moreover,	our	marketing
success	with	VRS	convinced	us	that	we	should	offer	a	voice	response	system	for
interacting	with	telephone	craftsmen	that	did	not	depend	on	our	test	systems.

Thus	was	born	CDS,	the	Craft	Dispatch	System.	CDS	was	essentially	ER,	but
specifically	focused	on	the	very	narrow	domain	of	managing	the	deployment	of
telephone	repairmen	in	the	field.

When	a	problem	was	discovered	in	a	phone	line,	a	trouble	ticket	was	created	in
the	service	center.	Trouble	tickets	were	kept	in	an	automated	system.	When	a
repairman	in	the	field	finished	a	job,	he	would	call	the	service	center	for	the	next
assignment.	The	service	center	operator	would	pull	up	the	next	trouble	ticket	and
read	it	off	to	the	repairman.

We	set	about	to	automate	that	process.	Our	goal	was	for	the	repairman	in	the
field	to	call	into	CDS	and	ask	for	the	next	assignment.	CDS	would	consult	the
trouble	ticket	system,	and	read	off	the	results.	CDS	would	keep	track	of	which
repairman	was	assigned	to	which	trouble	ticket,	and	would	inform	the	trouble
ticket	system	of	the	status	of	the	repair.

There	were	quite	a	few	interesting	features	of	this	system	having	to	do	with
interacting	with	the	trouble	ticket	system,	the	plant	management	system,	and	any
automated	testing	systems.



The	experience	with	the	service-oriented	architecture	of	ER	made	me	want	to	try
the	same	idea	more	aggressively.	The	state	machine	for	a	trouble	ticket	was
much	more	involved	than	the	state	machine	for	handling	a	call	with	ER.	I	set
about	to	create	what	would	now	be	called	a	micro-service	architecture.

Every	state	transition	of	any	call,	no	matter	how	insignificant,	caused	the	system
to	start	up	a	new	service.	Indeed,	the	state	machine	was	externalized	into	a	text
file	that	the	system	read.	Each	event	coming	into	the	system	from	a	phone	line
turned	into	a	transition	in	that	finite	state	machine.	The	existing	process	would
start	a	new	process	dictated	by	the	state	machine	to	handle	that	event;	then	the
existing	process	would	either	exit	or	wait	on	a	queue.

This	externalized	state	machine	allowed	us	to	change	the	flow	of	the	application
without	changing	any	code	(the	Open-Closed	Principle).	We	could	easily	add	a
new	service,	independently	of	any	of	the	others,	and	wire	it	into	the	flow	by
modifying	the	text	file	that	contained	the	state	machine.	We	could	even	do	this
while	the	system	was	running.	In	other	words	we	had	hot-swapping	and	an
effective	BPEL	(Business	Process	Execution	Language).

The	old	ER	approach	of	using	disk	files	to	communicate	between	services	was
too	slow	for	this	much	more	rapid	flip-flopping	of	services,	so	we	invented	a
shared	memory	mechanism	that	we	called	the	3DBB.12	The	3DBB	allowed	data
to	be	accessed	by	name;	the	names	we	used	were	names	assigned	to	each	state
machine	instance.

The	3DBB	was	great	for	storing	strings	and	constants,	but	couldn’t	be	used	for
holding	complex	data	structures.	The	reason	for	this	is	technical	but	easy	to
understand.	Each	process	in	MP/M	lived	in	its	own	memory	partition.	Pointers	to
data	in	one	memory	partition	had	no	meaning	in	another	memory	partition.	As	a
consequence,	the	data	in	the	3DBB	could	not	contain	pointers.	Strings	were	fine,
but	trees,	linked	lists,	or	any	data	structure	with	pointers	would	not	work.

The	trouble	tickets	in	the	trouble	ticket	system	came	from	many	different
sources.	Some	were	automated,	and	some	were	manual.	The	manual	entries	were
created	by	operators	who	were	talking	to	customers	about	their	troubles.	As	the
customers	described	their	problems,	the	operators	would	type	in	their	complaints
and	observations	in	a	structured	text	stream.	It	looked	something	like	this:

Click	here	to	view	code	image



/pno	8475551212	/noise	/dropped-calls

You	get	the	idea.	The	/	character	started	a	new	topic.	Following	the	slash	was	a
code,	and	following	the	code	were	parameters.	There	were	thousands	of	codes,
and	an	individual	trouble	ticket	could	have	dozens	of	them	in	the	description.
Worse,	since	they	were	manually	entered,	they	were	often	misspelled	or
improperly	formatted.	They	were	meant	for	humans	to	interpret,	not	for
machines	to	process.

Our	problem	was	to	decode	these	semi-free-form	strings,	interpret	and	fix	any
errors,	and	then	turn	them	into	voice	output	so	we	could	read	them	to	the
repairman,	up	on	a	pole,	listening	with	a	handset.	This	required,	among	other
things,	a	very	flexible	parsing	and	data	representation	technique.	That	data
representation	had	to	be	passed	through	the	3DBB,	which	could	handle	only
strings.

And	so,	on	an	airplane,	flying	between	customer	visits,	I	invented	a	scheme	that
I	called	FLD:	Field	Labeled	Data.	Nowadays	we	would	call	this	XML	or	JSON.
The	format	was	different,	but	the	idea	was	the	same.	FLDs	were	binary	trees	that
associated	names	with	data	in	a	recursive	hierarchy.	FLDs	could	be	queried	by	a
simple	API,	and	could	be	translated	to	and	from	a	convenient	string	format	that
was	ideal	for	the	3DBB.

So,	micro-services	communicating	through	shared	memory	analog	of	sockets
using	an	XML	analog—in	1985.

There	is	nothing	new	under	the	Sun.

CLEAR	COMMUNICATIONS
In	1988,	a	group	of	Teradyne	employees	left	the	company	to	form	a	startup
named	Clear	Communications.	I	joined	them	a	few	months	later.	Our	mission
was	to	build	the	software	for	a	system	that	would	monitor	the	communications
quality	of	T1	lines—the	digital	lines	that	carried	long-distance	communications
across	the	country.	The	vision	was	a	huge	monitor	with	a	map	of	the	United
States	crisscrossed	by	T1	lines	flashing	red	if	they	were	degrading.

Remember,	graphical	user	interfaces	were	brand	new	in	1988.	The	Apple



Macintosh	was	only	five	years	old.	Windows	was	a	joke	back	then.	But	Sun
Microsystems	was	building	Sparcstations	that	had	credible	X-Windows	GUIs.
So	we	went	with	Sun—and	therefore	with	C	and	UNIX.

This	was	a	startup.	We	worked	70	to	80	hours	per	week.	We	had	the	vision.	We
had	the	motivation.	We	had	the	will.	We	had	the	energy.	We	had	the	expertise.
We	had	equity.	We	had	dreams	of	being	millionaires.	We	were	full	of	shit.

The	C	code	poured	out	of	every	orifice	of	our	bodies.	We	slammed	it	here,	and
shoved	it	there.	We	constructed	huge	castles	in	the	air.	We	had	processes,	and
message	queues,	and	grand,	superlative	architectures.	We	wrote	a	full	seven-
layer	ISO	communications	stack	from	scratch—right	down	to	the	data	link	layer.

We	wrote	GUI	code.	GOOEY	CODE!	OMG!	We	wrote	GOOOOOEY	code.

I	personally	wrote	a	3000-line	C	function	named	gi();	its	name	stood	for
Graphic	Interpreter.	It	was	a	masterpiece	of	goo.	It	was	not	the	only	goo	I	wrote
at	Clear,	but	it	was	my	most	infamous.

Architecture?	Are	you	joking?	This	was	a	startup.	We	didn’t	have	time	for
architecture.	Just	code,	dammit!	Code	for	your	very	lives!

So	we	coded.	And	we	coded.	And	we	coded.	But,	after	three	years,	what	we
failed	to	do	was	sell.	Oh,	we	had	an	installation	or	two.	But	the	market	was	not
particularly	interested	in	our	grand	vision,	and	our	venture	capital	financiers
were	getting	pretty	fed	up.

I	hated	my	life	at	this	point.	I	saw	all	my	effort	and	dreams	crashing	down.	I	had
conflicts	at	work,	conflicts	at	home	because	of	work,	and	conflicts	with	myself.

And	then	I	got	a	phone	call	that	changed	everything.

THE	SETUP

Two	years	before	that	phone	call,	two	things	of	significance	happened.

First,	I	managed	to	set	up	a	uucp	connection	to	a	nearby	company	that	had	a
uucp	connection	to	another	facility	that	was	connected	to	the	Internet.	These
connections	were	dial-up,	of	course.	Our	main	Sparcstation	(the	one	on	my	desk)
used	a	1200-bps	modem	to	call	up	our	uucp	host	twice	per	day.	This	gave	us



email	and	Netnews	(an	early	social	network	where	people	discussed	interesting
issues).

Second,	Sun	released	a	C++	compiler.	I	had	been	interested	in	C++	and	OO
since	1983,	but	compilers	were	difficult	to	come	by.	So	when	the	opportunity
presented	itself,	I	changed	languages	right	away.	I	left	the	3000-line	C	functions
behind,	and	started	to	write	C++	code	at	Clear.	And	I	learned	…

I	read	books.	Of	course,	I	read	The	C++	Programming	Language	and	The
Annotated	C++	Reference	Manual	(The	ARM)	by	Bjarne	Stroustrup.	I	read
Rebecca	Wirfs-Brock’s	lovely	book	on	responsibility-driven	design:	Designing
Object	Oriented	Software.	I	read	OOA	and	OOD	and	OOP	by	Peter	Coad.	I	read
Smalltalk-80	by	Adele	Goldberg.	I	read	Advanced	C++	Programming	Styles	and
Idioms	by	James	O.	Coplien.	But	perhaps	most	significantly	of	all,	I	read	Object
Oriented	Design	with	Applications	by	Grady	Booch.

What	a	name!	Grady	Booch.	How	could	anyone	forget	a	name	like	that.	What’s
more,	he	was	the	Chief	Scientist	at	a	company	called	Rational!	How	I	wanted	to
be	a	Chief	Scientist!	And	so	I	read	his	book.	And	I	learned,	and	I	learned,	and	I
learned	…

As	I	learned,	I	also	began	debating	on	Netnews,	the	way	people	now	debate	on
Facebook.	My	debates	were	about	C++	and	OO.	For	two	years,	I	relieved	the
frustrations	that	were	building	at	work	by	debating	with	hundreds	of	folks	on
Usenet	about	the	best	language	features	and	the	best	principles	of	design.	After	a
while,	I	even	started	making	a	certain	amount	of	sense.

It	was	in	one	of	those	debates	that	the	foundations	of	the	SOLID	principles	were
laid.

And	all	that	debating,	and	perhaps	even	some	of	the	sense,	got	me	noticed	…

UNCLE	BOB

One	of	the	engineers	at	Clear	was	a	young	fellow	by	the	name	of	Billy	Vogel.
Billy	gave	nicknames	to	everyone.	He	called	me	Uncle	Bob.	I	suspect,	despite
my	name	being	Bob,	that	he	was	making	an	offhand	reference	to	J.	R.	“Bob”
Dobbs	(see	https://en.wikipedia.org/wiki/File:Bobdobbs.png).

At	first	I	tolerated	it.	But	as	the	months	went	by,	his	incessant	chattering	of

https://en.wikipedia.org/wiki/File:Bobdobbs.png


“Uncle	Bob,	…	Uncle	Bob,”	in	the	context	of	the	pressures	and	disappointments
of	the	startup,	started	to	wear	pretty	thin.

And	then,	one	day,	the	phone	rang.

THE	PHONE	CALL

It	was	a	recruiter.	He	had	gotten	my	name	as	someone	who	knew	C++	and
object-oriented	design.	I’m	not	sure	how,	but	I	suspect	it	had	something	to	do
with	my	Netnews	presence.

He	said	he	had	an	opportunity	in	Silicon	Valley,	at	a	company	named	Rational.
They	were	looking	for	help	building	a	CASE13	tool.

The	blood	drained	from	my	face.	I	knew	what	this	was.	I	don’t	know	how	I
knew,	but	I	knew.	This	was	Grady	Booch’s	company.	I	saw	before	me	the
opportunity	to	join	forces	with	Grady	Booch!

ROSE
I	joined	Rational,	as	a	contract	programmer,	in	1990.	I	was	working	on	the
ROSE	product.	This	was	a	tool	that	allowed	programmers	to	draw	Booch
diagrams—the	diagrams	that	Grady	had	written	about	in	Object-Oriented
Analysis	and	Design	with	Applications	(Figure	A.9	shows	an	example).



Figure	A.9	A	Booch	diagram

The	Booch	notation	was	very	powerful.	It	presaged	notations	like	UML.

ROSE	had	an	architecture—a	real	architecture.	It	was	constructed	in	true	layers,
and	the	dependencies	between	layers	were	properly	controlled.	The	architecture
made	it	releasable,	developable,	and	independently	deployable.

Oh,	it	wasn’t	perfect.	There	were	a	lot	of	things	we	still	didn’t	understand	about
architectural	principles.	We	did	not,	for	example,	create	a	true	plugin	structure.

We	also	fell	for	one	of	the	most	unfortunate	fads	of	the	day—we	used	a	so-called
object-oriented	database.

But,	overall,	the	experience	was	a	great	one.	I	spent	a	lovely	year	and	a	half
working	with	the	Rational	team	on	ROSE.	This	was	one	of	the	most
intellectually	stimulating	experiences	of	my	professional	life.

THE	DEBATES	CONTINUED

Of	course,	I	did	not	stop	debating	on	Netnews.	In	fact,	I	drastically	increased	my
network	presence.	I	started	writing	articles	for	C++	Report.	And,	with	Grady’s
help,	I	started	working	on	my	first	book:	Designing	Object-Oriented	C++
Applications	Using	the	Booch	Method.

One	thing	bothered	me.	It	was	perverse,	but	it	was	true.	No	one	was	calling	me
“Uncle	Bob.”	I	found	that	I	missed	it.	So	I	made	the	mistake	of	putting	“Uncle
Bob”	in	my	email	and	Netnews	signatures.	And	the	name	stuck.	Eventually	I
realized	that	it	was	a	pretty	good	brand.

...	BY	ANY	OTHER	NAME

ROSE	was	a	gigantic	C++	application.	It	was	composed	of	layers,	with	a	strictly
enforced	dependency	rule.	That	rule	is	not	the	rule	that	I	have	described	in	this
book.	We	did	not	point	our	dependencies	toward	high-level	policies.	Rather,	we
pointed	our	dependencies	in	the	more	traditional	direction	of	flow	control.	The
GUI	pointed	at	the	representation,	which	pointed	at	the	manipulation	rules,
which	pointed	at	the	database.	In	the	end,	it	was	this	failure	to	direct	our
dependencies	toward	policy	that	aided	the	eventual	demise	of	the	product.



The	architecture	of	ROSE	was	similar	to	the	architecture	of	a	good	compiler.
The	graphical	notation	was	“parsed”	into	an	internal	representation;	that
representation	was	then	manipulated	by	rules	and	stored	in	an	object-oriented
database.

Object-oriented	databases	were	a	relatively	new	idea,	and	the	OO	world	was	all
abuzz	with	the	implications.	Every	object-oriented	programmer	wanted	to	have
an	object-oriented	database	in	his	or	her	system.	The	idea	was	relatively	simple,
and	deeply	idealistic.	The	database	stores	objects,	not	tables.	The	database	was
supposed	to	look	like	RAM.	When	you	accessed	an	object,	it	simply	appeared	in
memory.	If	that	object	pointed	to	another	object,	the	other	object	would	appear	in
memory	as	soon	as	you	accessed	it.	It	was	like	magic.

That	database	was	probably	our	biggest	practical	mistake.	We	wanted	the	magic,
but	what	we	got	was	a	big,	slow,	intrusive,	expensive	third-party	framework	that
made	our	lives	hell	by	impeding	our	progress	on	just	about	every	level.

That	database	was	not	the	only	mistake	we	made.	The	biggest	mistake,	in	fact,
was	over-architecture.	There	were	many	more	layers	than	I	have	described	here,
and	each	had	its	own	brand	of	communications	overhead.	This	served	to
significantly	reduce	the	productivity	of	the	team.

Indeed,	after	many	man-years	of	work,	immense	struggles,	and	two	tepid
releases,	the	whole	tool	was	scrapped	and	replaced	with	a	cute	little	application
written	by	a	small	team	in	Wisconsin.

And	so	I	learned	that	great	architectures	sometimes	lead	to	great	failures.
Architecture	must	be	flexible	enough	to	adapt	to	the	size	of	the	problem.
Architecting	for	the	enterprise,	when	all	you	really	need	is	a	cute	little	desktop
tool,	is	a	recipe	for	failure.

ARCHITECTS	REGISTRY	EXAM
In	the	early	1990s,	I	became	a	true	consultant.	I	traveled	the	world	teaching
people	what	this	new	OO	thing	was.	My	consulting	was	focused	strongly	on	the
design	and	architecture	of	object-oriented	systems.

One	of	my	first	consulting	clients	was	Educational	Testing	Service	(ETS).	It	was



under	contract	with	the	National	Council	of	Architects	Registry	Board	(NCARB)
to	conduct	the	registration	exams	for	new	architect	candidates.

Anyone	desiring	to	be	a	registered	architect	(the	kind	who	design	buildings)	in
the	United	States	or	Canada	must	pass	the	registration	exam.	This	exam	involved
having	the	candidate	solve	a	number	of	architectural	problems	involving
building	design.	The	candidate	might	be	given	a	set	of	requirements	for	a	public
library,	or	a	restaurant,	or	a	church,	and	then	asked	to	draw	the	appropriate
architectural	diagrams.

The	results	would	be	collected	and	saved	until	such	time	as	a	group	of	senior
architects	could	be	gathered	together	as	jurors,	to	score	the	submissions.	These
gatherings	were	big,	expensive	events	and	were	the	source	of	much	ambiguity
and	delay.

NCARB	wanted	to	automate	the	process	by	having	the	candidates	take	the
exams	using	a	computer,	and	then	have	another	computer	do	the	evaluation	and
scoring.	NCARB	asked	ETS	to	develop	that	software,	and	ETS	hired	me	to
gather	a	team	of	developers	to	produce	the	product.

ETS	had	broken	the	problem	down	into	18	individual	test	vignettes.	Each	would
require	a	CAD-like	GUI	application	that	the	candidate	would	use	to	express	his
or	her	solution.	A	separate	scoring	application	would	take	in	the	solutions	and
produce	scores.

My	partner,	Jim	Newkirk,	and	I	realized	that	these	36	applications	had	vast
amounts	of	similarity.	The	18	GUI	apps	all	used	similar	gestures	and
mechanisms.	The	18	scoring	applications	all	used	the	same	mathematical
techniques.	Given	these	shared	elements,	Jim	and	I	were	determined	to	develop	a
reusable	framework	for	all	36	applications.	Indeed,	we	sold	this	idea	to	ETS	by
saying	that	we’d	spend	a	long	time	working	on	the	first	application,	but	then	the
rest	would	just	pop	out	every	few	weeks.

At	this	point	you	should	be	face-palming	or	banging	your	head	on	this	book.
Those	of	you	who	are	old	enough	may	remember	the	“reuse”	promise	of	OO.	We
were	all	convinced,	back	then,	that	if	you	just	wrote	good	clean	object-oriented
C++	code,	you	would	just	naturally	produce	lots	and	lots	of	reusable	code.

So	we	set	about	to	write	the	first	application—which	was	the	most	complicated
of	the	batch.	It	was	called	Vignette	Grande.



The	two	of	us	worked	full	time	on	Vignette	Grande	with	an	eye	toward	creating
a	reusable	framework.	It	took	us	a	year.	At	the	end	of	that	year	we	had	45,000
lines	of	framework	code	and	6000	lines	of	application	code.	We	delivered	this
product	to	ETS,	and	they	contracted	with	us	to	write	the	other	17	applications
post-haste.

So	Jim	and	I	recruited	a	team	of	three	other	developers	and	we	began	to	work	on
the	next	few	vignettes.

But	something	went	wrong.	We	found	that	the	reusable	framework	we	had
created	was	not	particularly	reusable.	It	did	not	fit	well	into	the	new	applications
being	written.	There	were	subtle	frictions	that	just	didn’t	work.

This	was	deeply	discouraging,	but	we	believed	we	knew	what	to	do	about	it.	We
went	to	ETS	and	told	them	that	there	would	be	a	delay—that	the	45,000-line
framework	needed	to	be	rewritten,	or	at	least	readjusted.	We	told	them	that	it
would	take	a	while	longer	to	get	that	done.

I	don’t	need	to	tell	you	that	ETS	was	not	particularly	happy	with	this	news.

So	we	began	again.	We	set	the	old	framework	aside	and	began	writing	four	new
vignettes	simultaneously.	We	would	borrow	ideas	and	code	from	the	old
framework	but	rework	them	so	that	they	fit	into	all	four	without	modification.
This	effort	took	another	year.	It	produced	another	45,000-line	framework,	plus
four	vignettes	that	were	on	the	order	of	3000	to	6000	lines	each.

Needless	to	say,	the	relationship	between	the	GUI	applications	and	the
framework	followed	the	Dependency	Rule.	The	vignettes	were	plugins	to	the
framework.	All	the	high-level	GUI	policy	was	in	the	framework.	The	vignette
code	was	just	glue.

The	relationship	between	the	scoring	applications	and	the	framework	was	a	bit
more	complex.	The	high-level	scoring	policy	was	in	the	vignette.	The	scoring
framework	plugged	into	the	scoring	vignette.

Of	course,	both	of	these	applications	were	statically	linked	C++	applications,	so
the	notion	of	plugin	was	nowhere	in	our	minds.	And	yet,	the	way	the
dependencies	ran	was	consistent	with	the	Dependency	Rule.

Having	delivered	those	four	applications,	we	began	on	the	next	four.	And	this



time	they	started	popping	out	the	back	end	every	few	weeks,	just	as	we	had
predicted.	The	delay	had	cost	us	nearly	a	year	on	our	schedule,	so	we	hired
another	programmer	to	speed	the	process	along.

We	met	our	dates	and	our	commitments.	Our	customer	was	happy.	We	were
happy.	Life	was	good.

But	we	learned	a	good	lesson:	You	can’t	make	a	reusable	framework	until	you
first	make	a	usable	framework.	Reusable	frameworks	require	that	you	build	them
in	concert	with	several	reusing	applications.

CONCLUSION
As	I	said	at	the	start,	this	appendix	is	somewhat	autobiographical.	I’ve	hit	the
high	points	of	the	projects	that	I	felt	had	an	architectural	impact.	And,	of	course,
I	mentioned	a	few	episodes	that	were	not	exactly	relevant	to	the	technical
content	of	this	book,	but	were	significant	nonetheless.

Of	course,	this	was	a	partial	history.	There	were	many	other	projects	that	I
worked	on	over	the	decades.	I	also	purposely	stopped	this	history	in	the	early
1990s—because	I	have	another	book	to	write	about	the	events	of	the	late	1990s.

My	hope	is	that	you	enjoyed	this	little	trip	down	my	memory	lane;	and	that	you
were	able	to	learn	some	things	along	the	way.

1.	One	of	the	stories	we	heard	about	the	particular	machine	at	ASC	was	that	it	was	shipped	in	a	large	semi-
trailer	truck	along	with	a	household	of	furniture.	On	the	way,	the	truck	hit	a	bridge	at	high	speed.	The
computer	was	fine,	but	it	slid	forward	and	crushed	the	furniture	into	splinters.

2.	Today	we	would	say	that	it	had	a	clock	rate	of	142	kHz.
3.	Imagine	the	mass	of	that	disk.	Imagine	the	kinetic	energy!	One	day	we	came	in	and	saw	little	metal
shavings	dropping	out	from	the	button	of	the	cabinet.	We	called	the	maintenance	man.	He	advised	us	to
shut	the	unit	down.	When	he	came	to	repair	it,	he	said	that	one	of	the	bearings	had	worn	out.	Then	he	told
us	stories	about	how	these	disks,	if	not	repaired,	could	tear	loose	from	their	moorings,	plow	through
concrete	block	walls,	and	embed	themselves	into	cars	in	the	parking	lot.

4.	Cathode	ray	tube:	monochrome,	green-screen,	ASCII	displays.
5.	The	magic	number	72	came	from	Hollerith	punched	cards,	which	held	80	characters	each.	The	last	8
characters	were	“reserved”	for	sequence	numbers	in	case	you	dropped	the	deck.

6.	Yes,	I	understand	that’s	an	oxymoron.
7.	They	had	a	little	clear	plastic	window	that	allowed	you	to	see	the	silicon	chip	inside,	and	allowed	the	UV
to	erase	the	data.

8.	Yes,	I	know	that	when	software	is	burned	into	ROM,	it’s	called	firmware—but	even	firmware	is	really



still	soft.
9.	RKO7.
10.	This	was	later	renamed	as	Bob’s	Only	Successful	Software.
11.	Our	company	held	the	patent.	Our	employment	contract	made	it	clear	that	anything	we	invented	belonged

to	our	company.	My	boss	told	me:	“You	sold	it	to	us	for	one	dollar,	and	we	didn’t	pay	you	that	dollar.”
12.	Three-Dimensional	Black	Board.	If	you	were	born	in	the	1950s,	you	likely	get	this	reference:	Drizzle,

Drazzle,	Druzzle,	Drone.
13.	Computer	Aided	Software	Engineering
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