
Ian Robinson,
Jim Webber & Emil Eifrem

 2nd Edition

NEW OPPORTUNITIES FOR CONNECTED DATA

Graph
Databases

Compliments of

neo4j.com

Download now at: bit.ly/dl-neo4j

http://neo4j.com/?utm_source=gdb2e&utm_medium=neo4jadhome&utm_content=learnmore&utm_campaign=dl
http://neo4j.com/?utm_source=gdb2e&utm_medium=neo4jadhome&utm_content=learnmore&utm_campaign=dl
http://bit.ly/dl-neo4j

Ian Robinson, Jim Webber & Emil Eifrem

Graph Databases
SECOND EDITION

978-1-491-93200-1

[LSI]

Graph Databases
by Ian Robinson, Jim Webber, and Emil Eifrem

Copyright © 2015 Neo Technology, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Marie Beaugureau
Production Editor: Kristen Brown
Proofreader: Christina Edwards
Indexer: WordCo Indexing Services

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

June 2013: First Edition
June 2015: Second Edition

Revision History for the Second Edition
2015-05-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491930892 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Graph Databases, the cover image of an
European octopus, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491930892

Table of Contents

Foreword. vii

Preface. xi

1. Introduction. 1
What Is a Graph? 1
A High-Level View of the Graph Space 4

Graph Databases 5
Graph Compute Engines 7

The Power of Graph Databases 8
Performance 8
Flexibility 9
Agility 9

Summary 10

2. Options for Storing Connected Data. 11
Relational Databases Lack Relationships 11
NOSQL Databases Also Lack Relationships 15
Graph Databases Embrace Relationships 18
Summary 24

3. Data Modeling with Graphs. 25
Models and Goals 25
The Labeled Property Graph Model 26
Querying Graphs: An Introduction to Cypher 27

Cypher Philosophy 28
MATCH 30
RETURN 30

iii

Other Cypher Clauses 31
A Comparison of Relational and Graph Modeling 32

Relational Modeling in a Systems Management Domain 33
Graph Modeling in a Systems Management Domain 38
Testing the Model 39

Cross-Domain Models 41
Creating the Shakespeare Graph 45
Beginning a Query 46
Declaring Information Patterns to Find 48
Constraining Matches 49
Processing Results 50
Query Chaining 51

Common Modeling Pitfalls 52
Email Provenance Problem Domain 52
A Sensible First Iteration? 52
Second Time’s the Charm 55
Evolving the Domain 58

Identifying Nodes and Relationships 63
Avoiding Anti-Patterns 63
Summary 64

4. Building a Graph Database Application. 65
Data Modeling 65

Describe the Model in Terms of the Application’s Needs 66
Nodes for Things, Relationships for Structure 67
Fine-Grained versus Generic Relationships 67
Model Facts as Nodes 68
Represent Complex Value Types as Nodes 71
Time 72
Iterative and Incremental Development 74

Application Architecture 76
Embedded versus Server 76
Clustering 81
Load Balancing 82

Testing 85
Test-Driven Data Model Development 85
Performance Testing 91

Capacity Planning 95
Optimization Criteria 95
Performance 96
Redundancy 98
Load 98

iv | Table of Contents

Importing and Bulk Loading Data 99
Initial Import 99
Batch Import 100

Summary 104

5. Graphs in the Real World. 105
Why Organizations Choose Graph Databases 105
Common Use Cases 106

Social 106
Recommendations 107
Geo 108
Master Data Management 109
Network and Data Center Management 109
Authorization and Access Control (Communications) 110

Real-World Examples 111
Social Recommendations (Professional Social Network) 111
Authorization and Access Control 123
Geospatial and Logistics 132

Summary 147

6. Graph Database Internals. 149
Native Graph Processing 149
Native Graph Storage 152
Programmatic APIs 158

Kernel API 158
Core API 159
Traversal Framework 160

Nonfunctional Characteristics 162
Transactions 162
Recoverability 163
Availability 164
Scale 166

Summary 170

7. Predictive Analysis with Graph Theory. 171
Depth- and Breadth-First Search 171
Path-Finding with Dijkstra’s Algorithm 173
The A* Algorithm 181
Graph Theory and Predictive Modeling 182

Triadic Closures 182
Structural Balance 184

Local Bridges 188

Table of Contents | v

Summary 190

A. NOSQL Overview. 193

Index. 211

vi | Table of Contents

Foreword

Graphs Are Everywhere, or the Birth of Graph Databases
as We Know Them
It was 1999 and everyone worked 23-hour days. At least it felt that way. It seemed like
each day brought another story about a crazy idea that just got millions of dollars in
funding. All our competitors had hundreds of engineers, and we were a 20-ish person
development team. As if that was not enough, 10 of our engineers spent the majority
of their time just fighting the relational database.

It took us a while to figure out why. As we drilled deeper into the persistence layer of
our enterprise content management application, we realized that our software was
managing not just a lot of individual, isolated, and discrete data items, but also the
connections between them. And while we could easily fit the discrete data in relational
tables, the connected data was more challenging to store and tremendously slow to
query.

Out of pure desperation, my two Neo cofounders, Johan and Peter, and I started
experimenting with other models for working with data, particularly those that were
centered around graphs. We were blown away by the idea that it might be possible to
replace the tabular SQL semantic with a graph-centric model that would be much
easier for developers to work with when navigating connected data. We sensed that,
armed with a graph data model, our development team might not waste half its time
fighting the database.

Surely, we said to ourselves, we can’t be unique here. Graph theory has been around
for nearly 300 years and is well known for its wide applicability across a number of
diverse mathematical problems. Surely, there must be databases out there that
embrace graphs!

vii

1 For the younger readers, it may come as a shock that there was a time in the history of mankind when Google
didn’t exist. Back then, dinosaurs ruled the earth and search engines with names like AltaVista, Lycos, and
Excite were used, primarily to find ecommerce portals for pet food on the Internet.

Well, we AltaVistad1 around the young Web and couldn’t find any. After a few
months of surveying, we (naively) set out to build, from scratch, a database that
worked natively with graphs. Our vision was to keep all the proven features from the
relational database (transactions, ACID, triggers, etc.) but use a data model for the
21st century. Project Neo was born, and with it graph databases as we know them
today.

The first decade of the new millennium has seen several world-changing new busi‐
nesses spring to life, including Google, Facebook, and Twitter. And there is a com‐
mon thread among them: they put connected data—graphs—at the center of their
business. It’s 15 years later and graphs are everywhere.

Facebook, for example, was founded on the idea that while there’s value in discrete
information about people—their names, what they do, etc.—there’s even more value
in the relationships between them. Facebook founder Mark Zuckerberg built an
empire on the insight to capture these relationships in the social graph.

Similarly, Google’s Larry Page and Sergey Brin figured out how to store and process
not just discrete web documents, but how those web documents are connected. Goo‐
gle captured the web graph, and it made them arguably the most impactful company
of the previous decade.

Today, graphs have been successfully adopted outside the web giants. One of the big‐
gest logistics companies in the world uses a graph database in real time to route phys‐
ical parcels; a major airline is leveraging graphs for its media content metadata; and a
top-tier financial services firm has rewritten its entire entitlements infrastructure on
Neo4j. Virtually unknown a few years ago, graph databases are now used in industries
as diverse as healthcare, retail, oil and gas, media, gaming, and beyond, with every
indication of accelerating their already explosive pace.

These ideas deserve a new breed of tools: general-purpose database management
technologies that embrace connected data and enable graph thinking, which are the
kind of tools I wish had been available off the shelf when we were fighting the rela‐
tional database back in 1999.

viii | Foreword

I hope this book will serve as a great introduction to this wonderful emerging world
of graph technologies, and I hope it will inspire you to start using a graph database in
your next project so that you too can unlock the extraordinary power of graphs.
Good luck!

—Emil Eifrem
Cofounder of Neo4j and CEO of Neo Technology

Menlo Park, California
May 2013

Foreword | ix

Preface

Graph databases address one of the great macroscopic business trends of today: lever‐
aging complex and dynamic relationships in highly connected data to generate
insight and competitive advantage. Whether we want to understand relationships
between customers, elements in a telephone or data center network, entertainment
producers and consumers, or genes and proteins, the ability to understand and ana‐
lyze vast graphs of highly connected data will be key in determining which companies
outperform their competitors over the coming decade.

For data of any significant size or value, graph databases are the best way to represent
and query connected data. Connected data is data whose interpretation and value
requires us first to understand the ways in which its constituent elements are related.
More often than not, to generate this understanding, we need to name and qualify the
connections between things.

Although large corporations realized this some time ago and began creating their
own proprietary graph processing technologies, we’re now in an era where that tech‐
nology has rapidly become democratized. Today, general-purpose graph databases are
a reality, enabling mainstream users to experience the benefits of connected data
without having to invest in building their own graph infrastructure.

What’s remarkable about this renaissance of graph data and graph thinking is that
graph theory itself is not new. Graph theory was pioneered by Euler in the 18th cen‐
tury, and has been actively researched and improved by mathematicians, sociologists,
anthropologists, and other practitioners ever since. However, it is only in the past few
years that graph theory and graph thinking have been applied to information man‐
agement. In that time, graph databases have helped solve important problems in the
areas of social networking, master data management, geospatial, recommendations,
and more. This increased focus on graph databases is driven by two forces: by the
massive commercial success of companies such as Facebook, Google, and Twitter, all
of whom have centered their business models around their own proprietary graph

xi

technologies; and by the introduction of general-purpose graph databases into the
technology landscape.

About the Second Edition
The first edition of this book was written while Neo4j 2.0 was under active develop‐
ment, when the final forms of labels, indexes, and constraints were still to be fixed.
Now that Neo4j is well into its 2.x lifecycle (2.2 at the time of writing, with 2.3 coming
soon), we can confidently incorporate the new elements of the graph property model
into the text.

For the second edition of this book, we’ve revised all the Cypher examples to bring
them in line with the latest Cypher syntax. We’ve added labels both to the queries and
the diagrams, and have provided explanations of Cypher’s declarative indexing and
optional constraints. Elsewhere, we’ve added additional modeling guidelines, brought
the description of Neo4j’s internals up to date with the changes to its internal archi‐
tecture, and updated the testing examples to use the latest tooling.

About This Book
The purpose of this book is to introduce graphs and graph databases to technology
practitioners, including developers, database professionals, and technology decision
makers. Reading this book will give you a practical understanding of graph databases.
We show how the graph model “shapes” data, and how we query, reason about,
understand, and act upon data using a graph database. We discuss the kinds of prob‐
lems that are well aligned with graph databases, with examples drawn from actual
real-world use cases, and we show how to plan and implement a graph database solu‐
tion.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xii | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/iansrobinson/graph-databases-use-cases.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Graph Databases by Ian Robinson,
Jim Webber, and Emil Eifrem (O’Reilly). Copyright 2015 Neo Technology, Inc.,
978-1-491-93089-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Preface | xiii

https://github.com/iansrobinson/graph-databases-use-cases
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/graph-databases-2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank our technical reviewers: Michael Hunger, Colin Jack, Mark
Needham, and Pramod Sadalage.

Our appreciation and thanks to our editor for the first edition, Nathan Jepson.

xiv | Preface

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/graph-databases-2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Our colleagues at Neo Technology have contributed enormously of their time, experi‐
ence, and effort throughout the writing of this book. Thanks in particular go to
Anders Nawroth, for his invaluable assistance with our book’s toolchain; Andrés Tay‐
lor, for his enthusiastic help with all things Cypher; and Philip Rathle, for his advice
and contributions to the text.

A big thank you to everyone in the Neo4j community for your many contributions to
the graph database space over the years.

And special thanks to our families, for their love and support: Lottie, Tiger, Elliot,
Kath, Billy, Madelene, and Noomi.

This second edition was made possible by the diligent work of Cristina Escalante and
Michael Hunger. Thank you to both of you for your invaluable help.

Preface | xv

1 For introductions to graph theory, see Richard J. Trudeau, Introduction To Graph Theory (Dover, 1993) and
Gary Chartrand, Introductory Graph Theory (Dover, 1985). For an excellent introduction to how graphs pro‐
vide insight into complex events and behaviors, see David Easley and Jon Kleinberg, Networks, Crowds, and
Markets: Reasoning about a Highly Connected World (Cambridge University Press, 2010).

CHAPTER 1

Introduction

Although much of this book talks about graph data models, it is not a book about
graph theory.1 We don’t need much theory to take advantage of graph databases: pro‐
vided we understand what a graph is, we’re practically there. With that in mind, let’s
refresh our memories about graphs in general.

What Is a Graph?
Formally, a graph is just a collection of vertices and edges—or, in less intimidating lan‐
guage, a set of nodes and the relationships that connect them. Graphs represent enti‐
ties as nodes and the ways in which those entities relate to the world as relationships.
This general-purpose, expressive structure allows us to model all kinds of scenarios,
from the construction of a space rocket, to a system of roads, and from the supply-
chain or provenance of foodstuff, to medical history for populations, and beyond.

1

Graphs Are Everywhere
Graphs are extremely useful in understanding a wide diversity of datasets in fields
such as science, government, and business. The real world—unlike the forms-based
model behind the relational database—is rich and interrelated: uniform and rule-
bound in parts, exceptional and irregular in others. Once we understand graphs, we
begin to see them in all sorts of places. Gartner, for example, identifies five graphs in
the world of business—social, intent, consumption, interest, and mobile—and says
that the ability to leverage these graphs provides a “sustainable competitive advan‐
tage.”

For example, Twitter’s data is easily represented as a graph. In Figure 1-1 we see a
small network of Twitter users. Each node is labeled User, indicating its role in the
network. These nodes are then connected with relationships, which help further
establish the semantic context: namely, that Billy follows Harry, and that Harry, in
turn, follows Billy. Ruth and Harry likewise follow each other, but sadly, although
Ruth follows Billy, Billy hasn’t (yet) reciprocated.

Figure 1-1. A small social graph

Of course, Twitter’s real graph is hundreds of millions of times larger than the exam‐
ple in Figure 1-1, but it works on precisely the same principles. In Figure 1-2 we’ve
expanded the graph to include the messages published by Ruth.

2 | Chapter 1: Introduction

http://www.gartner.com/id=2081316

Figure 1-2. Publishing messages

Though simple, Figure 1-2 shows the expressive power of the graph model. It’s easy to
see that Ruth has published a string of messages. Her most recent message can be
found by following a relationship marked CURRENT. The PREVIOUS relationships then
create Ruth’s timeline.

What Is a Graph? | 3

The Labeled Property Graph Model
In discussing Figure 1-2 we’ve also informally introduced the most popular form of
graph model, the labeled property graph (in Appendix A, we discuss alternative graph
data models in more detail). A labeled property graph has the following characteris‐
tics:

• It contains nodes and relationships.
• Nodes contain properties (key-value pairs).
• Nodes can be labeled with one or more labels.
• Relationships are named and directed, and always have a start and end node.
• Relationships can also contain properties.

Most people find the property graph model intuitive and easy to understand.
Although simple, it can be used to describe the overwhelming majority of graph use
cases in ways that yield useful insights into our data.

A High-Level View of the Graph Space
Numerous projects and products for managing, processing, and analyzing graphs
have exploded onto the scene in recent years. The sheer number of technologies
makes it difficult to keep track of these tools and how they differ, even for those of us
who are active in the space. This section provides a high-level framework for making
sense of the emerging graph landscape.

From 10,000 feet, we can divide the graph space into two parts:

Technologies used primarily for transactional online graph persistence, typically accessed
directly in real time from an application

These technologies are called graph databases and are the main focus of this
book. They are the equivalent of “normal” online transactional processing
(OLTP) databases in the relational world.

Technologies used primarily for offline graph analytics, typically performed as a series of
batch steps

These technologies can be called graph compute engines. They can be thought of
as being in the same category as other technologies for analysis of data in bulk,
such as data mining and online analytical processing (OLAP).

4 | Chapter 1: Introduction

2 See Rodriguez, Marko A., and Peter Neubauer. 2011. “The Graph Traversal Pattern.” In Graph Data Manage‐
ment: Techniques and Applications, ed. Sherif Sakr and Eric Pardede, 29-46. Hershey, PA: IGI Global.

Another way to slice the graph space is to look at the graph models
employed by the various technologies. There are three dominant
graph data models: the property graph, Resource Description
Framework (RDF) triples, and hypergraphs. We describe these in
detail in Appendix A. Most of the popular graph databases on the
market use a variant of the property graph model, and conse‐
quently, it’s the model we’ll use throughout the remainder of this
book.

Graph Databases
A graph database management system (henceforth, a graph database) is an online
database management system with Create, Read, Update, and Delete (CRUD) meth‐
ods that expose a graph data model. Graph databases are generally built for use with
transactional (OLTP) systems. Accordingly, they are normally optimized for transac‐
tional performance, and engineered with transactional integrity and operational
availability in mind.

There are two properties of graph databases we should consider when investigating
graph database technologies:

The underlying storage
Some graph databases use native graph storage that is optimized and designed for
storing and managing graphs. Not all graph database technologies use native
graph storage, however. Some serialize the graph data into a relational database,
an object-oriented database, or some other general-purpose data store.

The processing engine
Some definitions require that a graph database use index-free adjacency, meaning
that connected nodes physically “point” to each other in the database.2 Here we
take a slightly broader view: any database that from the user’s perspective behaves
like a graph database (i.e., exposes a graph data model through CRUD opera‐
tions) qualifies as a graph database. We do acknowledge, however, the significant
performance advantages of index-free adjacency, and therefore use the term
native graph processing to describe graph databases that leverage index-free adja‐
cency.

A High-Level View of the Graph Space | 5

http://arxiv.org/abs/1004.1001

It’s important to note that native graph storage and native graph
processing are neither good nor bad—they’re simply classic engi‐
neering trade-offs. The benefit of native graph storage is that its
purpose-built stack is engineered for performance and scalability.
The benefit of nonnative graph storage, in contrast, is that it typi‐
cally depends on a mature nongraph backend (such as MySQL)
whose production characteristics are well understood by opera‐
tions teams. Native graph processing (index-free adjacency) bene‐
fits traversal performance, but at the expense of making some
queries that don’t use traversals difficult or memory intensive.

Relationships are first-class citizens of the graph data model. This is not the case in
other database management systems, where we have to infer connections between
entities using things like foreign keys or out-of-band processing such as map-reduce.
By assembling the simple abstractions of nodes and relationships into connected
structures, graph databases enable us to build arbitrarily sophisticated models that
map closely to our problem domain. The resulting models are simpler and at the
same time more expressive than those produced using traditional relational databases
and the other NOSQL (Not Only SQL) stores.

Figure 1-3 shows a pictorial overview of some of the graph databases on the market
today, based on their storage and processing models.

Figure 1-3. An overview of the graph database space

6 | Chapter 1: Introduction

Graph Compute Engines
A graph compute engine is a technology that enables global graph computational algo‐
rithms to be run against large datasets. Graph compute engines are designed to do
things like identify clusters in your data, or answer questions such as, “how many
relationships, on average, does everyone in a social network have?”

Because of their emphasis on global queries, graph compute engines are normally
optimized for scanning and processing large amounts of information in batches, and
in that respect they are similar to other batch analysis technologies, such as data min‐
ing and OLAP, in use in the relational world. Whereas some graph compute engines
include a graph storage layer, others (and arguably most) concern themselves strictly
with processing data that is fed in from an external source, and then returning the
results for storage elsewhere.

Figure 1-4 shows a common architecture for deploying a graph compute engine. The
architecture includes a system of record (SOR) database with OLTP properties (such
as MySQL, Oracle, or Neo4j), which services requests and responds to queries from
the application (and ultimately the users) at runtime. Periodically, an Extract, Trans‐
form, and Load (ETL) job moves data from the system of record database into the
graph compute engine for offline querying and analysis.

Figure 1-4. A high-level view of a typical graph compute engine deployment

A variety of different types of graph compute engines exist. Most notably there are in-
memory/single machine graph compute engines like Cassovary and distributed graph
compute engines like Pegasus or Giraph. Most distributed graph compute engines are
based on the Pregel white paper, authored by Google, which describes the graph com‐
pute engine Google uses to rank pages.

A High-Level View of the Graph Space | 7

https://github.com/twitter/cassovary
http://www.cs.cmu.edu/~pegasus/
http://giraph.apache.org/
http://dl.acm.org/citation.cfm?id=1807184

This Book Focuses on Graph Databases
The previous section provided a coarse-grained overview of the entire graph space.
The rest of this book focuses on graph databases. Our goal throughout is to describe
graph database concepts. Where appropriate, we illustrate these concepts with exam‐
ples drawn from our experience of developing solutions using the labeled property
graph model and the Neo4j database. Irrespective of the graph model or database
used for the examples, however, the important concepts carry over to other graph
databases.

The Power of Graph Databases
Notwithstanding the fact that just about anything can be modeled as a graph, we live
in a pragmatic world of budgets, project time lines, corporate standards, and commo‐
ditized skillsets. That a graph database provides a powerful but novel data modeling
technique does not in itself provide sufficient justification for replacing a well-
established, well-understood data platform; there must also be an immediate and very
significant practical benefit. In the case of graph databases, this motivation exists in
the form of a set of use cases and data patterns whose performance improves by one
or more orders of magnitude when implemented in a graph, and whose latency is
much lower compared to batch processing of aggregates. On top of this performance
benefit, graph databases offer an extremely flexible data model, and a mode of deliv‐
ery aligned with today’s agile software delivery practices.

Performance
One compelling reason, then, for choosing a graph database is the sheer performance
increase when dealing with connected data versus relational databases and NOSQL
stores. In contrast to relational databases, where join-intensive query performance
deteriorates as the dataset gets bigger, with a graph database performance tends to
remain relatively constant, even as the dataset grows. This is because queries are
localized to a portion of the graph. As a result, the execution time for each query is
proportional only to the size of the part of the graph traversed to satisfy that query,
rather than the size of the overall graph.

8 | Chapter 1: Introduction

Flexibility
As developers and data architects, we want to connect data as the domain dictates,
thereby allowing structure and schema to emerge in tandem with our growing
understanding of the problem space, rather than being imposed upfront, when we
know least about the real shape and intricacies of the data. Graph databases address
this want directly. As we show in Chapter 3, the graph data model expresses and
accommodates business needs in a way that enables IT to move at the speed of busi‐
ness.

Graphs are naturally additive, meaning we can add new kinds of relationships, new
nodes, new labels, and new subgraphs to an existing structure without disturbing
existing queries and application functionality. These things have generally positive
implications for developer productivity and project risk. Because of the graph model’s
flexibility, we don’t have to model our domain in exhaustive detail ahead of time—a
practice that is all but foolhardy in the face of changing business requirements. The
additive nature of graphs also means we tend to perform fewer migrations, thereby
reducing maintenance overhead and risk.

Agility
We want to be able to evolve our data model in step with the rest of our application,
using a technology aligned with today’s incremental and iterative software delivery
practices. Modern graph databases equip us to perform frictionless development and
graceful systems maintenance. In particular, the schema-free nature of the graph data
model, coupled with the testable nature of a graph database’s application program‐
ming interface (API) and query language, empower us to evolve an application in a
controlled manner.

At the same time, precisely because they are schema free, graph databases lack the
kind of schema-oriented data governance mechanisms we’re familiar with in the rela‐
tional world. But this is not a risk; rather, it calls forth a far more visible and actiona‐
ble kind of governance. As we show in Chapter 4, governance is typically applied in a
programmatic fashion, using tests to drive out the data model and queries, as well as
assert the business rules that depend upon the graph. This is no longer a controversial
practice: more so than relational development, graph database development aligns
well with today’s agile and test-driven software development practices, allowing graph
database–backed applications to evolve in step with changing business environments.

The Power of Graph Databases | 9

Summary
In this chapter we’ve reviewed the graph property model, a simple yet expressive tool
for representing connected data. Property graphs capture complex domains in an
expressive and flexible fashion, while graph databases make it easy to develop appli‐
cations that manipulate our graph models.

In the next chapter we’ll look in more detail at how several different technologies
address the challenge of connected data, starting with relational databases, moving
onto aggregate NOSQL stores, and ending with graph databases. In the course of the
discussion, we’ll see why graphs and graph databases provide the best means for mod‐
eling, storing, and querying connected data. Later chapters then go on to show how
to design and implement a graph database–based solution.

10 | Chapter 1: Introduction

CHAPTER 2

Options for Storing Connected Data

We live in a connected world. To thrive and progress, we need to understand and
influence the web of connections that surrounds us.

How do today’s technologies deal with the challenge of connected data? In this chap‐
ter we look at how relational databases and aggregate NOSQL stores manage graphs
and connected data, and compare their performance to that of a graph database. For
readers interested in exploring the topic of NOSQL, Appendix A describes the four
major types of NOSQL databases.

Relational Databases Lack Relationships
For several decades, developers have tried to accommodate connected, semi-
structured datasets inside relational databases. But whereas relational databases were
initially designed to codify paper forms and tabular structures—something they do
exceedingly well—they struggle when attempting to model the ad hoc, exceptional
relationships that crop up in the real world. Ironically, relational databases deal
poorly with relationships.

Relationships do exist in the vernacular of relational databases, but only at modeling
time, as a means of joining tables. In our discussion of connected data in the previous
chapter, we mentioned we often need to disambiguate the semantics of the relation‐
ships that connect entities, as well as qualify their weight or strength. Relational rela‐
tions do nothing of the sort. Worse still, as outlier data multiplies, and the overall
structure of the dataset becomes more complex and less uniform, the relational
model becomes burdened with large join tables, sparsely populated rows, and lots of
null-checking logic. The rise in connectedness translates in the relational world into
increased joins, which impede performance and make it difficult for us to evolve an
existing database in response to changing business needs.

11

Figure 2-1 shows a relational schema for storing customer orders in a customer-
centric, transactional application.

Figure 2-1. Semantic relationships are hidden in a relational database

The application exerts a tremendous influence over the design of this schema, mak‐
ing some queries very easy, and others more difficult:

• Join tables add accidental complexity; they mix business data with foreign key
metadata.

• Foreign key constraints add additional development and maintenance overhead
just to make the database work.

• Sparse tables with nullable columns require special checking in code, despite the
presence of a schema.

• Several expensive joins are needed just to discover what a customer bought.
• Reciprocal queries are even more costly. “What products did a customer buy?” is

relatively cheap compared to “which customers bought this product?”, which is

12 | Chapter 2: Options for Storing Connected Data

the basis of recommendation systems. We could introduce an index, but even
with an index, recursive questions such as “which customers buying this product
also bought that product?” quickly become prohibitively expensive as the degree
of recursion increases.

Relational databases struggle with highly connected domains. To understand the cost
of performing connected queries in a relational database, we’ll look at some simple
and not-so-simple queries in a social network domain.

Figure 2-2 shows a simple join-table arrangement for recording friendships.

Figure 2-2. Modeling friends and friends-of-friends in a relational database

Asking “who are Bob’s friends?” is easy, as shown in Example 2-1.

Example 2-1. Bob’s friends

SELECT p1.Person
FROM Person p1 JOIN PersonFriend
 ON PersonFriend.FriendID = p1.ID
JOIN Person p2
 ON PersonFriend.PersonID = p2.ID
WHERE p2.Person = 'Bob'

Based on our sample data, the answer is Alice and Zach. This isn’t a particularly
expensive or difficult query, because it constrains the number of rows under consid‐
eration using the filter WHERE Person.person='Bob'.

Friendship isn’t always a reflexive relationship, so in Example 2-2, we ask the recipro‐
cal query, which is, “who is friends with Bob?”

Example 2-2. Who is friends with Bob?

SELECT p1.Person
FROM Person p1 JOIN PersonFriend
 ON PersonFriend.PersonID = p1.ID
JOIN Person p2

Relational Databases Lack Relationships | 13

 ON PersonFriend.FriendID = p2.ID
WHERE p2.Person = 'Bob'

The answer to this query is Alice; sadly, Zach doesn’t consider Bob to be a friend. This
reciprocal query is still easy to implement, but on the database side it’s more expen‐
sive, because the database now has to consider all the rows in the PersonFriend table.

We can add an index, but this still involves an expensive layer of indirection. Things
become even more problematic when we ask, “who are the friends of my friends?”
Hierarchies in SQL use recursive joins, which make the query syntactically and com‐
putationally more complex, as shown in Example 2-3. (Some relational databases pro‐
vide syntactic sugar for this—for instance, Oracle has a CONNECT BY function—which
simplifies the query, but not the underlying computational complexity.)

Example 2-3. Alice’s friends-of-friends

SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND
FROM PersonFriend pf1 JOIN Person p1
 ON pf1.PersonID = p1.ID
JOIN PersonFriend pf2
 ON pf2.PersonID = pf1.FriendID
JOIN Person p2
 ON pf2.FriendID = p2.ID
WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID

This query is computationally complex, even though it only deals with the friends of
Alice’s friends, and goes no deeper into Alice’s social network. Things get more com‐
plex and more expensive the deeper we go into the network. Though it’s possible to
get an answer to the question “who are my friends-of-friends-of-friends?” in a rea‐
sonable period of time, queries that extend to four, five, or six degrees of friendship
deteriorate significantly due to the computational and space complexity of recursively
joining tables.

We work against the grain whenever we try to model and query connectedness in a
relational database. Besides the query and computational complexity just outlined, we
also have to deal with the double-edged sword of schema. More often than not,
schema proves to be both too rigid and too brittle. To subvert its rigidity we create
sparsely populated tables with many nullable columns, and code to handle the excep‐
tional cases—all because there’s no real one-size-fits-all schema to accommodate the
variety in the data we encounter. This increases coupling and all but destroys any
semblance of cohesion. Its brittleness manifests itself as the extra effort and care
required to migrate from one schema to another as an application evolves.

14 | Chapter 2: Options for Storing Connected Data

NOSQL Databases Also Lack Relationships
Most NOSQL databases—whether key-value-, document-, or column-oriented—
store sets of disconnected documents/values/columns. This makes it difficult to use
them for connected data and graphs.

One well-known strategy for adding relationships to such stores is to embed an
aggregate’s identifier inside the field belonging to another aggregate—effectively
introducing foreign keys. But this requires joining aggregates at the application level,
which quickly becomes prohibitively expensive.

When we look at an aggregate store model, such as the one in Figure 2-3, we imagine
we can see relationships. Seeing a reference to order: 1234 in the record beginning
user: Alice, we infer a connection between user: Alice and order: 1234. This
gives us false hope that we can use keys and values to manage graphs.

Figure 2-3. Reifying relationships in an aggregate store

In Figure 2-3 we infer that some property values are really references to foreign
aggregates elsewhere in the database. But turning these inferences into a navigable
structure doesn’t come for free, because relationships between aggregates aren’t first-
class citizens in the data model—most aggregate stores furnish only the insides of

NOSQL Databases Also Lack Relationships | 15

aggregates with structure, in the form of nested maps. Instead, the application that
uses the database must build relationships from these flat, disconnected data struc‐
tures. We also have to ensure that the application updates or deletes these foreign
aggregate references in tandem with the rest of the data. If this doesn’t happen, the
store will accumulate dangling references, which can harm data quality and query
performance.

Links and Walking
The Riak key-value store allows each of its stored values to be augmented with link
metadata. Each link is one-way, pointing from one stored value to another. Riak
allows any number of these links to be walked (in Riak terminology), making the
model somewhat connected. However, this link walking is powered by map-reduce,
which is relatively latent. Unlike a graph database, this linking is suitable only for sim‐
ple graph-structured programming rather than general graph algorithms.

There’s another weak point in this scheme. Because there are no identifiers that
“point” backward (the foreign aggregate “links” are not reflexive, of course), we lose
the ability to run other interesting queries on the database. For example, with the
structure shown in Figure 2-3, asking the database who has bought a particular prod‐
uct—perhaps for the purpose of making a recommendation based on a customer pro‐
file—is an expensive operation. If we want to answer this kind of question, we will
likely end up exporting the dataset and processing it via some external compute infra‐
structure, such as Hadoop, to brute-force compute the result. Alternatively, we can
retrospectively insert backward-pointing foreign aggregate references, and then query
for the result. Either way, the results will be latent.

It’s tempting to think that aggregate stores are functionally equivalent to graph data‐
bases with respect to connected data. But this is not the case. Aggregate stores do not
maintain consistency of connected data, nor do they support what is known as index-
free adjacency, whereby elements contain direct links to their neighbors. As a result,
for connected data problems, aggregate stores must employ inherently latent methods
for creating and querying relationships outside the data model.

Let’s see how some of these limitations manifest themselves. Figure 2-4 shows a small
social network as implemented using documents in an aggregate store.

16 | Chapter 2: Options for Storing Connected Data

Figure 2-4. A small social network encoded in an aggregate store

With this structure, it’s easy to find a user’s immediate friends—assuming, of course,
the application has been diligent in ensuring identifiers stored in the friends prop‐
erty are consistent with other record IDs in the database. In this case we simply look
up immediate friends by their ID, which requires numerous index lookups (one for
each friend) but no brute-force scans of the entire dataset. Doing this, we’d find, for
example, that Bob considers Alice and Zach to be friends.

But friendship isn’t always symmetric. What if we’d like to ask “who is friends with
Bob?” rather than “who are Bob’s friends?” That’s a more difficult question to answer,
and in this case our only option would be to brute-force scan across the whole dataset
looking for friends entries that contain Bob.

O-Notation and Brute-Force Processing
We use O-notation as a shorthand way of describing how the performance of an algo‐
rithm changes with the size of the dataset. An O(1) algorithm exhibits constant-time
performance; that is, the algorithm takes the same time to execute irrespective of the
size of the dataset. An O(n) algorithm exhibits linear performance; when the dataset
doubles, the time taken to execute the algorithm doubles. An O(log n) algorithm
exhibits logarithmic performance; when the dataset doubles, the time taken to exe‐
cute the algorithm increases by a fixed amount. The relative performance increase
may appear costly when a dataset is in its infancy, but it quickly tails off as the dataset
gets a lot bigger. An O(m log n) algorithm is the most costly of the ones considered in
this book. With an O(m log n) algorithm, when the dataset doubles, the execution
time doubles and increments by some additional amount proportional to the number
of elements in the dataset.

Brute-force computing an entire dataset is O(n) in terms of complexity because all n
aggregates in the data store must be considered. That’s far too costly for most

NOSQL Databases Also Lack Relationships | 17

reasonable-sized datasets, where we’d prefer an O(log n) algorithm—which is some‐
what efficient because it discards half the potential workload on each iteration—or
better.

Conversely, a graph database provides constant order lookup for the same query. In
this case, we simply find the node in the graph that represents Bob, and then follow
any incoming friend relationships; these relationships lead to nodes that represent
people who consider Bob to be their friend. This is far cheaper than brute-forcing the
result because it considers far fewer members of the network; that is, it considers only
those that are connected to Bob. Of course, if everybody is friends with Bob, we’ll still
end up considering the entire dataset.

To avoid having to process the entire dataset, we could denormalize the storage
model by adding backward links. Adding a second property, called perhaps frien
ded_by, to each user, we can list the incoming friendship relations associated with
that user. But this doesn’t come for free. For starters, we have to pay the initial and
ongoing cost of increased write latency, plus the increased disk utilization cost for
storing the additional metadata. On top of that, traversing the links remains expen‐
sive, because each hop requires an index lookup. This is because aggregates have no
notion of locality, unlike graph databases, which naturally provide index-free adja‐
cency through real—not reified—relationships. By implementing a graph structure
atop a nonnative store, we get some of the benefits of partial connectedness, but at
substantial cost.

This substantial cost is amplified when it comes to traversing deeper than just one
hop. Friends are easy enough, but imagine trying to compute—in real time—friends-
of-friends, or friends-of-friends-of-friends. That’s impractical with this kind of data‐
base because traversing a fake relationship isn’t cheap. This not only limits your
chances of expanding your social network, it also reduces profitable recommenda‐
tions, misses faulty equipment in your data center, and lets fraudulent purchasing
activity slip through the net. Many systems try to maintain the appearance of graph-
like processing, but inevitably it’s done in batches and doesn’t provide the real-time
interaction that users demand.

Graph Databases Embrace Relationships
The previous examples have dealt with implicitly connected data. As users we infer
semantic dependencies between entities, but the data models—and the databases
themselves—are blind to these connections. To compensate, our applications must
create a network out of the flat, disconnected data at hand, and then deal with any
slow queries and latent writes across denormalized stores that arise.

What we really want is a cohesive picture of the whole, including the connections
between elements. In contrast to the stores we’ve just looked at, in the graph world,

18 | Chapter 2: Options for Storing Connected Data

connected data is stored as connected data. Where there are connections in the
domain, there are connections in the data. For example, consider the social network
shown in Figure 2-5.

Figure 2-5. Easily modeling friends, colleagues, workers, and (unrequited) lovers in a
graph

In this social network, as in so many real-world cases of connected data, the connec‐
tions between entities don’t exhibit uniformity across the domain—the domain is
variably-structured. A social network is a popular example of a densely connected,
variably-structured network, one that resists being captured by a one-size-fits-all
schema or conveniently split across disconnected aggregates. Our simple network of
friends has grown in size (there are now potential friends up to six degrees away) and
expressive richness. The flexibility of the graph model has allowed us to add new
nodes and new relationships without compromising the existing network or migrating
data—the original data and its intent remain intact.

Graph Databases Embrace Relationships | 19

The graph offers a much richer picture of the network. We can see who LOVES whom
(and whether that love is requited). We can see who is a COLLEAGUE_OF whom, and
who is BOSS_OF them all. We can see who’s off the market, because they’re MARRIED_TO
someone else; we can even see the antisocial elements in our otherwise social net‐
work, as represented by DISLIKES relationships. With this graph at our disposal, we
can now look at the performance advantages of graph databases when dealing with
connected data.

Labels in the Graph
Often we want to categorize the nodes in our networks according to the roles they
play. Some nodes, for example, might represent users, whereas others represent
orders or products. In Neo4j, we use labels to represent the roles a node plays in the
graph. Because a node can fulfill several different roles in a graph, Neo4j allows us to
add more than one label to a node.

Using labels in this way, we can group nodes. We can ask the database, for example, to
find all the nodes labeled User. (Labels also provide a hook for declaratively indexing
nodes, as we shall see later.) We use labels extensively in the examples in the rest of
this book. Where a node represents a user, we’ve added a User label; where it repre‐
sents an order we’ve added an Order label, and so on. We’ll explain the syntax in the
next chapter.

Relationships in a graph naturally form paths. Querying—or traversing—the graph
involves following paths. Because of the fundamentally path-oriented nature of the
data model, the majority of path-based graph database operations are highly aligned
with the way in which the data is laid out, making them extremely efficient. In their
book Neo4j in Action, Partner and Vukotic perform an experiment using both a rela‐
tional store and Neo4j. The comparison shows that the graph database (in this case,
Neo4j and its Traversal Framework) is substantially quicker for connected data than a
relational store.

Partner and Vukotic’s experiment seeks to find friends-of-friends in a social network,
to a maximum depth of five. For a social network containing 1,000,000 people, each
with approximately 50 friends, the results strongly suggest that graph databases are
the best choice for connected data, as we see in Table 2-1.

20 | Chapter 2: Options for Storing Connected Data

http://www.manning.com/partner/

Table 2-1. Finding extended friends in a relational database versus efficient finding in Neo4j

Depth RDBMS execution time(s) Neo4j execution time(s) Records returned

2 0.016 0.01 ~2500

3 30.267 0.168 ~110,000

4 1543.505 1.359 ~600,000

5 Unfinished 2.132 ~800,000

At depth two (friends-of-friends), both the relational database and the graph database
perform well enough for us to consider using them in an online system. Although the
Neo4j query runs in two-thirds the time of the relational one, an end user would
barely notice the difference in milliseconds between the two. By the time we reach
depth three (friend-of-friend-of-friend), however, it’s clear that the relational database
can no longer deal with the query in a reasonable time frame: the 30 seconds it takes
to complete would be completely unacceptable for an online system. In contrast,
Neo4j’s response time remains relatively flat: just a fraction of a second to perform the
query—definitely quick enough for an online system.

At depth four the relational database exhibits crippling latency, making it practically
useless for an online system. Neo4j’s timings have deteriorated a little too, but the
latency here is at the periphery of being acceptable for a responsive online system.
Finally, at depth five, the relational database simply takes too long to complete the
query. Neo4j, in contrast, returns a result in around two seconds. At depth five, it
turns out that almost the entire network is our friend. Because of this, for many real-
world use cases we’d likely trim the results, thereby reducing the timings.

Both aggregate stores and relational databases perform poorly
when we move away from modestly sized set operations—opera‐
tions that they should both be good at. Things slow down when we
try to mine path information from the graph, as with the friends-
of-friends example. We don’t mean to unduly beat up on either
aggregate stores or relational databases. They have a fine technol‐
ogy pedigree for the things they’re good at, but they fall short when
managing connected data. Anything more than a shallow traversal
of immediate friends, or possibly friends-of-friends, will be slow
because of the number of index lookups involved. Graphs, on the
other hand, use index-free adjacency to ensure that traversing con‐
nected data is extremely rapid.

Graph Databases Embrace Relationships | 21

The social network example helps illustrate how different technologies deal with con‐
nected data, but is it a valid use case? Do we really need to find such remote “friends”?
Perhaps not. But substitute any other domain for the social network, and you’ll see we
experience similar performance, modeling, and maintenance benefits. Whether
music or data center management, bio-informatics or football statistics, network sen‐
sors or time-series of trades, graphs provide powerful insight into our data. Let’s look,
then, at another contemporary application of graphs: recommending products based
on a user’s purchase history and the histories of his friends, neighbors, and other peo‐
ple like him. With this example, we’ll bring together several independent facets of a
user’s lifestyle to make accurate and profitable recommendations.

We’ll start by modeling the purchase history of a user as connected data. In a graph,
this is as simple as linking the user to her orders, and linking orders together to pro‐
vide a purchase history, as shown in Figure 2-6.

The graph shown in Figure 2-6 provides a great deal of insight into customer behav‐
ior. We can see all the orders a user has PLACED, and we can easily reason about what
each order CONTAINS. To this core domain data structure we’ve then added support
for several well-known access patterns. For example, users often want to see their
order history, so we’ve added a linked list structure to the graph that allows us to find
a user’s most recent order by following an outgoing MOST_RECENT relationship. We
can then iterate through the list, going further back in time, by following each PREVI
OUS relationship. If we want to move forward in time, we can follow each PREVIOUS
relationship in the opposite direction, or add a reciprocal NEXT relationship.

Now we can start to make recommendations. If we notice that many users who buy
strawberry ice cream also buy espresso beans, we can start to recommend those beans
to users who normally only buy the ice cream. But this is a rather one-dimensional
recommendation: we can do much better. To increase our graph’s power, we can join
it to graphs from other domains. Because graphs are naturally multidimensional
structures, it’s then quite straightforward to ask more sophisticated questions of the
data to gain access to a fine-tuned market segment. For example, we can ask the
graph to find for us “all the flavors of ice cream liked by people who enjoy espresso
but dislike Brussels sprouts, and who live in a particular neighborhood.”

22 | Chapter 2: Options for Storing Connected Data

1 The Neo4j-spatial library conveniently takes care of n-dimensional polygon indexes for us. See https://
github.com/neo4j-contrib/spatial.

Figure 2-6. Modeling a user’s order history in a graph

For the purpose of our interpretation of the data, we can consider the degree to which
someone repeatedly buys a product to be indicative of whether or not they like that
product. But how might we define “live in a neighborhood”? Well, it turns out that
geospatial coordinates are very conveniently modeled as graphs. One of the most
popular structures for representing geospatial coordinates is called an R-Tree. An R-
Tree is a graph-like index that describes bounded boxes around geographies. Using
such a structure we can describe overlapping hierarchies of locations. For example,
we can represent the fact that London is in the UK, and that the postal code SW11
1BD is in Battersea, which is a district in London, which is in southeastern England,
which, in turn, is in Great Britain. And because UK postal codes are fine-grained, we
can use that boundary to target people with somewhat similar tastes.1

Graph Databases Embrace Relationships | 23

https://github.com/neo4j-contrib/spatial
https://github.com/neo4j-contrib/spatial
http://en.wikipedia.org/wiki/R-tree
http://en.wikipedia.org/wiki/R-tree

2 For an overview of similarity measures, see Klein, D.J. May 2010. “Centrality measure in graphs.” Journal of
Mathematical Chemistry 47(4): 1209-1223.

Such pattern-matching queries are extremely difficult to write in
SQL, and laborious to write against aggregate stores, and in both
cases they tend to perform very poorly. Graph databases, on the
other hand, are optimized for precisely these types of traversals and
pattern-matching queries, providing in many cases millisecond
responses. Moreover, most graph databases provide a query lan‐
guage suited to expressing graph constructs and graph queries. In
the next chapter, we’ll look at Cypher, which is a pattern-matching
language tuned to the way we tend to describe graphs using dia‐
grams.

We can use our example graph to make recommendations to users, but we can also
use it to benefit the seller. For example, given certain buying patterns (products, cost
of typical order, and so on), we can establish whether a particular transaction is
potentially fraudulent. Patterns outside of the norm for a given user can easily be
detected in a graph and then flagged for further attention (using well-known similar‐
ity measures from the graph data-mining literature), thus reducing the risk for the
seller.2

From the data practitioner’s point of view, it’s clear that the graph database is the best
technology for dealing with complex, variably structured, densely connected data—
that is, with datasets so sophisticated they are unwieldy when treated in any form
other than a graph.

Summary
In this chapter we’ve seen how connectedness in relational databases and NOSQL
data stores requires developers to implement data processing in the application layer,
and contrasted that with graph databases, where connectedness is a first-class citizen.
In the next chapter, we look in more detail at the topic of graph modeling.

24 | Chapter 2: Options for Storing Connected Data

CHAPTER 3

Data Modeling with Graphs

In previous chapters we’ve described the substantial benefits of the graph database
when compared both with other NOSQL stores and with traditional relational data‐
bases. But having chosen to adopt a graph database, the question arises: how do we
model in graphs?

This chapter focuses on graph modeling. Starting with a recap of the labeled property
graph model—the most widely adopted graph data model—we then provide an over‐
view of the graph query language used for most of the code examples in this book:
Cypher. Though there are several graph query languages in existence, Cypher is the
most widely deployed, making it the de facto standard. It is also easy to learn and
understand, especially for those of us coming from a SQL background. With these
fundamentals in place, we dive straight into some examples of graph modeling. With
our first example, based on a systems management domain, we compare relational
and graph modeling techniques. In the second example, the production and con‐
sumption of Shakespearean literature, we use a graph to connect and query several
disparate domains. We end the chapter by looking at some common pitfalls when
modeling with graphs, and highlight some good practices.

Models and Goals
Before we dig deeper into modeling with graphs, a word on models in general. Mod‐
eling is an abstracting activity motivated by a particular need or goal. We model in
order to bring specific facets of an unruly domain into a space where they can be
structured and manipulated. There are no natural representations of the world the
way it “really is,” just many purposeful selections, abstractions, and simplifications,
some of which are more useful than others for satisfying a particular goal.

25

Graph representations are no different in this respect. What perhaps differentiates
them from many other data modeling techniques, however, is the close affinity
between the logical and physical models. Relational data management techniques
require us to deviate from our natural language representation of the domain: first by
cajoling our representation into a logical model, and then by forcing it into a physical
model. These transformations introduce semantic dissonance between our conceptu‐
alization of the world and the database’s instantiation of that model. With graph data‐
bases, this gap shrinks considerably.

We Already Communicate in Graphs
Graph modeling naturally fits with the way we tend to abstract details from a domain
using circles and boxes, and then describe the connections between these things by
joining them with arrows and lines. Today’s graph databases, more than any other
database technologies, are “whiteboard friendly.” The typical whiteboard view of a
problem is a graph. What we sketch in our creative and analytical modes maps closely
to the data model we implement inside the database.

In terms of expressivity, graph databases reduce the impedance mismatch between
analysis and implementation that has plagued relational database implementations for
many years. What is particularly interesting about such graph models is the fact that
they not only communicate how we think things are related, but they also clearly
communicate the kinds of questions we want to ask of our domain.

As we’ll see throughout this chapter, graph models and graph queries are really just
two sides of the same coin.

The Labeled Property Graph Model
We introduced the labeled property graph model in Chapter 1. To recap, these are its
salient features:

• A labeled property graph is made up of nodes, relationships, properties, and labels.
• Nodes contain properties. Think of nodes as documents that store properties in

the form of arbitrary key-value pairs. In Neo4j, the keys are strings and the values
are the Java string and primitive data types, plus arrays of these types.

• Nodes can be tagged with one or more labels. Labels group nodes together, and
indicate the roles they play within the dataset.

• Relationships connect nodes and structure the graph. A relationship always has a
direction, a single name, and a start node and an end node—there are no dangling
relationships. Together, a relationship’s direction and name add semantic clarity
to the structuring of nodes.

26 | Chapter 3: Data Modeling with Graphs

1 For reference documentation, see http://goo.gl/W7Jh6x and http://goo.gl/ftv8Gx.

• Like nodes, relationships can also have properties. The ability to add properties
to relationships is particularly useful for providing additional metadata for graph
algorithms, adding additional semantics to relationships (including quality and
weight), and for constraining queries at runtime.

These simple primitives are all we need to create sophisticated and semantically rich
models. So far, all our models have been in the form of diagrams. Diagrams are great
for describing graphs outside of any technology context, but when it comes to using a
database, we need some other mechanism for creating, manipulating, and querying
data. We need a query language.

Querying Graphs: An Introduction to Cypher
Cypher is an expressive (yet compact) graph database query language. Although cur‐
rently specific to Neo4j, its close affinity with our habit of representing graphs as dia‐
grams makes it ideal for programmatically describing graphs. For this reason, we use
Cypher throughout the rest of this book to illustrate graph queries and graph con‐
structions. Cypher is arguably the easiest graph query language to learn, and is a great
basis for learning about graphs. Once you understand Cypher, it becomes very easy to
branch out and learn other graph query languages.

In the following sections we’ll take a brief tour through Cypher. This isn’t a reference
document for Cypher, however—merely a friendly introduction so that we can
explore more interesting graph query scenarios later on.1

Other Query Languages
Other graph databases have other means of querying data. Many, including Neo4j,
support the RDF query language SPARQL and the imperative, path-based query lan‐
guage Gremlin. Our interest, however, is in the expressive power of a property graph
combined with a declarative query language, and so in this book we focus almost
exclusively on Cypher.

Querying Graphs: An Introduction to Cypher | 27

http://goo.gl/W7Jh6x
http://goo.gl/ftv8Gx
http://www.w3.org/TR/rdf-sparql-query/
https://github.com/tinkerpop/gremlin/wiki/

Cypher Philosophy
Cypher is designed to be easily read and understood by developers, database profes‐
sionals, and business stakeholders. Its ease of use derives from the fact that it is in
accord with the way we intuitively describe graphs using diagrams.

Cypher enables a user (or an application acting on behalf of a user) to ask the data‐
base to find data that matches a specific pattern. Colloquially, we ask the database to
“find things like this.” And the way we describe what “things like this” look like is to
draw them, using ASCII art. Figure 3-1 shows an example of a simple pattern.

Figure 3-1. A simple graph pattern, expressed using a diagram

This pattern describes three mutual friends. Here’s the equivalent ASCII art represen‐
tation in Cypher:

(emil)<-[:KNOWS]-(jim)-[:KNOWS]->(ian)-[:KNOWS]->(emil)

This pattern describes a path that connects a node we’ll call jim to two nodes we’ll call
ian and emil, and which also connects the ian node to the emil node. ian, jim, and
emil are identifers. Identifiers allow us to refer to the same node more than once
when describing a pattern—a trick that helps us get round the fact that a query lan‐
guage has only one dimension (text proceeding from left to right), whereas a graph
diagram can be laid out in two dimensions. Despite having occasionally to repeat
identifiers in this way, the intent remains clear. Cypher patterns follow very naturally
from the way we draw graphs on the whiteboard.

28 | Chapter 3: Data Modeling with Graphs

The previous Cypher pattern describes a simple graph structure,
but it doesn’t yet refer to any particular data in the database. To
bind the pattern to specific nodes and relationships in an existing
dataset we must specify some property values and node labels that
help locate the relevant elements in the dataset. For example:

(emil:Person {name:'Emil'})
 <-[:KNOWS]-(jim:Person {name:'Jim'})
 -[:KNOWS]->(ian:Person {name:'Ian'})
 -[:KNOWS]->(emil)

Here we’ve bound each node to its identifier using its name prop‐
erty and Person label. The emil identifer, for example, is bound to
a node in the dataset with a label Person and a name property
whose value is Emil. Anchoring parts of the pattern to real data in
this way is normal Cypher practice, as we shall see in the following
sections.

Specification by Example
The interesting thing about graph diagrams is that they tend to contain specific
instances of nodes and relationships, rather than classes or archetypes. Even very
large graphs are typically illustrated using smaller subgraphs made from real nodes
and relationships. In other words, we tend to describe graphs using specification by
example.

ASCII art graph patterns are fundamental to Cypher. A Cypher query anchors one or
more parts of a pattern to specific locations in a graph using predicates, and then
flexes the unanchored parts around to find local matches.

The anchor points in the real graph, to which some parts of the
pattern are bound, are determined by Cypher based on the labels
and property predicates in the query. In most cases, Cypher uses
metainformation about existing indexes, constraints, and predi‐
cates to figure things out automatically. Occasionally, however, it
helps to specify some additional hints.

Like most query languages, Cypher is composed of clauses. The simplest queries con‐
sist of a MATCH clause followed by a RETURN clause (we’ll describe the other clauses you
can use in a Cypher query later in this chapter). Here’s an example of a Cypher query
that uses these three clauses to find the mutual friends of a user named Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c),
 (a)-[:KNOWS]->(c)
RETURN b, c

Querying Graphs: An Introduction to Cypher | 29

Let’s look at each clause in more detail.

MATCH
The MATCH clause is at the heart of most Cypher queries. This is the specification by
example part. Using ASCII characters to represent nodes and relationships, we draw
the data we’re interested in. We draw nodes with parentheses, and relationships using
pairs of dashes with greater-than or less-than signs (--> and <--). The < and > signs
indicate relationship direction. Between the dashes, set off by square brackets and
prefixed by a colon, we put the relationship name. Node labels are similarly prefixed
by a colon. Node (and relationship) property key-value pairs are then specified within
curly braces (much like a Javascript object).

In our example query, we’re looking for a node labeled Person with a name property
whose value is Jim. The return value from this lookup is bound to the identifier a.
This identifier allows us to refer to the node that represents Jim throughout the rest of
the query.

This start node is part of a simple pattern (a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-
[:KNOWS]->(c) that describes a path comprising three nodes, one of which we’ve
bound to the identifier a, the others to b and c. These nodes are connected by way of
several KNOWS relationships, as per Figure 3-1.

This pattern could, in theory, occur many times throughout our graph data; with a
large user set, there may be many mutual relationships corresponding to this pattern.
To localize the query, we need to anchor some part of it to one or more places in the
graph. In specifying that we’re looking for a node labeled Person whose name prop‐
erty value is Jim, we’ve bound the pattern to a specific node in the graph—the node
representing Jim. Cypher then matches the remainder of the pattern to the graph
immediately surrounding this anchor point. As it does so, it discovers nodes to bind
to the other identifiers. While a will always be anchored to Jim, b and c will be bound
to a sequence of nodes as the query executes.

Alternatively, we can express the anchoring as a predicate in the WHERE clause.

MATCH (a:Person)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
WHERE a.name = 'Jim'
RETURN b, c

Here we’ve moved the property lookup from the MATCH clause to the WHERE clause.
The outcome is the same as our earlier query.

RETURN
This clause specifies which nodes, relationships, and properties in the matched data
should be returned to the client. In our example query, we’re interested in returning

30 | Chapter 3: Data Modeling with Graphs

the nodes bound to the b and c identifiers. Each matching node is lazily bound to its
identifier as the client iterates the results.

Other Cypher Clauses
The other clauses we can use in a Cypher query include:

WHERE

Provides criteria for filtering pattern matching results.

CREATE and CREATE UNIQUE
Create nodes and relationships.

MERGE

Ensures that the supplied pattern exists in the graph, either by reusing existing
nodes and relationships that match the supplied predicates, or by creating new
nodes and relationships.

DELETE

Removes nodes, relationships, and properties.

SET

Sets property values.

FOREACH

Performs an updating action for each element in a list.

UNION

Merges results from two or more queries.

WITH

Chains subsequent query parts and forwards results from one to the next. Similar
to piping commands in Unix.

START

Specifies one or more explicit starting points—nodes or relationships—in the
graph. (START is deprecated in favor of specifying anchor points in a MATCH
clause.)

If these clauses look familiar—especially if you’re a SQL developer—that’s great!
Cypher is intended to be familiar enough to help you move rapidly along the learning
curve. At the same time, it’s different enough to emphasize that we’re dealing with
graphs, not relational sets.

We’ll see some examples of these clauses later in the chapter. Where they occur, we’ll
describe in more detail how they work.

Querying Graphs: An Introduction to Cypher | 31

Now that we’ve seen how we can describe and query a graph using Cypher, we can
look at some examples of graph modeling.

A Comparison of Relational and Graph Modeling
To introduce graph modeling, we’re going to look at how we model a domain using
both relational- and graph-based techniques. Most developers and data professionals
are familiar with RDBMS (relational database management systems) and the associ‐
ated data modeling techniques; as a result, the comparison will highlight a few simi‐
larities, and many differences. In particular, we’ll see how easy it is to move from a
conceptual graph model to a physical graph model, and how little the graph model
distorts what we’re trying to represent versus the relational model.

To facilitate this comparison, we’ll examine a simple data center management
domain. In this domain, several data centers support many applications on behalf of
many customers using different pieces of infrastructure, from virtual machines to
physical load balancers. An example of this domain is shown in Figure 3-2.

In Figure 3-2 we see a somewhat simplified view of several applications and the data
center infrastructure necessary to support them. The applications, represented by
nodes App 1, App 2, and App 3, depend on a cluster of databases labeled Database
Server 1, 2, 3. While users logically depend on the availability of an application
and its data, there is additional physical infrastructure between the users and the
application; this infrastructure includes virtual machines (Virtual Machine 10, 11,
20, 30, 31), real servers (Server 1, 2, 3), racks for the servers (Rack 1, 2), and
load balancers (Load Balancer 1, 2), which front the apps. In between each of the
components there are, of course, many networking elements: cables, switches, patch
panels, NICs (network interface controllers), power supplies, air conditioning, and so
on—all of which can fail at inconvenient times. To complete the picture we have a
straw-man single user of application 3, represented by User 3.

As the operators of such a system, we have two primary concerns:

• Ongoing provision of functionality to meet (or exceed) a service-level agreement,
including the ability to perform forward-looking analyses to determine single
points of failure, and retrospective analyses to rapidly determine the cause of any
customer complaints regarding the availability of service.

• Billing for resources consumed, including the cost of hardware, virtualization,
network provisioning, and even the costs of software development and opera‐
tions (since these are simply logical extensions of the system we see here).

32 | Chapter 3: Data Modeling with Graphs

Figure 3-2. Simplified snapshot of application deployment within a data center

If we are building a data center management solution, we’ll want to ensure that the
underlying data model allows us to store and query data in a way that efficiently
addresses these primary concerns. We’ll also want to be able to update the underlying
model as the application portfolio changes, the physical layout of the data center
evolves, and virtual machine instances migrate. Given these needs and constraints,
let’s see how the relational and graph models compare.

Relational Modeling in a Systems Management Domain
The initial stage of modeling in the relational world is similar to the first stage of
many other data modeling techniques: that is, we seek to understand and agree on the
entities in the domain, how they interrelate, and the rules that govern their state tran‐
sitions. Most of this tends to be done informally, often through whiteboard sketches

A Comparison of Relational and Graph Modeling | 33

and discussions between subject matter experts and systems and data architects. To
express our common understanding and agreement, we typically create a diagram
such as the one in Figure 3-2, which is a graph.

The next stage captures this agreement in a more rigorous form such as an entity-
relationship (E-R) diagram—another graph. This transformation of the conceptual
model into a logical model using a stricter notation provides us with a second chance
to refine our domain vocabulary so that it can be shared with relational database spe‐
cialists. (Such approaches aren’t always necessary: adept relational users often move
directly to table design and normalization without first describing an intermediate E-
R diagram.) In our example, we’ve captured the domain in the E-R diagram shown in
Figure 3-3.

Despite being graphs, E-R diagrams immediately demonstrate the
shortcomings of the relational model for capturing a rich domain.
Although they allow relationships to be named (something that
graph databases fully embrace, but which relational stores do not),
E-R diagrams allow only single, undirected, named relationships
between entities. In this respect, the relational model is a poor fit
for real-world domains where relationships between entities are
both numerous and semantically rich and diverse.

Having arrived at a suitable logical model, we map it into tables and relations, which
are normalized to eliminate data redundancy. In many cases this step can be as simple
as transcribing the E-R diagram into a tabular form and then loading those tables via
SQL commands into the database. But even the simplest case serves to highlight the
idiosyncrasies of the relational model. For example, in Figure 3-4 we see that a great
deal of accidental complexity has crept into the model in the form of foreign key con‐
straints (everything annotated [FK]), which support one-to-many relationships, and
join tables (e.g., AppDatabase), which support many-to-many relationships—and all
this before we’ve added a single row of real user data. These constraints are model-
level metadata that exist simply so that we can make concrete the relations between
tables at query time. Yet the presence of this structural data is keenly felt, because it
clutters and obscures the domain data with data that serves the database, not the user.

34 | Chapter 3: Data Modeling with Graphs

Figure 3-3. An entity-relationship diagram for the data center domain

We now have a normalized model that is relatively faithful to the domain. This
model, though imbued with substantial accidental complexity in the form of foreign
keys and join tables, contains no duplicate data. But our design work is not yet com‐
plete. One of the challenges of the relational paradigm is that normalized models gen‐
erally aren’t fast enough for real-world needs. For many production systems, a
normalized schema, which in theory is fit for answering any kind of ad hoc question
we may wish to pose to the domain, must in practice be further adapted and special‐
ized for specific access patterns. In other words, to make relational stores perform
well enough for regular application needs, we have to abandon any vestiges of true
domain affinity and accept that we have to change the user’s data model to suit the
database engine, not the user. This technique is called denormalization.

Denormalization involves duplicating data (substantially in some cases) in order to
gain query performance. Take as an example users and their contact details. A typical
user often has several email addresses, which, in a fully normalized model, we would
store in a separate EMAIL table. To reduce joins and the performance penalty imposed
by joining between two tables, however, it is quite common to inline this data in the
USER table, adding one or more columns to store a user’s most important email
addresses.

A Comparison of Relational and Graph Modeling | 35

Figure 3-4. Tables and relationships for the data center domain

Although denormalization may be a safe thing to do (assuming developers under‐
stand the denormalized model and how it maps to their domain-centric code, and
have robust transactional support from the database), it is usually not a trivial task.
For the best results, we usually turn to a true RDBMS expert to munge our normal‐
ized model into a denormalized one aligned with the characteristics of the underlying
RDBMS and physical storage tier. In doing this, we accept that there may be substan‐
tial data redundancy.

We might be tempted to think that all this design-normalize-denormalize effort is
acceptable because it is a one-off task. This school of thought suggests that the cost of
the work is amortized across the entire lifetime of the system (which includes both
development and production) such that the effort of producing a performant rela‐
tional model is comparatively small compared to the overall cost of the project. This
is an appealing notion, but in many cases it doesn’t match reality, because systems
change not only during development, but also during their production lifetimes.

36 | Chapter 3: Data Modeling with Graphs

The amortized view of data model change, in which costly changes during develop‐
ment are eclipsed by the long-term benefits of a stable model in production, assumes
that systems spend the majority of their time in production environments, and that
these production environments are stable. Though it may be the case that most sys‐
tems spend most of their time in production environments, these environments are
rarely stable. As business requirements change or regulatory requirements evolve, so
must our systems and the data structures on which they are built.

Data models invariably undergo substantial revision during the design and develop‐
ment phases of a project, and in almost every case, these revisions are intended to
accommodate the model to the needs of the applications that will consume it once it
is in production. These initial design influences are so powerful that it becomes
nearly impossible to modify the application and the model once they’re in production
to accommodate things they were not originally designed to do.

The technical mechanism by which we introduce structural change into a database is
called migration, as popularized by application development frameworks such as
Rails. Migrations provide a structured, step-wise approach to applying a set of data‐
base refactorings to a database so that it can be responsibly evolved to meet the
changing needs of the applications that use it. Unlike code refactorings, however,
which we typically accomplish in a matter of seconds or minutes, database refactor‐
ings can take weeks or months to complete, with downtime for schema changes.
Database refactoring is slow, risky, and expensive.

The problem, then, with the denormalized model is its resistance to the kind of rapid
evolution the business demands of its systems. As we’ve seen with the data center
example, the changes imposed on the whiteboard model over the course of imple‐
menting a relational solution create a gulf between the conceptual world and the way
the data is physically laid out; this conceptual-relational dissonance all but prevents
business stakeholders from actively collaborating in the further evolution of a system.
Stakeholder participation stops at the threshold of the relational edifice. On the devel‐
opment side, the difficulties in translating changed business requirements into the
underlying and entrenched relational structure cause the evolution of the system to
lag behind the evolution of the business. Without expert assistance and rigorous
planning, migrating a denormalized database poses several risks. If the migrations fail
to maintain storage-affinity, performance can suffer. Just as serious, if deliberately
duplicated data is left orphaned after a migration, we risk compromising the integrity
of the data as a whole.

A Comparison of Relational and Graph Modeling | 37

http://guides.rubyonrails.org/migrations.html
http://databaserefactoring.com/
http://databaserefactoring.com/

Graph Modeling in a Systems Management Domain
We’ve seen how relational modeling and its attendant implementation activities take
us down a path that divorces an application’s underlying storage model from the con‐
ceptual worldview of its stakeholders. Relational databases—with their rigid schemas
and complex modeling characteristics—are not an especially good tool for supporting
rapid change. What we need is a model that is closely aligned with the domain, but
that doesn’t sacrifice performance, and that supports evolution while maintaining the
integrity of the data as it undergoes rapid change and growth. That model is the
graph model. How, then, does this process differ when realized with a graph data
model?

In the early stages of analysis, the work required of us is similar to the relational
approach: using lo-fi methods, such as whiteboard sketches, we describe and agree
upon the domain. After that, however, the methodologies diverge. Instead of trans‐
forming a domain model’s graph-like representation into tables, we enrich it, with the
aim of producing an accurate representation of the parts of the domain relevant to
our application goals. That is, for each entity in our domain, we ensure that we’ve
captured its relevant roles as labels, its attributes as properties, and its connections to
neighboring entities as relationships.

Remember, the domain model is not a transparent, context-free
window onto reality: rather, it is a purposeful abstraction of those
aspects of our domain relevant to our application goals. There’s
always some motivation for creating a model. By enriching our
first-cut domain graph with additional properties and relation‐
ships, we effectively produce a graph model attuned to our applica‐
tion’s data needs; that is, we provide for answering the kinds of
questions our application will ask of its data.

Helpfully, domain modeling is completely isomorphic to graph modeling. By ensur‐
ing the correctness of the domain model, we’re implicitly improving the graph model,
because in a graph database what you sketch on the whiteboard is typically what you
store in the database.

In graph terms, what we’re doing is ensuring that each node has the appropriate role-
specific labels and properties so that it can fulfill its dedicated data-centric domain
responsibilities. But we’re also ensuring that every node is placed in the correct
semantic context; we do this by creating named and directed (and often attributed)
relationships between nodes to capture the structural aspects of the domain. For our
data center scenario, the resulting graph model looks like Figure 3-5.

38 | Chapter 3: Data Modeling with Graphs

Figure 3-5. Example graph for the data center deployment scenario

And logically, that’s all we need to do. No tables, no normalization, no denormaliza‐
tion. Once we have an accurate representation of our domain model, moving it into
the database is trivial, as we shall see shortly.

Note that most of the nodes here have two labels: both a specific
type label (such as Database, App, or Server), and a more general-
purpose Asset label. This allows us to target particular types of
asset with some of our queries, and all assets, irrespective of type,
with other queries.

Testing the Model
Once we’ve refined our domain model, the next step is to test how suitable it is for
answering realistic queries. Although graphs are great for supporting a continuously
evolving structure (and therefore for correcting any erroneous earlier design deci‐

A Comparison of Relational and Graph Modeling | 39

sions), there are a number of design decisions that, once they are baked into our
application, can hamper us further down the line. By reviewing the domain model
and the resulting graph model at this early stage, we can avoid these pitfalls. Subse‐
quent changes to the graph structure will then be driven solely by changes in the busi‐
ness, rather than by the need to mitigate poor design decisions.

In practice there are two techniques we can apply here. The first, and simplest, is just
to check that the graph reads well. We pick a start node, and then follow relationships
to other nodes, reading each node’s labels and each relationship’s name as we go.
Doing so should create sensible sentences. For our data center example, we can read
off sentences like “The App, which consists of App Instances 1, 2, and 3, uses the
Database, which resides on Database Servers 1, 2 and 3,” and “Server 3 runs VM 31,
which hosts App Instance 3.” If reading the graph in this way makes sense, we can be
reasonably confident it is faithful to the domain.

To further increase our confidence, we also need to consider the queries we’ll run on
the graph. Here we adopt a design for queryability mindset. To validate that the graph
supports the kinds of queries we expect to run on it, we must describe those queries.
This requires us to understand our end users’ goals; that is, the use cases to which the
graph is to be applied. In our data center scenario, for example, one of our use cases
involves end users reporting that an application or service is unresponsive. To help
these users, we must identify the cause of the unresponsiveness and then resolve it. To
determine what might have gone wrong we need to identify what’s on the path
between the user and the application, and also what the application depends on to
deliver functionality to the user. Given a particular graph representation of the data
center domain, if we can craft a Cypher query that addresses this use case, we can be
even more certain that the graph meets the needs of our domain.

Continuing with our example use case, let’s assume we can update the graph from our
regular network monitoring tools, thereby providing us with a near real-time view of
the state of the network. With a large physical network, we might use Complex Event
Processing (CEP) to process streams of low-level network events, updating the graph
only when the CEP solution raises a significant domain event. When a user reports a
problem, we can limit the physical fault-finding to problematic network elements
between the user and the application and the application and its dependencies. In our
graph we can find the faulty equipment with the following query:

MATCH (user:User)-[*1..5]-(asset:Asset)
WHERE user.name = 'User 3' AND asset.status = 'down'
RETURN DISTINCT asset

The MATCH clause here describes a variable length path between one and five relation‐
ships long. The relationships are unnamed and undirected (there’s no colon or rela‐
tionship name between the square brackets, and no arrow-tip to indicate direction).
This allows us to match paths such as:

40 | Chapter 3: Data Modeling with Graphs

http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing

(user)-[:USER_OF]->(app)
(user)-[:USER_OF]->(app)-[:USES]->(database)
(user)-[:USER_OF]->(app)-[:USES]->(database)-[:SLAVE_OF]->(another-database)
(user)-[:USER_OF]->(app)-[:RUNS_ON]->(vm)
(user)-[:USER_OF]->(app)-[:RUNS_ON]->(vm)-[:HOSTED_BY]->(server)
(user)-[:USER_OF]->(app)-[:RUNS_ON]->(vm)-[:HOSTED_BY]->(server)-[:IN]->(rack)
(user)-[:USER_OF]->(app)-[:RUNS_ON]->(vm)-[:HOSTED_BY]->(server)-[:IN]->(rack)
 <-[:IN]-(load-balancer)

That is, starting from the user who reported the problem, we MATCH against all assets
in the graph along an undirected path of length 1 to 5. We add asset nodes that have a
status property with a value of down to our results. If a node doesn’t have a status
property, it won’t be included in the results. RETURN DISTINCT asset ensures that
unique assets are returned in the results, no matter how many times they are
matched.

Given that such a query is readily supported by our graph, we gain confidence that
the design is fit for purpose.

Cross-Domain Models
Business insight often depends on us understanding the hidden network effects at
play in a complex value chain. To generate this understanding, we need to join
domains together without distorting or sacrificing the details particular to each
domain. Property graphs provide a solution here. Using a property graph, we can
model a value chain as a graph of graphs in which specific relationships connect and
distinguish constituent subdomains.

In Figure 3-6, we see a graph representation of the value chain surrounding the pro‐
duction and consumption of Shakespearean literature. Here we have high-quality
information about Shakespeare and some of his plays, together with details of one of
the companies that has recently performed the plays, plus a theatrical venue, and
some geospatial data. We’ve even added a review. In all, the graph describes and con‐
nects three different domains. In the diagram we’ve distinguished these three
domains with differently formatted relationships: dotted for the literary domain,
solid for the theatrical domain, and dashed for the geospatial domain.

Looking first at the literary domain, we have a node that represents Shakespeare him‐
self, with a label Author and properties firstname:'William' and lastname:'Sha
kespeare'. This node is connected to a pair of nodes, each of which is labeled Play,
representing the plays Julius Caesar (title:'Julius Caesar') and The Tempest
(title:'The Tempest'), via relationships named WROTE_PLAY.

Cross-Domain Models | 41

Figure 3-6. Three domains in one graph

Reading this subgraph left-to-right, following the direction of the relationship arrows,
tells us that the author William Shakespeare wrote the plays Julius Caesar and The Tem‐
pest. If we’re interested in provenance, each WROTE_PLAY relationship has a date prop‐

42 | Chapter 3: Data Modeling with Graphs

erty, which tells us that Julius Caesar was written in 1599 and The Tempest in 1610. It’s
a trivial matter to see how we could add the rest of Shakespeare’s works—the plays
and the poems—into the graph simply by adding more nodes to represent each work,
and joining them to the Shakespeare node via WROTE_PLAY and WROTE_POEM relation‐
ships.

By tracing the WROTE_PLAY relationship arrows with our finger,
we’re effectively doing the kind of work that a graph database per‐
forms, albeit at human speed rather than computer speed. As we’ll
see later, this simple traversal operation is the building block for
arbitrarily sophisticated graph queries.

Turning next to the theatrical domain, we’ve added some information about the
Royal Shakespeare Company (often known simply as the RSC) in the form of a node
with the label Company and a property key name whose value is RSC. The theatrical
domain is, unsurprisingly, connected to the literary domain. In our graph, this is
reflected by the fact that the RSC has PRODUCED versions of Julius Caesar and The Tem‐
pest. In turn, these theatrical productions are connected to the plays in the literary
domain, using PRODUCTION_OF relationships.

The graph also captures details of specific performances. For example, the RSC’s pro‐
duction of Julius Caesar was performed on July 29, 2012 as part of the RSC’s summer
touring season. If we’re interested in the performance venue, we simply follow the
outgoing VENUE relationship from the performance node to find that the play was per‐
formed at the Theatre Royal, represented by a node labeled Venue.

The graph also allows us to capture reviews of specific performances. In our sample
graph we’ve included just one review, for the July 29 performance, written by the user
Billy. We can see this in the interplay of the performance, rating, and user nodes. In
this case we have a node labeled User representing Billy (with property
name:'Billy') whose outgoing WROTE_REVIEW relationship connects to a node repre‐
senting his review. The Review node contains a numeric rating property and a free-
text review property. The review is linked to a specific Performance through an
outgoing REVIEW_OF relationship. To scale this up to many users, many reviews, and
many performances, we simply add more nodes with the appropriate labels and more
identically named relationships to the graph.

The third domain, that of geospatial data, comprises a simple hierarchical tree of
places. This geospatial domain is connected to the other two domains at several
points in the graph. The City of Stratford upon Avon (with property name:'Strat
ford upon Avon') is connected to the literary domain as a result of its being Shake‐
speare’s birthplace (Shakespeare was BORN_IN Stratford). It is connected to the
theatrical domain insofar as it is home to the RSC (the RSC is BASED_IN Stratford). To

Cross-Domain Models | 43

learn more about Stratford upon Avon’s geography, we can follow its outgoing COUN
TRY relationship to discover it is in the Country named England.

Note how the graph reduces instances of duplicated data across
domains. Stratford upon Avon, for example, participates in all three
domains.

The graph makes it possible to capture more complex geospatial data. Looking at the
labels on the nodes to which the Theatre Royal is connected, for example, we see that
it is located on Grey Street, which is in the City of Newcastle, which is in the
County of Tyne and Wear, which ultimately is in the Country of England—just like
Stratford upon Avon.

Relationships and Labels
We’ve used relationship names and node labels here to structure the graph and estab‐
lish the semantic context for each node.

A relationship’s name and direction help establish semantic context by connecting
two nodes in a meaningful way. By following an outgoing WROTE_REVIEW relationship,
for example, we understand that the node at the end of that relationship represents a
review.

Relationships help both partition a graph into separate domains and connect those
domains. As we can see from our Shakespeare example, the property graph model
makes it easy to unite different domains—each with its own particular entities, labels,
properties, and relationships—in a way that not only makes each domain accessible,
but also generates insight from the connections between domains.

Labels represent the roles each node plays in our domain. Because a node can be con‐
nected to many other nodes, some of them perhaps from very different domains, a
node can potentially fulfill several different roles.

Labels are first class citizens of the property graph model. Besides indicating the roles
different nodes play in our domain, labels also allow us to associate metadata with
nodes to which those labels are attached. We can, for example, index all nodes with a
User label, or require that all nodes with a Customer label have a unique email prop‐
erty value.

44 | Chapter 3: Data Modeling with Graphs

Creating the Shakespeare Graph
To create the Shakespeare graph shown in Figure 3-6, we use CREATE to build the
overall structure. This statement is executed by the Cypher runtime within a single
transaction such that once the statement has executed, we can be confident the graph
is present in its entirety in the database. If the transaction fails, no part of the graph
will be present in the database. As we might expect, Cypher has a humane and visual
way of building graphs:

CREATE (shakespeare:Author {firstname:'William', lastname:'Shakespeare'}),
 (juliusCaesar:Play {title:'Julius Caesar'}),
 (shakespeare)-[:WROTE_PLAY {year:1599}]->(juliusCaesar),
 (theTempest:Play {title:'The Tempest'}),
 (shakespeare)-[:WROTE_PLAY {year:1610}]->(theTempest),
 (rsc:Company {name:'RSC'}),
 (production1:Production {name:'Julius Caesar'}),
 (rsc)-[:PRODUCED]->(production1),
 (production1)-[:PRODUCTION_OF]->(juliusCaesar),
 (performance1:Performance {date:20120729}),
 (performance1)-[:PERFORMANCE_OF]->(production1),
 (production2:Production {name:'The Tempest'}),
 (rsc)-[:PRODUCED]->(production2),
 (production2)-[:PRODUCTION_OF]->(theTempest),
 (performance2:Performance {date:20061121}),
 (performance2)-[:PERFORMANCE_OF]->(production2),
 (performance3:Performance {date:20120730}),
 (performance3)-[:PERFORMANCE_OF]->(production1),
 (billy:User {name:'Billy'}),
 (review:Review {rating:5, review:'This was awesome!'}),
 (billy)-[:WROTE_REVIEW]->(review),
 (review)-[:RATED]->(performance1),
 (theatreRoyal:Venue {name:'Theatre Royal'}),
 (performance1)-[:VENUE]->(theatreRoyal),
 (performance2)-[:VENUE]->(theatreRoyal),
 (performance3)-[:VENUE]->(theatreRoyal),
 (greyStreet:Street {name:'Grey Street'}),
 (theatreRoyal)-[:STREET]->(greyStreet),
 (newcastle:City {name:'Newcastle'}),
 (greyStreet)-[:CITY]->(newcastle),
 (tyneAndWear:County {name:'Tyne and Wear'}),
 (newcastle)-[:COUNTY]->(tyneAndWear),
 (england:Country {name:'England'}),
 (tyneAndWear)-[:COUNTRY]->(england),
 (stratford:City {name:'Stratford upon Avon'}),
 (stratford)-[:COUNTRY]->(england),
 (rsc)-[:BASED_IN]->(stratford),
 (shakespeare)-[:BORN_IN]->stratford

The preceding Cypher code does two different things. It creates labeled nodes (and
their properties), and then connects them with relationships (and their relationship

Cross-Domain Models | 45

properties where necessary). For example, CREATE (shakespeare:Author {first
name:'William', lastname:'Shakespeare'}) creates an Author node representing
William Shakespeare. The newly created node is assigned to the identifier shake
speare. This shakespeare identifier is used later in the code to attach relationships to
the underlying node. For example, (shakespeare)-[:WROTE_PLAY {year:1599}]-
>(juliusCaesar) creates a WROTE relationship from Shakespeare to the play Julius
Caesar. This relationship has a year property with value 1599.

Identifiers remain available for the duration of the current query scope, but no longer.
Should we wish to give long-lived names to nodes, we simply create an index for a
particular label and key property combination. We discuss indexes in see “Indexes
and Constraints” on page 47.

Unlike the relational model, these commands don’t introduce
any accidental complexity into the graph. The information meta-
model—that is, the structuring of nodes through labels and rela‐
tionships—is kept separate from the business data, which lives
exclusively as properties. We no longer have to worry about foreign
key and cardinality constraints polluting our real data, because
both are explicit in the graph model in the form of nodes and the
semantically rich relationships that interconnect them.

We can modify the graph at a later point in time in two different ways. We can, of
course, continue using CREATE statements to simply add to the graph. But we can also
use MERGE, which has the semantics of ensuring that a particular subgraph structure of
nodes and relationships—some of which may already exist, some of which may be
missing—is in place once the command has executed. In practice, we tend to use
CREATE when we’re adding to the graph and don’t mind duplication, and MERGE when
duplication is not permitted by the domain.

Beginning a Query
Now that we have a graph, we can start to query it. In Cypher we always begin our
queries from one or more well-known starting points in the graph—what are called
bound nodes. Cypher uses any labels and property predicates supplied in the MATCH
and WHERE clauses, together with metadata supplied by indexes and constraints, to
find the starting points that anchor our graph patterns.

For instance, if we wanted to discover more about performances at the Theatre Royal,
we’d start our query from the Theatre Royal node, which we find by specifying its
Venue label and name property. If, however, we were more interested in a person’s
reviews, we’d use that person’s node as a starting point for our query, matching on the
User label and name property combination.

46 | Chapter 3: Data Modeling with Graphs

Let’s assume we want to find out about all the Shakespeare events that have taken
place in the Theatre Royal in Newcastle. These three things—an Author named
Shakespeare, a Venue called Theatre Royal, and a City with the name Newcastle—
provide the starting points for our new query:

MATCH (theater:Venue {name:'Theatre Royal'}),
 (newcastle:City {name:'Newcastle'}),
 (bard:Author {lastname:'Shakespeare'})

This MATCH clause identifies all Venue nodes with a property key name and property
value Theatre Royal and binds them to the identifier theater. (What if there are
many Theatre Royal nodes in this graph? We’ll deal with that shortly.) As the next
step, we find the node representing the City of Newcastle; we bind this node to the
identifier newcastle. Finally, as with our earlier Shakespeare query, to find the Shake‐
speare node itself, we look for a node with the label Author and a lastname property
whose value is Shakespeare. We bind the result of this lookup to bard.

From now on in our query, wherever we use the identifiers theater, newcastle, and
bard in a pattern, that pattern will be anchored to the real nodes associated with these
three identifiers. In effect, this information binds the query to a specific part of the
graph, giving us starting points from which to match patterns in the immediately sur‐
rounding nodes and relationships.

Indexes and Constraints
Indexes help optimize the process of finding specific nodes.

Most of the time, when querying a graph, we’re happy to let the traversal process dis‐
cover the nodes and relationships that meet our information goals. By following rela‐
tionships that match a specific graph pattern, we encounter elements that contribute
to a query’s result. However, there are certain situations that require us to pick out
specific nodes directly, rather than discover them over the course of a traversal. Iden‐
tifying the starting nodes for a traversal, for example, requires us to find one or more
specific nodes based on some combination of labels and property values.

To support efficient node lookup, Cypher allows us to create indexes per label and
property combinations. For unique property values we can also specify constraints
that assure uniqueness. With our Shakespeare graph, where we need to look up ven‐
ues directly, we might choose to index all nodes labeled Venue based on their name
property value. The command to do this is:

CREATE INDEX ON :Venue(name)

To ensure that all country names are unique, we can add a uniqueness constraint:

CREATE CONSTRAINT ON (c:Country) ASSERT c.name IS UNIQUE

Cross-Domain Models | 47

On an existing database, indexes are populated in the background and become avail‐
able once they are built.

Lookups don’t require indexes, but their performance can be improved by adding an
index. MATCH (theater:Venue {name:'Theatre Royal'}) will work both with and
without an index. But in a large dataset, with many thousands of venues, an index will
help improve performance. Without an index, picking the Theatre Royal as the start‐
ing point for a query will cause Neo4j to scan and filter all the nodes labeled Venue.

Declaring Information Patterns to Find
The MATCH clause in Cypher is where the magic happens. As much as the CREATE
clause tries to convey intent using ASCII art to describe the desired state of the graph,
so the MATCH clause uses the same syntax to describe patterns to discover in the data‐
base. We’ve already looked at a very simple MATCH clause; now we’ll look at a more
complex pattern that finds all the Shakespeare performances at Newcastle’s Theatre
Royal:

MATCH (theater:Venue {name:'Theatre Royal'}),
 (newcastle:City {name:'Newcastle'}),
 (bard:Author {lastname:'Shakespeare'}),
 (newcastle)<-[:STREET|CITY*1..2]-(theater)
 <-[:VENUE]-()-[:PERFORMANCE_OF]->()
 -[:PRODUCTION_OF]->(play)<-[:WROTE_PLAY]-(bard)
RETURN DISTINCT play.title AS play

This MATCH pattern uses several syntactic elements we’ve not yet come across. As well
as anchored nodes that we discussed earlier, it uses pattern nodes, arbitrary depth
paths, and anonymous nodes. Let’s take a look at each of these in turn:

• The identifiers newcastle, theater, and bard are anchored to real nodes in the
graph based on the specified label and property values.

• If there are several Theatre Royals in our database (the British cities of Plymouth,
Bath, Winchester, and Norwich all have a Theatre Royal, for example), then thea
ter will be bound to all these nodes. To restrict our pattern to the Theatre Royal
in Newcastle, we use the syntax <-[:STREET|CITY*1..2]-, which means the thea
ter node can be no more than two outgoing STREET and/or CITY relationships
away from the node representing the city of Newcastle-upon-Tyne. By providing
a variable depth path, we allow for relatively fine-grained address hierarchies
(comprising, for example, street, district or borough, and city).

• The syntax (theater)<-[:VENUE]-() uses the anonymous node, hence the empty
parentheses. Knowing the data as we do, we expect the anonymous node to
match performances, but because we’re not interested in using the details of indi‐

48 | Chapter 3: Data Modeling with Graphs

vidual performances elsewhere in the query or in the results, we don’t name the
node or bind it to an identifier.

• We use the anonymous node again to link the performance to the production
(()-[:PERFORMANCE_OF]->()). If we were interested in returning details of per‐
formances and productions, we would replace these occurrences of the anony‐
mous node with identifiers: (performance)-[:PERFORMANCE_OF]-

>(production).
• The remainder of the MATCH is a straightforward (play)<-[:WROTE_PLAY]-
(bard) node-to-relationship-to-node pattern match. This pattern ensures that we
only return plays written by Shakespeare. Because (play) is joined to the anony‐
mous production node, and by way of that to the performance node, we can
safely infer that it has been performed in Newcastle’s Theatre Royal. In naming
the play node we bring it into scope so that we can use it later in the query.

Running this query returns all the Shakespeare plays that have been performed at the
Theatre Royal in Newcastle:

+-----------------+
| play |
+-----------------+
| "Julius Caesar" |
| "The Tempest" |
+-----------------+
2 rows

This is great if we’re interested in the entire history of Shakespeare at the Theatre
Royal, but if we’re interested only in specific plays, productions, or performances, we
need somehow to constrain the set of results.

Constraining Matches
We constrain graph matches using the WHERE clause. WHERE allows us to eliminate
matched subgraphs from the results by stipulating one or more of the following:

• That certain paths must be present (or absent) in the matched subgraphs.
• That nodes must have certain labels or relationships with certain names.
• That specific properties on matched nodes and relationships must be present (or

absent), irrespective of their values.
• That certain properties on matched nodes and relationships must have specific

values.
• That other predicates must be satisfied (e.g., that performances must have occur‐

red on or before a certain date).

Cross-Domain Models | 49

Compared to the MATCH clause, which describes structural relationships and assigns
identifiers to parts of the pattern, WHERE constrains the current pattern match. Let’s
imagine, for example, that we want to restrict the range of plays in our results to those
from Shakespeare’s final period, which is generally accepted to have begun around
1608. We do this by filtering on the year property of matched WROTE_PLAY relation‐
ships. To enable this filtering, we adjust the MATCH clause, binding the WROTE_PLAY
relationship to an identifier, which we’ll call w (relationship identifiers come before
the colon that prefixes a relationship’s name). We then add a WHERE clause that filters
on this relationship’s year property:

MATCH (theater:Venue {name:'Theatre Royal'}),
 (newcastle:City {name:'Newcastle'}),
 (bard:Author {lastname:'Shakespeare'}),
 (newcastle)<-[:STREET|CITY*1..2]-(theater)
 <-[:VENUE]-()-[:PERFORMANCE_OF]->()
 -[:PRODUCTION_OF]->(play)<-[w:WROTE_PLAY]-(bard)
WHERE w.year > 1608
RETURN DISTINCT play.title AS play

Adding this WHERE clause means that for each successful match, the database checks
that the WROTE_PLAY relationship between the Shakespeare node and the matched play
has a year property with a value greater than 1608. Matches with a WROTE_PLAY rela‐
tionship whose year value is greater than 1608 will pass the test; these plays will then
be included in the results. Matches that fail the test will not be included in the results.
By adding this clause, we ensure that only plays from Shakespeare’s late period are
returned:

+---------------+
| play |
+---------------+
| "The Tempest" |
+---------------+
1 row

Processing Results
Cypher’s RETURN clause allows us to perform some processing on the matched graph
data before returning it to the user (or the application) that executed the query.

As we’ve seen in the previous queries, the simplest thing we can do is return the plays
we’ve found:

RETURN DISTINCT play.title AS play

DISTINCT ensures that we return unique results. Because each play can be performed
multiple times in the same theater, sometimes in different productions, we can end
up with duplicate play titles. DISTINCT filters these out.

50 | Chapter 3: Data Modeling with Graphs

We can enrich this result in several ways, including aggregating, ordering, filtering,
and limiting the returned data. For example, if we’re only interested in the number of
plays that match our criteria, we apply the count function:

RETURN count(play)

If we want to rank the plays by the number of performances, we’ll need first to bind
the PERFORMANCE_OF relationship in the MATCH clause to an identifier, called p, which
we can then count and order:

MATCH (theater:Venue {name:'Theatre Royal'}),
 (newcastle:City {name:'Newcastle'}),
 (bard:Author {lastname:'Shakespeare'}),
 (newcastle)<-[:STREET|CITY*1..2]-(theater)
 <-[:VENUE]-()-[p:PERFORMANCE_OF]->()
 -[:PRODUCTION_OF]->(play)<-[:WROTE_PLAY]-(bard)
RETURN play.title AS play, count(p) AS performance_count
ORDER BY performance_count DESC

The RETURN clause here counts the number of PERFORMANCE_OF relationships using the
identifier p (which is bound to the PERFORMANCE_OF relationships in the MATCH clause)
and aliases the result as performance_count. It then orders the results based on per
formance_count, with the most frequently performed play listed first:

+-------------------------------------+
| play | performance_count |
+-------------------------------------+
| "Julius Caesar" | 2 |
| "The Tempest" | 1 |
+-------------------------------------+
2 rows

Query Chaining
Before we leave our brief tour of Cypher, there is one more feature that is useful to
know about—the WITH clause. Sometimes it’s just not practical (or possible) to do
everything you want in a single MATCH. The WITH clause allows us to chain together
several matches, with the results of the previous query part being piped into the next.
In the following example we find the plays written by Shakespeare, and order them
based on the year in which they were written, latest first. Using WITH, we then pipe the
results to the RETURN clause, which uses the collect function to produce a comma-
delimited list of play titles:

MATCH (bard:Author {lastname:'Shakespeare'})-[w:WROTE_PLAY]->(play)
WITH play
ORDER BY w.year DESC
RETURN collect(play.title) AS plays

Executing this query against our sample graph produces the following result:

Cross-Domain Models | 51

+---------------------------------+
| plays |
+---------------------------------+
| ["The Tempest","Julius Caesar"] |
+---------------------------------+
1 row

WITH can be used to separate read-only clauses from write-centric SET operations.
More generally, WITH helps divide and conquer complex queries by allowing us to
break a single complex query into several simpler patterns.

Common Modeling Pitfalls
Although graph modeling is a very expressive way of mastering the complexity in a
problem domain, expressivity alone is no guarantee that a particular graph is fit for
purpose. In fact, there have been occasions where even those of us who work with
graphs every day make mistakes. In this section we’ll take a look at a model that went
wrong. In so doing, we’ll learn how to identify problems early in the modeling effort,
and how to fix them.

Email Provenance Problem Domain
This example involves the analysis of email communications. Communication pat‐
tern analysis is a classic graph problem that involves interrogating the graph to dis‐
cover subject matter experts, key influencers, and the communication channels
through which information is propagated. On this occasion, however, instead of
looking for positive role models (in the form of experts), we were searching for
rogues: that is, suspicious patterns of email communication that fall foul of corporate
governance—or even break the law.

A Sensible First Iteration?
In analyzing the domain we learned about all the clever patterns that potential
wrong-doers adopt to cover their tracks: using blind-copying (BCC), using aliases—
even conducting conversations with those aliases to mimic legitimate interactions
between real business stakeholders. Based on this analysis we produced a representa‐
tive graph model that seemed to capture all the relevant entities and their activities.

To illustrate this early model, we’ll use Cypher’s CREATE clause to generate some nodes
representing users and aliases. We’ll also generate a relationship that shows that Alice
is one of Bob’s known aliases. (We’ll assume that the underlying graph database is
indexing these nodes so that we can later look them up and use them as starting
points in our queries.) Here’s the Cypher query to create our first graph:

52 | Chapter 3: Data Modeling with Graphs

CREATE (alice:User {username:'Alice'}),
 (bob:User {username:'Bob'}),
 (charlie:User {username:'Charlie'}),
 (davina:User {username:'Davina'}),
 (edward:User {username:'Edward'}),
 (alice)-[:ALIAS_OF]->(bob)

The resulting graph model makes it easy to observe that Alice is an alias of Bob, as we
see in Figure 3-7.

Figure 3-7. Users and aliases

Now we join the users together through the emails they’ve exchanged:

MATCH (bob:User {username:'Bob'}),
 (charlie:User {username:'Charlie'}),
 (davina:User {username:'Davina'}),
 (edward:User {username:'Edward'})
CREATE (bob)-[:EMAILED]->(charlie),
 (bob)-[:CC]->(davina),
 (bob)-[:BCC]->(edward)

At first sight this looks like a reasonably faithful representation of the domain. Each
clause lends itself to being read comfortably left to right, thereby passing one of our
informal tests for correctness. For example, we can see from the graph that “Bob
emailed Charlie.” The limitations of this model only emerge when it becomes neces‐
sary to determine exactly what was exchanged by the potential miscreant Bob (and
his alter ego Alice). We can see that Bob CC’d or BCC’d some people, but we can’t see
the most important thing of all: the email itself.

Common Modeling Pitfalls | 53

This first modeling attempt results in a star-shaped graph with Bob at the center. His
actions of emailing, copying, and blind-copying are represented by relationships that
extend from Bob to the nodes representing the recipients of his mail. As we see in
Figure 3-8, however, the most critical element of the data, the actual email, is missing.

Figure 3-8. Missing email node leads to lost information

This graph structure is lossy, a fact that becomes evident when we pose the following
query:

MATCH (bob:User {username:'Bob'})-[e:EMAILED]->
 (charlie:User {username:'Charlie'})
RETURN e

This query returns the EMAILED relationships between Bob and Charlie (there will
likely be one for each email that Bob has sent to Charlie). This tells us that emails
have been exchanged, but it tells us nothing about the emails themselves:

+----------------+
| e |
+----------------+
| :EMAILED[1] {} |
+----------------+
1 row

54 | Chapter 3: Data Modeling with Graphs

We might think we can remedy the situation by adding properties to the EMAILED
relationship to represent an email’s attributes, but that’s just playing for time. Even
with properties attached to each EMAILED relationship, we would still be unable to
correlate between the EMAILED, CC, and BCC relationships; that is, we would be unable
to say which emails were copied versus which were blind-copied, and to whom.

The fact is we’ve unwittingly made a simple modeling mistake, caused mostly by a lax
use of English rather than any shortcomings of graph theory. Our everyday use of
language has led us to focus on the verb “emailed” rather than the email itself, and as
a result we’ve produced a model lacking true domain insight.

In English, it’s easy and convenient to shorten the phrase “Bob sent an email to Char‐
lie” to “Bob emailed Charlie.” In most cases, that loss of a noun (the actual email)
doesn’t matter because the intent is still clear. But when it comes to our forensics sce‐
nario, these elided statements are problematic. The intent remains the same, but the
details of the number, contents, and recipients of the emails that Bob sent have been
lost through having been folded into a relationship EMAILED, rather than being mod‐
eled explicitly as nodes in their own right.

Second Time’s the Charm
To fix our lossy model, we need to insert email nodes to represent the real emails
exchanged within the business, and expand our set of relationship names to encom‐
pass the full set of addressing fields that email supports. Now instead of creating lossy
structures like this:

CREATE (bob)-[:EMAILED]->(charlie)

we’ll instead create more detailed structures, like this:

CREATE (email_1:Email {id:'1', content:'Hi Charlie, ... Kind regards, Bob'}),
 (bob)-[:SENT]->(email_1),
 (email_1)-[:TO]->(charlie),
 (email_1)-[:CC]->(davina),
 (email_1)-[:CC]->(alice),
 (email_1)-[:BCC]->(edward)

This results in another star-shaped graph structure, but this time the email is at the
center, as we see in Figure 3-9.

Common Modeling Pitfalls | 55

Figure 3-9. Star graph based on an email

Of course, in a real system there will be many more of these emails, each with its own
intricate web of interactions for us to explore. It’s quite easy to imagine that over time
many more CREATE statements are executed as the email server logs the interactions,
like so (we’ve omitted anchor nodes for brevity):

CREATE (email_1:Email {id:'1', content:'email contents'}),
 (bob)-[:SENT]->(email_1),
 (email_1)-[:TO]->(charlie),
 (email_1)-[:CC]->(davina),
 (email_1)-[:CC]->(alice),
 (email_1)-[:BCC]->(edward);

CREATE (email_2:Email {id:'2', content:'email contents'}),
 (bob)-[:SENT]->(email_2),
 (email_2)-[:TO]->(davina),
 (email_2)-[:BCC]->(edward);

CREATE (email_3:Email {id:'3', content:'email contents'}),
 (davina)-[:SENT]->(email_3),
 (email_3)-[:TO]->(bob),
 (email_3)-[:CC]->(edward);

CREATE (email_4:Email {id:'4', content:'email contents'}),
 (charlie)-[:SENT]->(email_4),
 (email_4)-[:TO]->(bob),

56 | Chapter 3: Data Modeling with Graphs

 (email_4)-[:TO]->(davina),
 (email_4)-[:TO]->(edward);

CREATE (email_5:Email {id:'5', content:'email contents'}),
 (davina)-[:SENT]->(email_5),
 (email_5)-[:TO]->(alice),
 (email_5)-[:BCC]->(bob),
 (email_5)-[:BCC]->(edward);

This leads to the more complex, and interesting, graph we see in Figure 3-10.

Figure 3-10. A graph of email interactions

Common Modeling Pitfalls | 57

We can now query this graph to identify potentially suspect behavior:

MATCH (bob:User {username:'Bob'})-[:SENT]->(email)-[:CC]->(alias),
 (alias)-[:ALIAS_OF]->(bob)
RETURN email.id

Here we retrieve all the emails that Bob has sent where he’s CC’d one of his own
aliases. Any emails that match this pattern are indicative of rogue behavior. And
because both Cypher and the underlying graph database have graph affinity, these
queries—even over large datasets—run very quickly. This query returns the following
results:

+--+
| email |
+--+
| Node[6]{id:"1",content:"email contents"} |
+--+
1 row

Evolving the Domain
As with any database, our graph serves a system that is likely to evolve over time. So
what should we do when the graph evolves? How do we know what breaks, or indeed,
how do we even tell that something has broken? The fact is, we can’t completely avoid
migrations in a graph database: they’re a fact of life, just as with any data store. But in
a graph database they’re usually a lot simpler.

In a graph, to add new facts or compositions, we tend to add new nodes and relation‐
ships rather than change the model in place. Adding to the graph using new kinds of
relationships will not affect any existing queries, and is completely safe. Changing the
graph using existing relationship types, and changing the properties (not just the
property values) of existing nodes might be safe, but we need to run a representative
set of queries to maintain confidence that the graph is still fit for purpose after the
structural changes. However, these activities are precisely the same kinds of actions
we perform during normal database operation, so in a graph world a migration really
is just business as usual.

At this point we have a graph that describes who sent and received emails, as well as
the content of the emails themselves. But of course, one of the joys of email is that
recipients can forward on or reply to an email they’ve received. This increases inter‐
action and knowledge sharing, but in some cases leaks critical business information.
Since we’re looking for suspicious communication patterns, it makes sense for us to
also take into account forwarding and replies.

At first glance, there would appear to be no need to use database migrations to update
our graph to support our new use case. The simplest additions we can make involve
adding FORWARDED and REPLIED_TO relationships to the graph, as shown in

58 | Chapter 3: Data Modeling with Graphs

Figure 3-11. Doing so won’t affect any preexisting queries because they aren’t coded
to recognize the new relationships.

Figure 3-11. A naive, lossy approach fails to appreciate that forwarded and replied-to
emails are first-class entities

However, this approach quickly proves inadequate. Adding FORWARDED or REPLIED
relationships is naive and lossy in much the same way as our original use of an
EMAILED relationship. To illustrate this, consider the following CREATE statements:

...
MATCH (email:Email {id:'1234'})
CREATE (alice)-[:REPLIED_TO]->(email)
CREATE (davina)-[:FORWARDED]->(email)-[:TO]->(charlie)

In the first CREATE statement we’re trying to record the fact that Alice replied to a par‐
ticular email. The statement makes logical sense when read from left to right, but the
sentiment is lossy—we can’t tell whether Alice replied to all the recipients of email or
directly to the author. All we know is that some reply was sent. The second statement
also reads well from left to right: Davina forwarded email to Charlie. But we already
use the TO relationship to indicate that a given email has a TO header identifying the
primary recipients. Reusing TO here makes it impossible to tell who was a recipient
and who received a forwarded version of an email.

To resolve this problem, we have to consider the fundamentals of the domain. A reply
to an email is itself a new Email, but it is also a Reply. In other words, the reply has
two roles, which in the graph can be represented by attaching two labels, Email and
Reply, to the reply node. Whether the reply is to the original sender, all recipients, or
a subset can be easily modeled using the same familiar TO, CC, and BCC relationships,
while the original email itself can be referenced via a REPLY_TO relationship. Here’s a

Common Modeling Pitfalls | 59

revised series of writes resulting from several email actions (again, we’ve omitted the
necessary anchoring of nodes):

CREATE (email_6:Email {id:'6', content:'email'}),
 (bob)-[:SENT]->(email_6),
 (email_6)-[:TO]->(charlie),
 (email_6)-[:TO]->(davina);

CREATE (reply_1:Email:Reply {id:'7', content:'response'}),
 (reply_1)-[:REPLY_TO]->(email_6),
 (davina)-[:SENT]->(reply_1),
 (reply_1)-[:TO]->(bob),
 (reply_1)-[:TO]->(charlie);

CREATE (reply_2:Email:Reply {id:'8', content:'response'}),
 (reply_2)-[:REPLY_TO]->(email_6),
 (bob)-[:SENT]->(reply_2),
 (reply_2)-[:TO]->(davina),
 (reply_2)-[:TO]->(charlie),
 (reply_2)-[:CC]->(alice);

CREATE (reply_3:Email:Reply {id:'9', content:'response'}),
 (reply_3)-[:REPLY_TO]->(reply_1),
 (charlie)-[:SENT]->(reply_3),
 (reply_3)-[:TO]->(bob),
 (reply_3)-[:TO]->(davina);

CREATE (reply_4:Email:Reply {id:'10', content:'response'}),
 (reply_4)-[:REPLY_TO]->(reply_3),
 (bob)-[:SENT]->(reply_4),
 (reply_4)-[:TO]->(charlie),
 (reply_4)-[:TO]->(davina);

This creates the graph in Figure 3-12, which shows numerous replies and replies-to-
replies.

Now it is easy to see who replied to Bob’s original email. First, locate the email of
interest, then match against all incoming REPLY_TO relationships (there may be multi‐
ple replies), and from there match against incoming SENT relationships: this reveals
the sender(s). In Cypher this is simple to express. In fact, Cypher makes it easy to
look for replies-to-replies-to-replies, and so on to an arbitrary depth (though we limit
it to depth four here):

MATCH p=(email:Email {id:'6'})<-[:REPLY_TO*1..4]-(:Reply)<-[:SENT]-(replier)
RETURN replier.username AS replier, length(p) - 1 AS depth
ORDER BY depth

60 | Chapter 3: Data Modeling with Graphs

Figure 3-12. Explicitly modeling replies in high fidelity

Here we capture each matched path, binding it to the identifier p. In the RETURN
clause we then calculate the length of the reply-to chain (subtracting 1 for the SENT
relationship), and return the replier’s name and the depth at which he or she replied.
This query returns the following results:

+-------------------+
| replier | depth |
+-------------------+
"Davina"	1
"Bob"	1
"Charlie"	2
"Bob"	3
+-------------------+
4 rows

We see that both Davina and Bob replied directly to Bob’s original email; that Charlie
replied to one of the replies; and that Bob then replied to one of the replies to a reply.

It’s a similar pattern for a forwarded email, which can be regarded as a new email that
simply happens to contain some of the text of the original email. As with the reply
case, we model the new email explicitly. We also reference the original email from the

Common Modeling Pitfalls | 61

forwarded mail so that we always have detailed and accurate provenance data. The
same applies if the forwarded mail is itself forwarded, and so on. For example, if Alice
(Bob’s alter ego) emails Bob to try to establish separate concrete identities, and then
Bob (wishing to perform some subterfuge) forwards that email on to Charlie, who
then forwards it onto Davina, we actually have three emails to consider. Assuming
the users (and their aliases) are already in the database, in Cypher we’d write that
audit information into the database as follows:

CREATE (email_11:Email {id:'11', content:'email'}),
 (alice)-[:SENT]->(email_11)-[:TO]->(bob);

CREATE (email_12:Email:Forward {id:'12', content:'email'}),
 (email_12)-[:FORWARD_OF]->(email_11),
 (bob)-[:SENT]->(email_12)-[:TO]->(charlie);

CREATE (email_13:Email:Forward {id:'13', content:'email'}),
 (email_13)-[:FORWARD_OF]->(email_12),
 (charlie)-[:SENT]->(email_13)-[:TO]->(davina);

On completion of these writes, our database will contain the subgraph shown in
Figure 3-13.

Figure 3-13. Explicitly modeling email forwarding

Using this graph, we can determine the various paths of a forwarded email chain.

MATCH (email:Email {id:'11'})<-[f:FORWARD_OF*]-(:Forward)
RETURN count(f)

62 | Chapter 3: Data Modeling with Graphs

This query starts at the given email and then matches against all incoming FOR
WARD_OF relationships in the tree of forwarded emails to any depth. These relation‐
ships are bound to an identifier f. To calculate the number of times the email has
been forwarded, we count the number of FORWARD_OF relationships bound to f using
Cypher’s count function. In this example, we see the original email has been forwar‐
ded twice:

+----------+
| count(f) |
+----------+
| 2 |
+----------+
1 row

Identifying Nodes and Relationships
The modeling process can best be summed up as an attempt to create a graph struc‐
ture that expresses the questions we want to ask of our domain. That is, design for
queryability:

1. Describe the client or end-user goals that motivate our model.
2. Rewrite these goals as questions to ask of our domain.
3. Identify the entities and the relationship that appear in these questions.
4. Translate these entities and relationships into Cypher path expressions.
5. Express the questions we want to ask of our domain as graph patterns using path

expressions similar to the ones we used to model the domain.

By examining the language we use to describe our domain, we can very quickly iden‐
tify the core elements in our graph:

• Common nouns become labels: “user” and “email,” for example, become the
labels User and Email.

• Verbs that take an object become relationship names: “sent” and “wrote,” for
example, become SENT and WROTE.

• A proper noun—a person or company’s name, for example—refers to an instance
of a thing, which we model as a node, using one or more properties to capture
that thing’s attributes.

Avoiding Anti-Patterns
In the general case, don’t encode entities into relationships. Use relationships to con‐
vey semantics about how entities are related, and the quality of those relationships.

Identifying Nodes and Relationships | 63

Domain entities aren’t always immediately visible in speech, so we must think care‐
fully about the nouns we’re actually dealing with. Verbing, the language habit whereby
a noun is transformed into a verb, can often hide the presence of a noun and a corre‐
sponding domain entity. Technical and business jargon is particularly rife with such
neologisms: as we’ve seen, we “email” one another, rather than send an email, “google”
for results, rather than search Google.

It’s also important to realize that graphs are a naturally additive structure. It’s quite
natural to add facts in terms of domain entities and how they interrelate using new
nodes and new relationships, even if it feels like we’re flooding the database with a
great deal of data. In general, it’s bad practice to try to conflate data elements at write
time to preserve query-time efficiency. If we model in accordance with the questions
we want to ask of our data, an accurate representation of the domain will emerge.
With this data model in place, we can trust the graph database to perform well at read
time.

Graph databases maintain fast query times even when storing vast
amounts of data. Learning to trust our graph database is important
when learning to structure our graphs without denormalizing
them.

Summary
Graph databases give software professionals the power to represent a problem
domain using a graph, and then persist and query that graph at runtime. We can use
graphs to clearly describe a problem domain; graph databases then allow us to store
this representation in a way that maintains high affinity between the domain and the
data. Further, graph modeling removes the need to normalize and denormalize data
using complex data management code.

Many of us, however, will be new to modeling with graphs. The graphs we create
should read well for queries, while avoiding conflating entities and actions—bad
practices that can lose useful domain knowledge. Although there are no absolute
rights or wrongs to graph modeling, the guidance in this chapter will help you create
graph data that can serve your systems’ needs over many iterations, all the while
keeping pace with code evolution.

Armed with an understanding of graph data modeling, you may now be considering
undertaking a graph database project. In the next chapter we’ll look at what’s involved
in planning and delivering a graph database solution.

64 | Chapter 3: Data Modeling with Graphs

CHAPTER 4

Building a Graph Database Application

In this chapter, we discuss some of the practical issues of working with a graph data‐
base. In previous chapters, we’ve looked at graph data; in this chapter, we’ll apply that
knowledge in the context of developing a graph database application. We’ll look at
some of the data modeling questions that may arise, and at some of the application
architecture choices available to us.

In our experience, graph database applications are highly amenable to being devel‐
oped using the evolutionary, incremental, and iterative software development practi‐
ces in widespread use today. A key feature of these practices is the prevalence of
testing throughout the software development life cycle. Here we’ll show how we
develop our data model and our application in a test-driven fashion.

At the end of the chapter, we’ll look at some of the issues we’ll need to consider when
planning for production.

Data Modeling
We covered modeling and working with graph data in detail in Chapter 3. Here we
summarize some of the more important modeling guidelines, and discuss how imple‐
menting a graph data model fits with iterative and incremental software development
techniques.

65

1 For Agile user stories, see Mike Cohn, User Stories Applied (Addison-Wesley, 2004).

Describe the Model in Terms of the Application’s Needs
The questions we need to ask of the data help identify entities and relationships. Agile
user stories provide a concise means for expressing an outside-in, user-centered view
of an application’s needs, and the questions that arise in the course of satisfying this
need.1 Here’s an example of a user story for a book review web application:

AS A reader who likes a book, I WANT to know which books other readers who like
the same book have liked, SO THAT I can find other books to read.

This story expresses a user need, which motivates the shape and content of our data
model. From a data modeling point of view, the AS A clause establishes a context
comprising two entities—a reader and a book—plus the LIKES relationship that con‐
nects them. The I WANT clause then poses a question: which books have the readers
who like the book I’m currently reading also liked? This question exposes more LIKES
relationships, and more entities: other readers and other books.

The entities and relationships that we’ve surfaced in analyzing the user story quickly
translate into a simple data model, as shown in Figure 4-1.

Figure 4-1. Data model for the book reviews user story

Because this data model directly encodes the question presented by the user story, it
lends itself to being queried in a way that similarly reflects the structure of the ques‐
tion we want to ask of the data, since Alice likes Dune, find books that others who like
Dune have enjoyed:

MATCH (:Reader {name:'Alice'})-[:LIKES]->(:Book {title:'Dune'})
 <-[:LIKES]-(:Reader)-[:LIKES]->(books:Book)
RETURN books.title

66 | Chapter 4: Building a Graph Database Application

Nodes for Things, Relationships for Structure
Though not applicable in every situation, these general guidelines will help us choose
when to use nodes, and when to use relationships:

• Use nodes to represent entities—that is, the things in our domain that are of
interest to us, and which can be labeled and grouped.

• Use relationships both to express the connections between entities and to estab‐
lish semantic context for each entity, thereby structuring the domain.

• Use relationship direction to further clarify relationship semantics. Many rela‐
tionships are asymmetrical, which is why relationships in a property graph are
always directed. For bidirectional relationships, we should make our queries
ignore direction, rather than using two relationships.

• Use node properties to represent entity attributes, plus any necessary entity meta‐
data, such as timestamps, version numbers, etc.

• Use relationship properties to express the strength, weight, or quality of a rela‐
tionship, plus any necessary relationship metadata, such as timestamps, version
numbers, etc.

It pays to be diligent about discovering and capturing domain entities. As we saw in
Chapter 3, it’s relatively easy to model things that really ought to be represented as
nodes using carelessly named relationships instead. If we’re tempted to use a relation‐
ship to model an entity—an email, or a review, for example—we must make certain
that this entity cannot be related to more than two other entities. Remember, a rela‐
tionship must have a start node and an end node—nothing more, nothing less. If we
find later that we need to connect something we’ve modeled as a relationship to more
than two other entities, we’ll have to refactor the entity inside the relationship out
into a separate node. This is a breaking change to the data model, and will likely
require us to make changes to any queries and application code that produce or con‐
sume the data.

Fine-Grained versus Generic Relationships
When designing relationships we should be mindful of the trade-offs between using
fine-grained relationship names versus generic relationships qualified with proper‐
ties. It’s the difference between using DELIVERY_ADDRESS and HOME_ADDRESS versus
ADDRESS {type:'delivery'} and ADDRESS {type:'home'}.

Relationships are the royal road into the graph. Differentiating by relationship name
is the best way of eliminating large swathes of the graph from a traversal. Using one
or more property values to decide whether or not to follow a relationship incurs extra
I/O the first time those properties are accessed because the properties reside in a sep‐
arate store file from the relationships (after that, however, they’re cached).

Data Modeling | 67

We use fine-grained relationships whenever we have a closed set of relationship
names. Weightings—as required by a shortest-weighted-path algorithm—rarely com‐
prise a closed set, and are usually best represented as properties on relationships.

Sometimes, however, we have a closed set of relationships, but in some traversals we
want to follow specific kinds of relationships within that set, whereas in others we
want to follow all of them, irrespective of type. Addresses are a good example. Follow‐
ing the closed-set principle, we might choose to create HOME_ADDRESS, WORK_ADDRESS,
and DELIVERY_ADDRESS relationships. This allows us to follow specific kinds of
address relationships (DELIVERY_ADDRESS, for example) while ignoring all the rest.
But what do we do if we want to find all addresses for a user? There are a couple of
options here. First, we can encode knowledge of all the different relationship
types in our queries: e.g., MATCH (user)-[:HOME_ADDRESS|WORK_ADDRESS|

DELIVERY_ADDRESS]->(address). This, however, quickly becomes unwieldy when
there are lots of different kinds of relationships. Alternatively, we can add a more
generic ADDRESS relationship to our model, in addition to the fine-grained relation‐
ships. Every node representing an address is then connected to a user using two rela‐
tionships: a fined-grained relationship (e.g., DELIVERY_ADDRESS) and the more
generic ADDRESS {type:'delivery'} relationship.

As we discussed in “Describe the Model in Terms of the Application’s Needs” on page
66, the key here is to let the questions we want to ask of our data guide the kinds of
relationships we introduce into the model.

Model Facts as Nodes
When two or more domain entities interact for a period of time, a fact emerges. We
represent a fact as a separate node with connections to each of the entities engaged in
that fact. Modeling an action in terms of its product—that is, in terms of the thing
that results from the action—produces a similar structure: an intermediate node that
represents the outcome of an interaction between two or more entities. We can use
timestamp properties on this intermediate node to represent start and end times.

The following examples show how we might model facts and actions using inter‐
mediate nodes.

Employment
Figure 4-2 shows how the fact of Ian being employed by Neo Technology in the role
of engineer can be represented in the graph.

68 | Chapter 4: Building a Graph Database Application

In Cypher, this can be expressed as:

CREATE (:Person {name:'Ian'})-[:EMPLOYMENT]->
 (employment:Job {start_date:'2011-01-05'})
 -[:EMPLOYER]->(:Company {name:'Neo'}),
 (employment)-[:ROLE]->(:Role {name:'engineer'})

Figure 4-2. Ian began employment as an engineer at Neo Technology

Performance
Figure 4-3 shows how the fact that William Hartnell played The Doctor in the story
The Sensorites can be represented in the graph.

In Cypher:

CREATE (:Actor {name:'William Hartnell'})-[:PERFORMED_IN]->
 (performance:Performance {year:1964})-[:PLAYED]->
 (:Role {name:'The Doctor'}),
 (performance)-[:FOR]->(:Story {title:'The Sensorites'})

Data Modeling | 69

Figure 4-3. William Hartnell played The Doctor in the story The Sensorites

Emailing
Figure 4-4 shows the act of Ian emailing Jim and copying in Alistair.

Figure 4-4. Ian emailed Jim, and copied in Alistair

70 | Chapter 4: Building a Graph Database Application

In Cypher, this can be expressed as:

CREATE (:Person {name:'Ian'})-[:SENT]->(e:Email {content:'...'})
 -[:TO]->(:Person {name:'Jim'}),
 (e)-[:CC]->(:Person {name:'Alistair'})

Reviewing
Figure 4-5 shows how the act of Alistair reviewing a film can be represented in the
graph.

In Cypher:

CREATE (:Person {name:'Alistair'})-[:WROTE]->
 (review:Review {text:'...'})-[:OF]->(:Film {title:'...'}),
 (review)-[:PUBLISHED_IN]->(:Publication {title:'...'})

Figure 4-5. Alistair wrote a review of a film, which was published in a magazine

Represent Complex Value Types as Nodes
Value types are things that do not have an identity, and whose equivalence is based
solely on their values. Examples include money, address, and SKU. Complex value
types are value types with more than one field or property. Address, for example, is a
complex value type. Such multiproperty value types may be usefully represented as
separate nodes:

MATCH (:Order {orderid:13567})-[:DELIVERY_ADDRESS]->(address:Address)
RETURN address.first_line, address.zipcode

Data Modeling | 71

Time
Time can be modeled in several different ways in the graph. Here we describe two
techniques: timeline trees and linked lists. In some solutions, it’s useful to combine
these two techniques.

Timeline trees
If we need to find all the events that have occurred over a specific period, we can
build a timeline tree, as shown in Figure 4-6.

Figure 4-6. A timeline tree showing the broadcast dates for four episodes of a TV
program

72 | Chapter 4: Building a Graph Database Application

Each year has its own set of month nodes; each month has its own set of day nodes.
We need only insert nodes into the timeline tree as and when they are needed.
Assuming the root timeline node has been indexed, or can be discovered by travers‐
ing the graph, the following Cypher statement ensures that all necessary nodes and
relationships for a particular event—year, month, day, plus the node representing the
event itself—are either already present in the graph, or, if not present, are added to
the graph (MERGE will add any missing elements):

MATCH (timeline:Timeline {name:{timelineName}})
MERGE (episode:Episode {name:{newEpisode}})
MERGE (timeline)-[:YEAR]->(year:Year {value:{year}})
MERGE (year)-[:MONTH]->(month:Month {name:{monthName}})
MERGE (month)-[:DAY]->(day:Day {value:{day}, name:{dayName}})
MERGE (day)<-[:BROADCAST_ON]-(episode)

Querying the calendar for all events between a start date (inclusive) and an end date
(exclusive) can be done with the following Cypher code:

MATCH (timeline:Timeline {name:{timelineName}})
MATCH (timeline)-[:YEAR]->(year:Year)-[:MONTH]->(month:Month)-[:DAY]->
 (day:Day)<-[:BROADCAST_ON]-(n)
WHERE ((year.value > {startYear} AND year.value < {endYear})
 OR ({startYear} = {endYear} AND {startMonth} = {endMonth}
 AND year.value = {startYear} AND month.value = {startMonth}
 AND day.value >= {startDay} AND day.value < {endDay})
 OR ({startYear} = {endYear} AND {startMonth} < {endMonth}
 AND year.value = {startYear}
 AND ((month.value = {startMonth} AND day.value >= {startDay})
 OR (month.value > {startMonth} AND month.value < {endMonth})
 OR (month.value = {endMonth} AND day.value < {endDay})))
 OR ({startYear} < {endYear}
 AND year.value = {startYear}
 AND ((month.value > {startMonth})
 OR (month.value = {startMonth} AND day.value >= {startDay})))
 OR ({startYear} < {endYear}
 AND year.value = {endYear}
 AND ((month.value < {endMonth})
 OR (month.value = {endMonth} AND day.value < {endDay}))))
RETURN n

The WHERE clause here, though somewhat verbose, simply filters each match based on
the start and end dates supplied to the query.

Linked lists
Many events have temporal relationships to the events that precede and follow them.
We can use NEXT and/or PREVIOUS relationships (depending on our preference) to

Data Modeling | 73

2 A doubly linked list is a nicety, because in practice relationships can be traversed in constant time in either
direction.

3 See, for example, http://iansrobinson.com/2014/05/13/time-based-versioned-graphs/.

create linked lists that capture this natural ordering, as shown in Figure 4-7.2 Linked
lists allow for very rapid traversal of time-ordered events.

Figure 4-7. A doubly linked list representing a time-ordered series of events

Versioning
A versioned graph enables us to recover the state of the graph at a particular point in
time. Most graph databases don’t support versioning as a first-class concept. It is pos‐
sible, however, to create a versioning scheme inside the graph model. With this
scheme nodes and relationships are timestamped and archived whenever they are
modified.3 The downside of such versioning schemes is that they leak into any queries
written against the graph, adding a layer of complexity to even the simplest query.

Iterative and Incremental Development
We develop the data model feature by feature, user story by user story. This will
ensure that we identify the relationships our application will use to query the graph.
A data model that is developed in line with the iterative and incremental delivery of
application features will look quite different from one drawn up using a data model-
first approach, but it will be the correct model, motivated throughout by the applica‐
tion’s needs, and the questions that arise in conjunction with those needs.

Graph databases provide for the smooth evolution of our data model. Migrations and
denormalization are rarely an issue. New facts and new compositions become new
nodes and relationships, while optimizing for performance-critical access patterns
typically involves introducing a direct relationship between two nodes that would
otherwise be connected only by way of intermediaries. Unlike the optimization strate‐
gies we employ in the relational world, which typically involve denormalizing and
thereby compromising a high-fidelity model, this is not an either/or issue: either the
detailed, highly normalized structure, or the high performance compromise. With the
graph we retain the original high-fidelity graph structure, while at the same time
enriching it with new elements that cater to new needs.

74 | Chapter 4: Building a Graph Database Application

http://iansrobinson.com/2014/05/13/time-based-versioned-graphs/

We will quickly see how different relationships can sit side-by-side with one another,
catering to different needs without distorting the model in favor of any one particular
need. Addresses help illustrate the point here. Imagine, for example, that we are
developing a retail application. While developing a fulfillment story, we add the abil‐
ity to dispatch a parcel to a customer’s delivery address, which we find using the fol‐
lowing query:

MATCH (user:User {id:{userId}})
MATCH (user)-[:DELIVERY_ADDRESS]->(address:Address)
RETURN address

Later on, when adding some billing functionality, we introduce a BILLING_ADDRESS
relationship. Later still, we add the ability for customers to manage all their addresses.
This last feature requires us to find all addresses—whether delivery, billing, or some
other address. To facilitate this, we introduce a general ADDRESS relationship:

MATCH (user:User {id:{userId}})
MATCH (user)-[:ADDRESS]->(address:Address)
RETURN address

By this time, our data model looks something like the one shown in Figure 4-8. DELIV
ERY_ADDRESS specializes the data on behalf of the application’s fulfillment needs; BILL
ING_ADDRESS specializes the data on behalf of the application’s billing needs; and
ADDRESS specializes the data on behalf of the application’s customer management
needs.

Figure 4-8. Different relationships for different application needs

Just because we can add new relationships to meet new application goals, doesn’t
mean we always have to do this. We’ll invariably identify opportunities for refactoring
the model as we go. There’ll be plenty of times, for example, where an existing rela‐
tionship will suffice for a new query, or where renaming an existing relationship will
allow it to be used for two different needs. When these opportunities arise, we should
take them. If we’re developing our solution in a test-driven manner—described in

Data Modeling | 75

more detail later in this chapter—we’ll have a sound suite of regression tests in place.
These tests give us the confidence to make substantial changes to the model.

Application Architecture
In planning a graph database-based solution, there are several architectural decisions
to be made. These decisions will vary slightly depending on the database product
we’ve chosen. In this section, we’ll describe some of the architectural choices, and the
corresponding application architectures, available to us when using Neo4j.

Embedded versus Server
Most databases today run as a server that is accessed through a client library. Neo4j is
somewhat unusual in that it can be run in embedded as well as server mode—in fact,
going back nearly ten years, its origins are as an embedded graph database.

An embedded database is not the same as an in-memory database.
An embedded instance of Neo4j still makes all data durable on
disk. Later, in “Testing” on page 85, we’ll discuss Impermanent
GraphDatabase, which is an in-memory version of Neo4j designed
for testing purposes.

Embedded Neo4j
In embedded mode, Neo4j runs in the same process as our application. Embedded
Neo4j is ideal for hardware devices, desktop applications, and for incorporating in
our own application servers. Some of the advantages of embedded mode include:

Low latency
Because our application speaks directly to the database, there’s no network
overhead.

Choice of APIs
We have access to the full range of APIs for creating and querying data: the Core
API, Traversal Framework, and the Cypher query language.

Explicit transactions
Using the Core API, we can control the transactional life cycle, executing an arbi‐
trarily complex sequence of commands against the database in the context of a
single transaction. The Java APIs also expose the transaction life cycle, enabling
us to plug in custom transaction event handlers that execute additional logic with
each transaction.

When running in embedded mode, however, we should bear in mind the following:

76 | Chapter 4: Building a Graph Database Application

http://docs.neo4j.org/chunked/stable/transactions-events.html

4 A list of Neo4j remote client libraries, as developed by the community, is maintained at http://neo4j.com/devel
oper/language-guides/.

JVM (Java virtual machine) only
Neo4j is a JVM-based database. Many of its APIs are, therefore, accessible only
from a JVM-based language.

GC behaviors
When running in embedded mode, Neo4j is subject to the garbage collection
(GC) behaviors of the host application. Long GC pauses can affect query times.
Further, when running an embedded instance as part of an HA (high-availability)
cluster, long GC pauses can cause the cluster protocol to trigger a master reelec‐
tion.

Database life cycle
The application is responsible for controlling the database life cycle, which
includes starting and closing it safely.

Embedded Neo4j can be clustered for high availability and horizontal read scaling
just as the server version. In fact, we can run a mixed cluster of embedded and server
instances (clustering is performed at the database level, rather than the server level).
This is common in enterprise integration scenarios, where regular updates from other
systems are executed against an embedded instance, and then replicated out to server
instances.

Server mode
Running Neo4j in server mode is the most common means of deploying the database
today. At the heart of each server is an embedded instance of Neo4j. Some of the ben‐
efits of server mode include:

REST API
The server exposes a rich REST API that allows clients to send JSON-formatted
requests over HTTP. Responses comprise JSON-formatted documents enriched
with hypermedia links that advertise additional features of the dataset. The REST
API is extensible by end users and supports the execution of Cypher queries.

Platform independence
Because access is by way of JSON-formatted documents sent over HTTP, a Neo4j
server can be accessed by a client running on practically any platform. All that’s
needed is an HTTP client library.4

Scaling independence
With Neo4j running in server mode, we can scale our database cluster independ‐
ently of our application server cluster.

Application Architecture | 77

http://neo4j.com/developer/language-guides/
http://neo4j.com/developer/language-guides/

Isolation from application GC behaviors
In server mode, Neo4j is protected from any untoward GC behaviors triggered by
the rest of the application. Of course, Neo4j still produces some garbage, but its
impact on the garbage collector has been carefully monitored and tuned during
development to mitigate any significant side effects. However, because server
extensions enable us to run arbitrary Java code inside the server (see “Server
extensions” on page 78), the use of server extensions may impact the server’s GC
behavior.

When using Neo4j in server mode, we should bear in mind the following:

Network overhead
There is some communication overhead to each HTTP request, though it’s fairly
minimal. After the first client request, the TCP connection remains open until
closed by the client.

Transaction state
Neo4j server has a transactional Cypher endpoint. This allows the client to exe‐
cute a series of Cypher statements in the context of a single transaction. With
each request, the client extends its lease on the transaction. If the client fails to
complete or roll back the transaction for any reason, this transactional state will
remain on the server until it times out (by default, the server will reclaim
orphaned transactions after 60 seconds). For more complex, multistep operations
requiring a single transactional context, we should consider using a server exten‐
sion (see “Server extensions” on page 78).

Access to Neo4j server is typically by way of its REST API, as discussed previously.
The REST API comprises JSON-formatted documents over HTTP. Using the REST
API we can submit Cypher queries, configure named indexes, and execute several of
the built-in graph algorithms. We can also submit JSON-formatted traversal descrip‐
tions, and perform batch operations. For the majority of use cases the REST API is
sufficient; however, if we need to do something we cannot currently accomplish using
the REST API, we should consider developing a server extension.

Server extensions
Server extensions enable us to run Java code inside the server. Using server exten‐
sions, we can extend the REST API, or replace it entirely.

Extensions take the form of JAX-RS annotated classes. JAX-RS is a Java API for build‐
ing RESTful resources. Using JAX-RS annotations, we decorate each extension class
to indicate to the server which HTTP requests it handles. Additional annotations
control request and response formats, HTTP headers, and the formatting of URI
templates.

78 | Chapter 4: Building a Graph Database Application

http://docs.neo4j.org/chunked/stable/rest-api.html
http://jax-rs-spec.java.net/

Here’s an implementation of a simple server extension that allows a client to request
the distance between two members of a social network:

@Path("/distance")
public class SocialNetworkExtension
{
 private final GraphDatabaseService db;

 public SocialNetworkExtension(@Context GraphDatabaseService db)
 {
 this.db = db;
 }

 @GET
 @Produces("text/plain")
 @Path("/{name1}/{name2}")
 public String getDistance (@PathParam("name1") String name1,
 @PathParam("name2") String name2)
 {
 String query = "MATCH (first:User {name:{name1}}),\n" +
 "(second:User {name:{name2}})\n" +
 "MATCH p=shortestPath(first-[*..4]-second)\n" +
 "RETURN length(p) AS depth";

 Map<String, Object> params = new HashMap<String, Object>();
 params.put("name1", name1);
 params.put("name2", name2);

 Result result = db.execute(query, params);

 return String.valueOf(result.columnAs("depth").next());
 }
}

Of particular interest here are the various annotations:

• @Path("/distance") specifies that this extension will respond to requests direc‐
ted to relative URIs beginning /distance.

• The @Path("/{name1}/{name2}") annotation on getDistance() further quali‐
fies the URI template associated with this extension. The fragment here is con‐
catenated with /distance to produce /distance/{name1}/{name2}, where {name1}
and {name2} are placeholders for any characters occurring between the forward
slashes. Later on, in “Testing server extensions” on page 89, we’ll register this
extension under the /socnet relative URI. At that point, these several different
parts of the path ensure that HTTP requests directed to a relative URI begin‐
ning /socnet/distance/{name1}/{name2} (for example, http://localhost/socnet/
distance/Ben/Mike) will be dispatched to an instance of this extension.

Application Architecture | 79

http://localhost/socnet/distance/Ben/Mike
http://localhost/socnet/distance/Ben/Mike

• @GET specifies that getDistance() should be invoked only if the request is an
HTTP GET. @Produces indicates that the response entity body will be formatted
as text/plain.

• The two @PathParam annotations prefacing the parameters to getDistance()
serve to map the contents of the {name1} and {name2} path placeholders to the
method’s name1 and name2 parameters. Given the URI http://localhost/socnet/
distance/Ben/Mike, getDistance() will be invoked with Ben for name1 and Mike
for name2.

• The @Context annotation in the constructor causes this extension to be handed a
reference to the embedded graph database inside the server. The server infra‐
structure takes care of creating an extension and injecting it with a graph data‐
base instance, but the very presence of the GraphDatabaseService parameter
here makes this extension exceedingly testable. As we’ll see later, in “Testing
server extensions” on page 89, we can unit test extensions without having to run
them inside a server.

Server extensions can be powerful elements in our application architecture. Their
chief benefits include:

Complex transactions
Extensions enable us to execute an arbitrarily complex sequence of operations in
the context of a single transaction.

Choice of APIs
Each extension is injected with a reference to the embedded graph database at the
heart of the server. This gives us access to the full range of APIs—Core API, Tra‐
versal Framework, graph algorithm package, and Cypher—for developing our
extension’s behavior.

Encapsulation
Because each extension is hidden behind a RESTful interface, we can improve
and modify its implementation over time.

Response formats
We control the response—both the representation format and the HTTP headers.
This enables us to create response messages whose contents employ terminology
from our domain, rather than the graph-based terminology of the standard REST
API (users, products, and orders, for example, rather than nodes, relationships,
and properties). Further, in controlling the HTTP headers attached to the
response, we can leverage the HTTP protocol for things such as caching and con‐
ditional requests.

When considering using server extensions, we should bear in mind the following
points:

80 | Chapter 4: Building a Graph Database Application

http://localhost/socnet/distance/Ben/Mike
http://localhost/socnet/distance/Ben/Mike

JVM only
As with developing against embedded Neo4j, we’ll have to use a JVM-based lan‐
guage.

GC behaviors
We can do arbitrarily complex (and dangerous) things inside a server extension.
We need to monitor garbage collection behaviors to ensure that we don’t intro‐
duce any untoward side effects.

Clustering
As we discuss in more detail in “Availability” on page 164, Neo4j clusters for high
availability and horizontal read scaling using master-slave replication. In this section
we discuss some of the strategies to consider when using clustered Neo4j.

Replication
Although all writes to a cluster are coordinated through the master, Neo4j does allow
writing through slaves, but even then, the slave that’s being written to syncs with the
master before returning to the client. Because of the additional network traffic and
coordination protocol, writing through slaves can be an order of magnitude slower
than writing directly to the master. The only reasons for writing through slaves are to
increase the durability guarantees of each write (the write is made durable on two
instances, rather than one) and to ensure that we can read our own writes when
employing cache sharding (see “Cache sharding” on page 83 and “Read your own
writes” on page 84 later in this chapter). Because newer versions of Neo4j enable us to
specify that writes to the master be replicated out to one or more slaves, thereby
increasing the durability guarantees of writes to the master, the case for writing
through slaves is now less compelling. Today it is recommended that all writes be
directed to the master, and then replicated to slaves using the ha.tx_push_factor
and ha.tx_push_strategy configuration settings.

Buffer writes using queues
In high write load scenarios, we can use queues to buffer writes and regulate load.
With this strategy, writes to the cluster are buffered in a queue. A worker then polls
the queue and executes batches of writes against the database. Not only does this reg‐
ulate write traffic, but it reduces contention and enables us to pause write operations
without refusing client requests during maintenance periods.

Global clusters
For applications catering to a global audience, it is possible to install a multiregion
cluster in multiple data centers and on cloud platforms such as Amazon Web Services
(AWS). A multiregion cluster enables us to service reads from the portion of the clus‐

Application Architecture | 81

http://docs.neo4j.org/chunked/milestone/ha-configuration.html
http://docs.neo4j.org/chunked/milestone/ha-configuration.html

ter geographically closest to the client. In these situations, however, the latency intro‐
duced by the physical separation of the regions can sometimes disrupt the
coordination protocol. It is, therefore, often desirable to restrict master reelection to a
single region. To achieve this, we create slave-only databases for the instances we
don’t want to participate in master reelection. We do this by including the
ha.slave_coordinator_update_mode=none configuration parameter in an instance’s
configuration.

Load Balancing
When using a clustered graph database, we should consider load balancing traffic
across the cluster to help maximize throughput and reduce latency. Neo4j doesn’t
include a native load balancer, relying instead on the load-balancing capabilities of
the network infrastructure.

Separate read traffic from write traffic
Given the recommendation to direct the majority of write traffic to the master, we
should consider clearly separating read requests from write requests. We should con‐
figure our load balancer to direct write traffic to the master, while balancing the read
traffic across the entire cluster.

In a web-based application, the HTTP method is often sufficient to distinguish a
request with a significant side effect—a write—from one that has no significant side
effect on the server: POST, PUT, and DELETE can modify server-side resources,
whereas GET is side-effect free.

When using server extensions, it’s important to distinguish read and write operations
using @GET and @POST annotations. If our application depends solely on server exten‐
sions, this will suffice to separate the two. If we’re using the REST API to submit
Cypher queries to the database, however, the situation is not so straightforward. The
REST API uses POST as a general “process this” semantic for both read and write
Cypher requests. To separate read and write requests in this scenario, we introduce a
pair of load balancers: a write load balancer that always directs requests to the master,
and a read load balancer that balances requests across the entire cluster. In our appli‐
cation logic, where we know whether the operation is a read or a write, we will then
have to decide which of the two addresses we should use for any particular request, as
illustrated in Figure 4-9.

When running in server mode, Neo4j exposes a URI that indicates whether that
instance is currently the master, and if it isn’t, which of the instances is the master.
Load balancers can poll this URI at intervals to determine where to route traffic.

82 | Chapter 4: Building a Graph Database Application

Cache sharding
Queries run fastest when the portions of the graph needed to satisfy them reside in
main memory. When a graph holds many billions of nodes, relationships, and prop‐
erties, not all of it will fit into main memory. Other data technologies often solve this
problem by partitioning their data, but with graphs, partitioning or sharding is
unusually difficult (see “The Holy Grail of Graph Scalability” on page 169). How,
then, can we provide for high-performance queries over a very large graph?

One solution is to use a technique called cache sharding (Figure 4-10), which consists
of routing each request to a database instance in an HA cluster where the portion of
the graph necessary to satisfy that request is likely already in main memory (remem‐
ber: every instance in the cluster will contain a full copy of the data). If the majority of
an application’s queries are graph-local queries, meaning they start from one or more
specific points in the graph and traverse the surrounding subgraphs, then a mecha‐
nism that consistently routes queries beginning from the same set of start points to
the same database instance will increase the likelihood of each query hitting a warm
cache.

Figure 4-9. Using read/write load balancers to direct requests to a cluster

The strategy used to implement consistent routing will vary by domain. Sometimes
it’s good enough to have sticky sessions; other times we’ll want to route based on the
characteristics of the dataset. The simplest strategy is to have the instance that first

Application Architecture | 83

serves requests for a particular user thereafter serve subsequent requests for that user.
Other domain-specific approaches will also work. For example, in a geographical data
system we can route requests about particular locations to specific database instances
that have been warmed for that location. Both strategies increase the likelihood of the
required nodes and relationships already being cached in main memory, where they
can be quickly accessed and processed.

Figure 4-10. Cache sharding

Read your own writes
Occasionally we may need to read our own writes—typically when the application
applies an end-user change, and needs on the next request to reflect the effect of this
change back to the user. Whereas writes to the master are immediately consistent, the
cluster as a whole is eventually consistent. How can we ensure that a write directed to
the master is reflected in the next load-balanced read request? One solution is to use
the same consistent routing technique used in cache sharding to direct the write to
the slave that will be used to service the subsequent read. This assumes that the write
and the read can be consistently routed based on some domain criteria in each
request.

This is one of the few occasions where it makes sense to write through a slave. But
remember: writing through a slave can be an order of magnitude slower than writing
directly to the master. We should use this technique sparingly. If a high proportion of

84 | Chapter 4: Building a Graph Database Application

our writes require us to read our own write, this technique will significantly impact
throughput and latency.

Testing
Testing is a fundamental part of the application development process—not only as a
means of verifying that a query or application feature behaves correctly, but also as a
way of designing and documenting our application and its data model. Throughout
this section we emphasize that testing is an everyday activity; by developing our
graph database solution in a test-driven manner, we provide for the rapid evolution
of our system, and its continued responsiveness to new business needs.

Test-Driven Data Model Development
In discussing data modeling, we’ve stressed that our graph model should reflect the
kinds of queries we want to run against it. By developing our data model in a test-
driven fashion we document our understanding of our domain, and validate that our
queries behave correctly.

With test-driven data modeling, we write unit tests based on small, representative
example graphs drawn from our domain. These example graphs contain just enough
data to communicate a particular feature of the domain. In many cases, they might
only comprise 10 or so nodes, plus the relationships that connect them. We use these
examples to describe what is normal for the domain, and also what is exceptional. As
we discover anomalies and corner cases in our real data, we write a test that reprodu‐
ces what we’ve discovered.

The example graphs we create for each test comprise the setup or context for that test.
Within this context we exercise a query, and assert that the query behaves as
expected. Because we control the contents of the test data, we, as the author of the
test, know what results to expect.

Tests can act like documentation. By reading the tests, developers gain an under‐
standing of the problems and needs the application is intended to address, and the
ways in which the authors have gone about addressing them. With this in mind, it’s
best to use each test to test just one aspect of our domain. It’s far easier to read lots of
small tests, each of which communicates a discrete feature of our data in a clear, sim‐
ple, and concise fashion, than it is to reverse engineer a complex domain from a sin‐
gle large and unwieldy test. In many cases, we’ll find a particular query being
exercised by several tests, some of which demonstrate the happy path through our

Testing | 85

5 Tests not only act as documentation, but they can also be used to generate documentation. All of the Cypher
documentation in the Neo4j manual is generated automatically from the unit tests used to develop Cypher.

domain, others of which exercise it in the context of some exceptional structure or set
of values.5

Over time, we’ll build up a suite of tests that can act as a powerful regression test
mechanism. As our application evolves, and we add new sources of data, or change
the model to meet new needs, our regression test suite will continue to assert that
existing features still behave as they should. Evolutionary architectures, and the incre‐
mental and iterative software development techniques that support them, depend
upon a bedrock of asserted behavior. The unit-testing approach to data model devel‐
opment described here enables developers to respond to new business needs with
very little risk of undermining or breaking what has come before, confident in the
continued quality of the solution.

Example: A test-driven social network data model
In this example we’re going to demonstrate developing a very simple Cypher query
for a social network. Given the names of a couple of members of the network, our
query determines the distance between them.

First, we create a small graph that is representative of our domain. Using Cypher, we
create a network comprising 10 nodes and 8 relationships:

public GraphDatabaseService createDatabase()
{
 // Create nodes
 String createGraph = "CREATE\n" +
 "(ben:User {name:'Ben'}),\n" +
 "(arnold:User {name:'Arnold'}),\n" +
 "(charlie:User {name:'Charlie'}),\n" +
 "(gordon:User {name:'Gordon'}),\n" +
 "(lucy:User {name:'Lucy'}),\n" +
 "(emily:User {name:'Emily'}),\n" +
 "(sarah:User {name:'Sarah'}),\n" +
 "(kate:User {name:'Kate'}),\n" +
 "(mike:User {name:'Mike'}),\n" +
 "(paula:User {name:'Paula'}),\n" +
 "(ben)-[:FRIEND]->(charlie),\n" +
 "(charlie)-[:FRIEND]->(lucy),\n" +
 "(lucy)-[:FRIEND]->(sarah),\n" +
 "(sarah)-[:FRIEND]->(mike),\n" +
 "(arnold)-[:FRIEND]->(gordon),\n" +
 "(gordon)-[:FRIEND]->(emily),\n" +
 "(emily)-[:FRIEND]->(kate),\n" +
 "(kate)-[:FRIEND]->(paula)";

86 | Chapter 4: Building a Graph Database Application

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

 String createIndex = "CREATE INDEX ON :User(name)";

 GraphDatabaseService db =
 new TestGraphDatabaseFactory().newImpermanentDatabase();

 db.execute(createGraph);
 db.execute(createIndex);

 return db;
}

There are two things of interest in createDatabase(). The first is the use of Imperma
nentGraphDatabase, which is a lightweight, in-memory version of Neo4j, designed
specifically for unit testing. By using ImpermanentGraphDatabase, we avoid having to
clear up store files on disk after each test. The class can be found in the Neo4j kernel
test jar, which can be obtained with the following dependency reference:

<dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j-kernel</artifactId>
 <version>${project.version}</version>
 <type>test-jar</type>
 <scope>test</scope>
</dependency>

ImpermanentGraphDatabase is intended for use in unit-tests only.
It is an in-memory only version of Neo4j, not intended for produc‐
tion use.

The second thing of interest in createDatabase() is the Cypher command to index
nodes with a given label on a given property. In this case we’re saying that we want to
index nodes with a :User label based on the value of their name property.

Having created a sample graph, we can now write our first test. Here’s the test fixture
for testing our social network data model and its queries:

public class SocialNetworkTest
{
 private static GraphDatabaseService db;
 private static SocialNetworkQueries queries;

 @BeforeClass
 public static void init()
 {
 db = createDatabase();
 queries = new SocialNetworkQueries(db);
 }

Testing | 87

 @AfterClass
 public static void shutdown()
 {
 db.shutdown();
 }

 @Test
 public void shouldReturnShortestPathBetweenTwoFriends() throws Exception
 {
 // when
 Result result = queries.distance("Ben", "Mike");

 // then
 assertTrue(result.hasNext());
 assertEquals(4, result.next().get("distance"));
 }

 // more tests
}

This test fixture includes an initialization method, annotated with @BeforeClass,
which executes before any tests start. Here we call createDatabase() to create an
instance of the sample graph, and an instance of SocialNetworkQueries, which
houses the queries under development.

Our first test, shouldReturnShortestPathBetweenTwoFriends(), tests that the query
under development can find a path between any two members of the network—in
this case, Ben and Mike. Given the contents of the sample graph, we know that Ben
and Mike are connected, but only remotely, at a distance of 4. The test, therefore,
asserts that the query returns a nonempty result containing a distance value of 4.

Having written the test, we now start developing our first query. Here’s the imple‐
mentation of SocialNetworkQueries:

public class SocialNetworkQueries
{
 private final GraphDatabaseService db;

 public SocialNetworkQueries(GraphDatabaseService db)
 {
 this.db = db;
 }

 public Result distance(String firstUser, String secondUser)
 {
 String query = "MATCH (first:User {name:{firstUser}}),\n" +
 "(second:User {name:{secondUser}})\n" +
 "MATCH p=shortestPath((first)-[*..4]-(second))\n" +
 "RETURN length(p) AS distance";

 Map<String, Object> params = new HashMap<String, Object>();

88 | Chapter 4: Building a Graph Database Application

 params.put("firstUser", firstUser);
 params.put("secondUser", secondUser);

 return db.execute(query, params);
 }

 // More queries
}

In the constructor for SocialNetworkQueries we store the supplied database
instance in a member variable, which allows it to be reused over and again through‐
out the lifetime of the queries instance. The query itself we implement in the dis
tance() method. Here we create a Cypher statement, initialize a map containing the
query parameters, and execute the statement.

If shouldReturnShortestPathBetweenTwoFriends() passes (it does), we then go on
to test additional scenarios. What happens, for example, if two members of the net‐
work are separated by more than four connections? We write up the scenario and
what we expect the query to do in another test:

@Test
public void shouldReturnNoResultsWhenNoPathAtDistance4OrLess()
 throws Exception
{
 // when
 Result result = queries.distance("Ben", "Arnold");

 // then
 assertFalse(result.hasNext());
}

In this instance, this second test passes without us having to modify the underlying
Cypher query. In many cases, however, a new test will force us to modify a query’s
implementation. When that happens, we modify the query to make the new test pass,
and then run all the tests in the fixture. A failing test anywhere in the fixture indicates
we’ve broken some existing functionality. We continue to modify the query until all
tests are green once again.

Testing server extensions
Server extensions can be developed in a test-driven manner just as easily as embed‐
ded Neo4j. Using the simple server extension described earlier, here’s how we test it:

@Test
public void extensionShouldReturnDistance() throws Exception
{
 // given
 SocialNetworkExtension extension = new SocialNetworkExtension(db);

 // when

Testing | 89

 String distance = extension.getDistance("Ben", "Mike");

 // then
 assertEquals("4", distance);
}

Because the extension’s constructor accepts a GraphDatabaseService instance, we
can inject a test instance (an ImpermanentGraphDatabase instance), and then call its
methods as per any other object.

If, however, we wanted to test the extension running inside a server, we have a little
more setup to do:

public class SocialNetworkExtensionTest
{
 private ServerControls server;

 @BeforeClass
 public static void init() throws IOException
 {
 // Create nodes
 String createGraph = "CREATE\n" +
 "(ben:User {name:'Ben'}),\n" +
 "(arnold:User {name:'Arnold'}),\n" +
 "(charlie:User {name:'Charlie'}),\n" +
 "(gordon:User {name:'Gordon'}),\n" +
 "(lucy:User {name:'Lucy'}),\n" +
 "(emily:User {name:'Emily'}),\n" +
 "(sarah:User {name:'Sarah'}),\n" +
 "(kate:User {name:'Kate'}),\n" +
 "(mike:User {name:'Mike'}),\n" +
 "(paula:User {name:'Paula'}),\n" +
 "(ben)-[:FRIEND]->(charlie),\n" +
 "(charlie)-[:FRIEND]->(lucy),\n" +
 "(lucy)-[:FRIEND]->(sarah),\n" +
 "(sarah)-[:FRIEND]->(mike),\n" +
 "(arnold)-[:FRIEND]->(gordon),\n" +
 "(gordon)-[:FRIEND]->(emily),\n" +
 "(emily)-[:FRIEND]->(kate),\n" +
 "(kate)-[:FRIEND]->(paula)";

 server = TestServerBuilders
 .newInProcessBuilder()
 .withExtension(
 "/socnet",
 ColleagueFinderExtension.class)
 .withFixture(createGraph)
 .newServer();
 }

 @AfterClass
 public static void teardown()

90 | Chapter 4: Building a Graph Database Application

 {
 server.close();
 }

 @Test
 public void serverShouldReturnDistance() throws Exception
 {
 HTTP.Response response = HTTP.GET(server.httpURI()
 .resolve("/socnet/distance/Ben/Mike").toString());

 assertEquals(200, response.status());
 assertEquals("text/plain", response.header("Content-Type"));
 assertEquals("4", response.rawContent());
 }
}

Here we’re using an instance of ServerControls to host the extension. We create the
server and populate its database in the test fixture’s init() method using the builder
supplied by TestServerBuilders. This builder enables us to register the extension,
and associate it with a relative URI space (in this case, everything below /socnet).
Once init() has completed, we have a database server instance up and running.

In the test itself, serverShouldReturnDistance(), we access this server using an
HTTP client from the Neo4j test library. The client issues an HTTP GET request for
the resource at /socnet/distance/Ben/Mike. (At the server end, this request is dis‐
patched to an instance of SocialNetworkExtension.) When the client receives a
response, the test asserts that the HTTP status code, content-type, and content of the
response body are correct.

Performance Testing
The test-driven approach that we’ve described so far communicates context and
domain understanding, and tests for correctness. It does not, however, test for perfor‐
mance. What works fast against a small, 20-node sample graph may not work so well
when confronted with a much larger graph. Therefore, to accompany our unit tests,
we should consider writing a suite of query performance tests. On top of that, we
should also invest in some thorough application performance testing early in our
application’s development life cycle.

Query performance tests
Query performance tests are not the same as full-blown application performance
tests. All we’re interested in at this stage is whether a particular query performs well
when run against a graph that is roughly as big as the kind of graph we expect to
encounter in production. Ideally, these tests are developed side-by-side with our unit

Testing | 91

6 A thorough discussion of agile performance testing can be found in Alistair Jones and Patrick Kua’s essay
“Extreme Performance Testing,” in The ThoughtWorks Anthology, Volume 2 (Pragmatic Bookshelf, 2012).

tests. There’s nothing worse than investing a lot of time in perfecting a query, only to
discover it is not fit for production-sized data.

When creating query performance tests, bear in mind the following guidelines:

• Create a suite of performance tests that exercise the queries developed through
our unit testing. Record the performance figures so that we can see the relative
effects of tweaking a query, modifying the heap size, or upgrading from one ver‐
sion of a graph database to another.

• Run these tests often, so that we quickly become aware of any deterioration in
performance. We might consider incorporating these tests into a continuous
delivery build pipeline, failing the build if the test results exceed a certain value.

• Run these tests in-process on a single thread. There’s no need to simulate multi‐
ple clients at this stage: if the performance is poor for a single client, it’s unlikely
to improve for multiple clients. Even though they are not, strictly speaking, unit
tests, we can drive them using the same unit testing framework we use to develop
our unit tests.

• Run each query many times, picking starting nodes at random each time, so that
we can see the effect of starting from a cold cache, which is then gradually
warmed as multiple queries execute.

Application performance tests
Application performance tests, as distinct from query performance tests, test the per‐
formance of the entire application under representative production usage scenarios.

As with query performance tests, we recommend that this kind of performance test‐
ing be done as part of everyday development, side-by-side with the development of
application features, rather than as a distinct project phase.6 To facilitate application
performance testing early in the project life cycle, it is often necessary to develop a
“walking skeleton,” an end-to-end slice through the entire system, which can be
accessed and exercised by performance test clients. By developing a walking skeleton,
we not only provide for performance testing, but we also establish the architectural
context for the graph database part of our solution. This enables us to verify our
application architecture, and identify layers and abstractions that allow for discrete
testing of individual components.

Performance tests serve two purposes: they demonstrate how the system will perform
when used in production, and they drive out the operational affordances that make it

92 | Chapter 4: Building a Graph Database Application

7 Max De Marzi describes using Gatling to test Neo4j.

easier to diagnose performance issues, incorrect behavior, and bugs. What we learn in
creating and maintaining a performance test environment will prove invaluable when
it comes to deploying and operating the system for real.

When drawing up the criteria for a performance test, we recommend specifying per‐
centiles rather than averages. Never assume a normal distribution of response times:
the real world doesn’t work like that. For some applications we may want to ensure
that all requests return within a certain time period. In rare circumstances it may be
important for the very first request to be as quick as when the caches have been
warmed. But in the majority of cases, we will want to ensure that the majority of
requests return within a certain time period; that, say, 98% of requests are satisfied in
under 200 ms. It is important to keep a record of subsequent test runs so that we can
compare performance figures over time, and thereby quickly identify slowdowns and
anomalous behavior.

As with unit tests and query performance tests, application performance tests prove
most valuable when employed in an automated delivery pipeline, where successive
builds of the application are automatically deployed to a testing environment, the
tests executed, and the results automatically analyzed. Log files and test results should
be stored for later retrieval, analysis, and comparison. Regressions and failures should
fail the build, prompting developers to address the issues in a timely manner. One of
the big advantages of conducting performance testing over the course of an applica‐
tion’s development life cycle, rather than at the end, is that failures and regressions
can very often be tied back to a recent piece of development. This enables us to diag‐
nose, pinpoint, and remedy issues rapidly and succinctly.

For generating load, we’ll need a load-generating agent. For web applications, there
are several open source stress and load testing tools available, including Grinder,
JMeter, and Gatling.7 When testing load-balanced web applications, we should ensure
that our test clients are distributed across different IP addresses so that requests are
balanced across the cluster.

Testing with representative data
For both query performance testing and application performance testing we will need
a dataset that is representative of the data we will encounter in production. It will be
necessary, therefore, to either create or source such a dataset. In some cases we can
obtain a dataset from a third party, or adapt an existing dataset that we own; either
way, unless the data is already in the form of a graph, we will have to write some cus‐
tom export-import code.

Testing | 93

http://maxdemarzi.com/2013/02/14/neo4j-and-gatling-sitting-in-a-tree-performance-t-e-s-t-ing/
http://grinder.sourceforge.net/
http://jmeter.apache.org/
http://gatling-tool.org/

In many cases, however, we’re starting from scratch. If this is the case, we must dedi‐
cate some time to creating a dataset builder. As with the rest of the software develop‐
ment life cycle, this is best done in an iterative and incremental fashion. Whenever we
introduce a new element into our domain’s data model, as documented and tested in
our unit tests, we add the corresponding element to our performance dataset builder.
That way, our performance tests will come as close to real-world usage as our current
understanding of the domain allows.

When creating a representative dataset, we try to reproduce any domain invariants
we have identified: the minimum, maximum, and average number of relationships
per node, the spread of different relationship types, property value ranges, and so on.
Of course, it’s not always possible to know these things upfront, and often we’ll find
ourselves working with rough estimates until such point as production data is avail‐
able to verify our assumptions.

Although ideally we would always test with a production-sized dataset, it is often not
possible or desirable to reproduce extremely large volumes of data in a test environ‐
ment. In such cases, we should at least ensure that we build a representative dataset
whose size exceeds our capacity to hold the entire graph in main memory. That way,
we’ll be able to observe the effect of cache evictions, and query for portions of the
graph not currently held in main memory.

Representative datasets also help with capacity planning. Whether we create a full-
sized dataset, or a scaled-down sample of what we expect the production graph to be,
our representative dataset will give us some useful figures for estimating the size of
the production data on disk. These figures then help us plan how much memory to
allocate to the page caches and the Java virtual machine (JVM) heap (see “Capacity
Planning” on page 95 for more details).

In the following example, we’re using a dataset builder called Neode to build a sample
social network:

private void createSampleDataset(GraphDatabaseService db)
{
 DatasetManager dsm = new DatasetManager(db, SysOutLog.INSTANCE);

 // User node specification
 NodeSpecification userSpec =
 dsm.nodeSpecification("User",
 indexableProperty(db, "User", "name"));

 // FRIEND relationship specification
 RelationshipSpecification friend =
 dsm.relationshipSpecification("FRIEND");

 Dataset dataset =
 dsm.newDataset("Social network example");

94 | Chapter 4: Building a Graph Database Application

https://github.com/iansrobinson/neode

 // Create user nodes
 NodeCollection users =
 userSpec.create(1_000_000).update(dataset);

 // Relate users to each other
 users.createRelationshipsTo(
 getExisting(users)
 .numberOfTargetNodes(minMax(50, 100))
 .relationship(friend)
 .relationshipConstraints(RelationshipUniqueness.BOTH_DIRECTIONS))
 .updateNoReturn(dataset);

 dataset.end();
}

Neode uses node and relationship specifications to describe the nodes and relation‐
ships in the graph, together with their properties and permitted property values.
Neode then provides a fluent interface for creating and relating nodes.

Capacity Planning
At some point in our application’s development life cycle we’ll want to start planning
for production deployment. In many cases, an organization’s project management
gating processes mean a project cannot get underway without some understanding of
the production needs of the application. Capacity planning is essential both for budg‐
eting purposes and for ensuring there is sufficient lead time for procuring hardware
and reserving production resources.

In this section we describe some of the techniques we can use for hardware sizing and
capacity planning. Our ability to estimate our production needs depends on a num‐
ber of factors. The more data we have regarding representative graph sizes, query per‐
formance, and the number of expected users and their behaviors, the better our
ability to estimate our hardware needs. We can gain much of this information by
applying the techniques described in “Testing” on page 85 early in our application
development life cycle. In addition, we should understand the cost/performance
trade-offs available to us in the context of our business needs.

Optimization Criteria
As we plan our production environment we will be faced with a number of optimiza‐
tion choices. Which we favor will depend upon our business needs:

Cost
We can optimize for cost by installing the minimum hardware necessary to get
the job done.

Capacity Planning | 95

Performance
We can optimize for performance by procuring the fastest solution (subject to
budgetary constraints).

Redundancy
We can optimize for redundancy and availability by ensuring the database cluster
is big enough to survive a certain number of machine failures (i.e., to survive two
machines failing, we will need a cluster comprising five instances).

Load
With a replicated graph database solution, we can optimize for load by scaling
horizontally (for read load) and vertically (for write load).

Performance
Redundancy and load can be costed in terms of the number of machines necessary to
ensure availability (five machines to provide continued availability in the face of two
machines failing, for example) and scalability (one machine per some number of con‐
current requests, as per the calculations in “Load” on page 98). But what about per‐
formance? How can we cost performance?

Calculating the cost of graph database performance
In order to understand the cost implications of optimizing for performance, we need
to understand the performance characteristics of the database stack. As we describe
in more detail later in “Native Graph Storage” on page 152, a graph database uses disk
for durable storage, and main memory for caching portions of the graph.

Spinning disks are cheap, but not very fast for random seeks (around 6ms for a
modern disk). Queries that have to reach all the way down to spinning disk will be
orders of magnitude slower than queries that touch only an in-memory portion of
the graph. Disk access can be improved by using solid-state drives (SSDs) in place of
spinning disks, providing an approximate 20-fold increase in performance, or by
using enterprise flash hardware, which can reduce latencies even further.

For those deployments where the size of the data in the graph
vastly eclipses the amount of RAM (and therefore cache) available,
SSDs are an excellent choice, because they don’t have the mechani‐
cal penalties associated with spinning disks.

Performance optimization options
There are, then, three areas in which we can optimize for performance:

• Increase the JVM heap size.

96 | Chapter 4: Building a Graph Database Application

• Increase the percentage of the store mapped into the page caches.
• Invest in faster disks: SSDs or enterprise flash hardware.

As Figure 4-11 shows, the sweet spot for any cost versus performance trade-off lies
around the point where we can map our store files in their entirety into the page
cache, while allowing for a healthy, but modestly sized heap. Heaps of between 4 and
8 GB are not uncommon, though in many cases, a smaller heap can actually improve
performance (by mitigating expensive GC behaviors).

Calculating how much RAM to allocate to the heap and the page cache depends on
our knowing the projected size of our graph. Building a representative dataset early in
our application’s development life cycle will furnish us with some of the data we need
to make our calculations. If we cannot fit the entire graph into main memory, we
should consider cache sharding (see “Cache sharding” on page 83).

For more general performance and tuning tips, see this site.

Figure 4-11. Cost versus performance trade-offs

Capacity Planning | 97

http://neo4j.com/docs/stable/configuration.html

In optimizing a graph database solution for performance, we should bear in mind the
following guidelines:

• We should utilize the page cache as much as possible; if possible, we should map
our store files in their entirety into this cache.

• We should tune the JVM heap while monitoring garbage collection to ensure
smooth behavior.

• We should consider using fast disks—SSDs or enterprise flash hardware—to
boost baseline performance when disk access becomes inevitable.

Redundancy
Planning for redundancy requires us to determine how many instances in a cluster
we can afford to lose while keeping the application up and running. For non–
business-critical applications, this figure might be as low as one (or even zero). Once
a first instance has failed, another failure will render the application unavailable.
Business-critical applications will likely require redundancy of at least two; that is,
even after two machines have failed, the application continues serving requests.

For a graph database whose cluster management protocol requires a majority of
members to be available to work properly, redundancy of one can be achieved with
three or four instances, and redundancy of two with five instances. Four is no better
than three in this respect, because if two instances from a four-instance cluster
become unavailable, the remaining coordinators will no longer be able to achieve
majority.

Load
Optimizing for load is perhaps the trickiest part of capacity planning. As a rule of
thumb:

number of concurrent requests = (1000 / average request time (in milliseconds)) * number
of cores per machine * number of machines

Actually determining what some of these figures are, or are projected to be, can
sometimes be very difficult:

Average request time
This covers the period from when a server receives a request, to when it sends a
response. Performance tests can help determine average request time, assuming
the tests are running on representative hardware against a representative dataset
(we’ll have to hedge accordingly if not). In many cases, the “representative data‐
set” itself is based on a rough estimate; we should modify our figures whenever
this estimate changes.

98 | Chapter 4: Building a Graph Database Application

8 Using a new implementation of the tool available from version Neo4j 2.2 onwards.

Number of concurrent requests
We should distinguish here between average load and peak load. Determining
the number of concurrent requests a new application must support is a difficult
thing to do. If we’re replacing or upgrading an existing application, we may have
access to some recent production statistics we can use to refine our estimates.
Some organizations are able to extrapolate from existing application data the
likely requirements for a new application. Other than that, it’s up to our stake‐
holders to estimate the projected load on the system, but we must beware of
inflated expectations.

Importing and Bulk Loading Data
Many if not most deployments of any kind of database don’t start out with an empty
store. As part of deploying the new database, we may also have data to migrate from a
legacy platform, require master data from some third party system, or be merely
importing test data—such as the data in the examples in this chapter—into an other‐
wise empty store. As time goes on, we may have to perform other bulk loading opera‐
tions from upstream systems on a live store.

Neo4j provides tooling to achieve these goals, both for the initial bulk load and ongo‐
ing bulk import scenarios, allowing us to stream data from a variety of other sources
into the graph.

Initial Import
For initial imports Neo4j has an initial load tool called neo4j-import, which achieves
sustained ingest speeds of around 1,000,000 records per second.8 It achieves these
impressive performance figures because it does not build the store files using the nor‐
mal transactional capabilities of the database. Instead, it builds the store files in a
raster-like fashion, adding individual layers until the store is complete, and it is only
at completion that the store becomes consistent.

The input to the neo4j-import tool is a set of CSV files that provide node and rela‐
tionship data. As an example, consider the following three CSV files, which represent
a small movie data set.

The first file is movies.csv:

:ID,title,year:int,:LABEL
1,"The Matrix",1999,Movie
2,"The Matrix Reloaded",2003,Movie;Sequel
3,"The Matrix Revolutions",2003,Movie;Sequel

Importing and Bulk Loading Data | 99

This first file represents the movies themselves. The first line of the file contains met‐
adata describing the movies. In this case, we can see that each movie has an ID, a
title, and a year (which is an integer). The ID field acts as a key. Other parts of the
import can refer to a movie using its ID. Movies also have one or more labels: Movie
and Sequel.

The second file, actors.csv, contains movie actors. As we can see, actors have an ID
and name property, and an Actor label:

:ID,name,:LABEL
keanu,"Keanu Reeves",Actor
laurence,"Laurence Fishburne",Actor
carrieanne,"Carrie-Anne Moss",Actor

The third file, roles.csv, specifies the roles that actors played in the movies. This file is
used to create the relationships in the graph:

:START_ID,role,:END_ID,:TYPE
keanu,"Neo",1,ACTS_IN
keanu,"Neo",2,ACTS_IN
keanu,"Neo",3,ACTS_IN
laurence,"Morpheus",1,ACTS_IN
laurence,"Morpheus",2,ACTS_IN
laurence,"Morpheus",3,ACTS_IN
carrieanne,"Trinity",1,ACTS_IN
carrieanne,"Trinity",2,ACTS_IN
carrieanne,"Trinity",3,ACTS_IN

Each line in this file contains a START_ID and an END_ID, a role value and a relation‐
ship TYPE. START_ID values comprise actor ID values from the actors CSV file. END_ID
values comprise movie ID values from the movies CSV file. Each relationship is
expressed as a START_ID and an END_ID, with a role property, and a name derived
from the relationship TYPE.

With these files, we can run the import tool from the command line:

neo4j-import --into target_directory \
--nodes movies.csv --nodes actors.csv --relationships roles.csv

neo4j-import builds the database store files, and puts them in the target_direc
tory.

Batch Import
Another common requirement is to push bulk data from external systems into a live
graph. In Neo4j this is commonly performed using Cypher’s LOAD CSV command.
LOAD CSV takes as input the same kind of CSV data we used with the neo4j-import
tool. It is designed to support intermediate loads of around a million or so items,
making it ideal for handling regular batch updates from upstream systems.

100 | Chapter 4: Building a Graph Database Application

As an example, let’s enrich our existing movie graph with some data about set loca‐
tions. locations.csv contains title and location fields, where location is a semi-
colon-separated list of filming locations in the movie:

title,locations
"The Matrix",Sydney
"The Matrix Reloaded",Sydney;Oakland
"The Matrix Revolutions",Sydney;Oakland;Alameda

Given this data, we can load it into a live Neo4j database using the Cypher LOAD CSV
command as follows:

LOAD CSV WITH HEADERS FROM 'file:///data/locations.csv' AS line
WITH split(line.locations,";") as locations, line.title as title
UNWIND locations AS location
MERGE (x:Location {name:location})
MERGE (m:Movie {title:title})
MERGE (m)-[:FILMED_IN]->(x)

The first line of this Cypher script tells the database that we want to load some CSV
data from a file URI (LOAD CSV also works with HTTP URIs). WITH HEADERS tells the
database that the first line of our CSV file contains named headers. AS line assigns
the input file to the variable line. The rest of the script will then be executed for each
line of CSV data in the source file.

The second line of the script, beginning with WITH, splits an individual line’s loca
tions value into a collection of strings using Cypher’s split function. It then passes
the resulting collection and the line’s title value on to the rest of the script.

UNWIND is where the interesting work begins. UNWIND expands a collection. Here, we
use it to expand the locations collection into individual location rows (remember,
we’re dealing at this point with a single movie’s locations), each of which will be pro‐
cessed by the MERGE statements that follow.

The first MERGE statement ensures that the location is represented by a node in the
database. The second MERGE statement ensures that the movie is also present as a
node. The third MERGE statement ensures that a FILMED_IN relationship exists between
the location and movie nodes.

Importing and Bulk Loading Data | 101

MERGE is like a mixture of MATCH and CREATE. If the pattern
described in the MERGE statement already exists in the graph, the
statement’s identifiers will be bound to this existing data, much as if
we’d specified MATCH. If the pattern does not currently exist in the
graph, MERGE will create it, much as if we’d used CREATE.
For MERGE to match existing data, all the elements in the pattern
must already exist in the graph. If it can’t match all parts of a pat‐
tern, MERGE will create a new instance of the entire pattern. This is
why we have used three MERGE statements in our LOAD CSV script.
Given a particular movie and a particular location, it’s quite possi‐
ble that one or another of them is already present in the graph. It’s
also possible for both of them to exist, but without a relationship
connecting them. If we were to use a single, large MERGE statement
instead of our three small statements:

MERGE (:Movie {title:title})-[:FILMED_IN]->
 (:Location {name:location}))

the match would only succeed if the movie and location nodes and
the relationship between them already exist. If any one part of this
pattern does not exist, all parts will be created, leading to duplicate
data.
Our strategy is to break apart the larger pattern into smaller
chunks. We first ensure that the location is present. We next ensure
that the movie is present. Finally, we ensure that the two nodes are
connected. This incremental approach is quite normal when using
MERGE.

At this point we are able to insert bulk CSV data into a live graph. However, we have
not yet considered the mechanical implications of our import. In we were to run large
queries like this on an existing large dataset, it is likely that the insert would take a
very long time. There are two key characteristics of import we need to consider in
order to make it efficient:

• Indexing of the existing graph
• Transaction flow through the database

For those of us coming from a relational background, the need for indexing is (per‐
haps) obvious here. Without indexes, we have to search all movie nodes in the data‐
base (and in the worst case, all of the nodes) in order to determine whether a movie
exists or not. This is a cost O(n) operation. With an index of movies, that cost drops
to O(log n), which is a substantial improvement, especially for larger data sets. The
same is true of locations.

102 | Chapter 4: Building a Graph Database Application

Declaring an index, as we saw in the previous chapter, is straightforward. To index
movies, we simply issue the command CREATE INDEX ON :Movie(title). We can do
this via the browser or using the shell. If the index is useful only during import (i.e., it
plays no role in operational queries) then we drop it after the import with DROP
INDEX ON :Movie(title).

In some cases it is useful to add temporary IDs as properties to
nodes so they can be easily referenced during import, especially
when creating networks of relationships. These IDs have no
domain significance. They exist simply for the duration of a multi‐
step import process so the process can find specific nodes to be
connected.
The use of temporary IDs is perfectly valid. Just remember to
remove them using REMOVE once the import is complete.

Given that updates to live Neo4j instances are transactional, it follows that batch
imports with LOAD CSV are also transactional. In the simplest case, LOAD CSV builds
one transaction and feeds it to the database. For larger batch insertions this can be
quite inefficient mechanically because the database has to manage a large amount of
transaction state (sometimes gigabytes).

For large data imports, we can boost performance by breaking down a single large
transactional commit into a series of smaller commits, which are then executed seri‐
ally against the database. To achieve this, we use the PERIODIC COMMIT functionality.
PERIODIC COMMIT breaks the import into a set of smaller transactions, which are com‐
mitted after a certain number of rows (1000 by default) have been processed. With
our movie location data, we could choose to reduce the default number of CSV lines
per transaction to 100, for example, by prepending the Cypher script with USING
PERIODIC COMMIT 100. The full script is:

USING PERIODIC COMMIT 100
LOAD CSV WITH HEADERS FROM 'file:///data/locations.csv' AS line
WITH split(line.locations,";") as locations, line.title as title
UNWIND locations AS location
MERGE (x:Location {name:location})
MERGE (m:Movie {title:title})
MERGE (m)-[:FILMED_IN]->(x)

These facilities for loading bulk data allow us both to experiment with example data‐
sets when designing a system, and integrate with other systems and sources of data as
part of a production deployment. CSV is an ubiquitous data exchange format—
almost every data and integration technology has some support for producing CSV
output. This makes it extrememly easy to import data into Neo4j, either as a one-time
activity or on a periodic basis.

Importing and Bulk Loading Data | 103

Summary
In this chapter we’ve discussed the most important aspects of developing a graph
database application. We’ve seen how to create graph models that address an applica‐
tion’s needs and an end user’s goals, and how to make our models and associated
queries expressive and robust using unit and performance tests. We’ve looked at the
pros and cons of a couple of different application architectures, and enumerated the
factors we need to consider when planning for production.

Finally we looked at options for rapidly loading bulk data into Neo4j, for both initial
import and ongoing batch insertion into a live database.

In the next chapter we’ll look at how graph databases are being used today to solve
real-world problems in domains as varied as social networking, recommendations,
master data management, data center management, access control, and logistics.

104 | Chapter 4: Building a Graph Database Application

CHAPTER 5

Graphs in the Real World

In this chapter we look at some of the common real-world use cases for graph databa‐
ses and identify the reasons why organizations choose to use a graph database rather
than a relational or other NOSQL store. The bulk of the chapter comprises three in-
depth use cases, with details of the relevant data models and queries. Each of these
examples has been drawn from a real-world production system; the names, however,
have been changed, and the technical details simplified where necessary to highlight
key design points and hide any accidental complexity.

Why Organizations Choose Graph Databases
Throughout this book, we’ve sung the praises of the graph data model, its power and
flexibility, and its innate expressiveness. When it comes to applying a graph database
to a real-world problem, with real-world technical and business constraints, organi‐
zations choose graph databases for the following reasons:

“Minutes to milliseconds” performance
Query performance and responsiveness are at the top of many organizations’
concerns with regard to their data platforms. Online transactional systems, large
web applications in particular, must respond to end users in milliseconds if they
are to be successful. In the relational world, as an application’s dataset size grows,
join pains begin to manifest themselves, and performance deteriorates. Using
index-free adjacency, a graph database turns complex joins into fast graph traver‐
sals, thereby maintaining millisecond performance irrespective of the overall size
of the dataset.

Drastically accelerated development cycles
The graph data model reduces the impedance mismatch that has plagued soft‐
ware development for decades, thereby reducing the development overhead of

105

8 See Nicholas Christakis and James Fowler, Connected: The Amazing Power of Social Networks and How They
Shape Our Lives (HarperPress, 2011).

translating back and forth between an object model and a tabular relational
model. More importantly, the graph model reduces the impedance mismatch
between the technical and business domains. Subject matter experts, architects,
and developers can talk about and picture the core domain using a shared model
that is then incorporated into the application itself.

Extreme business responsiveness
Successful applications rarely stay still. Changes in business conditions, user
behaviors, and technical and operational infrastructures drive new requirements.
In the past, this has required organizations to undertake careful and lengthy data
migrations that involve modifying schemas, transforming data, and maintaining
redundant data to serve old and new features. The schema-free nature of a graph
database coupled with the ability to simultaneously relate data elements in lots of
different ways allows a graph database solution to evolve as the business evolves,
reducing risk and time-to-market.

Enterprise ready
When employed in a business-critical application, a data technology must be
robust, scalable, and more often than not, transactional. Although some graph
databases are fairly new and not yet fully mature, there are graph databases on
the market that provide all the -ilities—ACID (Atomic, Consistent, Isolated,
Durable) transactionality, high-availability, horizontal read scalability, and stor‐
age of billions of entities—needed by large enterprises today, as well as the previ‐
ously discussed performance and flexibility characteristics. This has been an
important factor leading to the adoption of graph databases by organizations, not
merely in modest offline or departmental capacities, but in ways that can truly
change the business.

Common Use Cases
In this section we describe some of the most common graph database use cases, iden‐
tifying how the graph model and the specific characteristics of the graph database can
be applied to generate competitive insight and significant business value.

Social
We are only just beginning to discover the power of social data. In their book Connec‐
ted, social scientists Nicholas Christakis and James Fowler show how we can predict a
person’s behavior by understanding who he is connected to.8

106 | Chapter 5: Graphs in the Real World

Social applications allow organizations to gain competitive and operational advantage
by leveraging information about the connections between people. By combining dis‐
crete information about individuals and their relationships, organizations are able to
to facilitate collaboration, manage information, and predict behavior.

As Facebook’s use of the term social graph implies, graph data models and graph data‐
bases are a natural fit for this overtly relationship-centered domain. Social networks
help us identify the direct and indirect relationships between people, groups, and the
things with which they interact, allowing users to rate, review, and discover each
other and the things they care about. By understanding who interacts with whom,
how people are connected, and what representatives within a group are likely to do or
choose based on the aggregate behavior of the group, we generate tremendous insight
into the unseen forces that influence individual behaviors. We discuss predictive
modeling and its role in social network analysis in more detail in “Graph Theory and
Predictive Modeling” on page 182.

Social relations may be either explicit or implicit. Explicit relations occur wherever
social subjects volunteer a direct link—by liking someone on Facebook, for example,
or indicating someone is a current or former colleague, as happens on LinkedIn.
Implicit relations emerge out of other relationships that indirectly connect two or
more subjects by way of an intermediary. We can relate subjects based on their opin‐
ions, likes, purchases, and even the products of their day-to-day work. Such indirect
relationships lend themselves to being applied in multiple suggestive and inferential
ways. We can say that A is likely to know, like, or otherwise connect to B based on
some common intermediaries. In so doing, we move from social network analysis
into the realm of recommendation engines.

Recommendations
Effective recommendations are a prime example of generating end-user value
through the application of an inferential or suggestive capability. Whereas line-of-
business applications typically apply deductive and precise algorithms—calculating
payroll, applying tax, and so on—to generate end-user value, recommendation algo‐
rithms are inductive and suggestive, identifying people, products, or services an indi‐
vidual or group is likely to have some interest in.

Recommendation algorithms establish relationships between people and things:
other people, products, services, media content—whatever is relevant to the domain
in which the recommendation is employed. Relationships are established based on
users’ behaviors as they purchase, produce, consume, rate, or review the resources in
question. The recommendation engine can then identify resources of interest to a
particular individual or group, or individuals and groups likely to have some interest
in a particular resource. With the first approach, identifying resources of interest to a
specific user, the behavior of the user in question—her purchasing behavior,

Common Use Cases | 107

8 Neo4j Spatial is an open source library of utilities that implement spatial indexes and expose Neo4j data to
geotools.

expressed preferences, and attitudes as expressed in ratings and reviews—are correla‐
ted with those of other users in order to identify similar users and thereafter the
things with which they are connected. The second approach, identifying users and
groups for a particular resource, focuses on the characteristics of the resource in
question. The engine then identifies similar resources, and the users associated with
those resources.

As in the social use case, making an effective recommendation depends on under‐
standing the connections between things, as well as the quality and strength of those
connections—all of which are best expressed as a property graph. Queries are primar‐
ily graph local, in that they start with one or more identifiable subjects, whether peo‐
ple or resources, and thereafter discover surrounding portions of the graph.

Taken together, social networks and recommendation engines provide key differenti‐
ating capabilities in the areas of retail, recruitment, sentiment analysis, search, and
knowledge management. Graphs are a good fit for the densely connected data struc‐
tures germane to each of these areas. Storing and querying this data using a graph
database allows an application to surface end-user real-time results that reflect recent
changes to the data, rather than precalculated, stale results.

Geo
Geospatial is the original graph use case. Euler solved the Seven Bridges of Königs‐
berg problem by positing a mathematical theorem that later came to form the basis of
graph theory. Geospatial applications of graph databases range from calculating
routes between locations in an abstract network such as a road or rail network, air‐
space network, or logistical network (as illustrated by the logistics example later in
this chapter) to spatial operations such as find all points of interest in a bounded area,
find the center of a region, and calculate the intersection between two or more
regions.

Geospatial operations depend upon specific data structures, ranging from simple
weighted and directed relationships, through to spatial indexes, such as R-Trees,
which represent multidimensional properties using tree data structures. As indexes,
these data structures naturally take the form of a graph, typically hierarchical in form,
and as such they are a good fit for a graph database. Because of the schema-free
nature of graph databases, geospatial data can reside in the database alongside other
kinds of data—social network data, for example—allowing for complex multidimen‐
sional querying across several domains.8

108 | Chapter 5: Graphs in the Real World

https://github.com/neo4j/spatial
http://en.wikipedia.org/wiki/R-tree

Geospatial applications of graph databases are particularly relevant in the areas of tel‐
ecommunications, logistics, travel, timetabling, and route planning.

Master Data Management
Master data is data that is critical to the operation of a business, but which itself is
nontransactional. Master data includes data concerning users, customers, products,
suppliers, departments, geographies, sites, cost centers, and business units. In large
organizations, this data is often held in many different places, with lots of overlap and
redundancy, in several different formats, and with varying degrees of quality and
means of access. Master Data Management (MDM) is the practice of identifying,
cleaning, storing, and, most importantly, governing this data. Its key concerns include
managing change over time as organizational structures change, businesses merge,
and business rules change; incorporating new sources of data; supplementing existing
data with externally sourced data; addressing the needs of reporting, compliance, and
business intelligence consumers; and versioning data as its values and schemas
change.

Graph databases don’t necessarily provide a full MDM solution. They are, however,
ideally applied to the modeling, storing, and querying of hierarchies, master data
metadata, and master data models. Such models include type definitions, constraints,
relationships between entities, and the mappings between the model and the underly‐
ing source systems. A graph database’s structured yet schema-free data model pro‐
vides for ad hoc, variable, and exceptional structures—schema anomalies that
commonly arise when there are multiple redundant data sources—while at the same
time allowing for the rapid evolution of the master data model in line with changing
business needs.

Network and Data Center Management
In Chapter 3 we looked at a simple data center domain model, showing how the phys‐
ical and virtual assets inside a data center can be easily modeled with a graph. Com‐
munications networks are graph structures. Graph databases are, therefore, a great fit
for modeling, storing, and querying this kind of domain data. The distinction
between network management of a large communications network versus data center
management is largely a matter of which side of the firewall you’re working. For all
intents and purposes, these two things are one and the same.

A graph representation of a network enables us to catalog assets, visualize how they
are deployed, and identify the dependencies between them. The graph’s connected
structure, together with a query language like Cypher, enable us to conduct sophisti‐
cated impact analyses, answering questions such as:

Common Use Cases | 109

• Which parts of the network—which applications, services, virtual machines,
physical machines, data centers, routers, switches, and fiber—do important cus‐
tomers depend on? (Top-down analysis)

• Conversely, which applications and services, and ultimately, customers, in the
network will be affected if a particular network element—a router or switch, for
example—fails? (Bottom-up analysis)

• Is there redundancy throughout the network for the most important customers?

Graph database solutions complement existing network management and analysis
tools. As with master data management, they can be used to bring together data from
disparate inventory systems, providing a single view of the network and its consum‐
ers, from the smallest network element all the way to application and services and the
customers who use them. A graph database representation of the network can also be
used to enrich operational intelligence based on event correlations. Whenever an
event correlation engine (a Complex Event Processor, for example) infers a complex
event from a stream of low-level network events, it can assess the impact of that event
using the graph model, and thereafter trigger any necessary compensating or mitigat‐
ing actions.

Today, graph databases are being successfully employed in the areas of telecommuni‐
cations, network management and analysis, cloud platform management, data center
and IT asset management, and network impact analysis, where they are reducing
impact analysis and problem resolution times from days and hours down to minutes
and seconds. Performance, flexibility in the face of changing network schemas, and fit
for the domain are all important factors here.

Authorization and Access Control (Communications)
Authorization and access control solutions store information about parties (e.g.,
administrators, organizational units, end-users) and resources (e.g., files, shares, net‐
work devices, products, services, agreements), together with the rules governing
access to those resources. They then apply these rules to determine who can access or
manipulate a resource. Access control has traditionally been implemented either
using directory services or by building a custom solution inside an application’s back‐
end. Hierarchical directory structures, however, cannot cope with the nonhierarchi‐
cal organizational and resource dependency structures that characterize multiparty
distributed supply chains. Hand-rolled solutions, particularly those developed on a
relational database, suffer join pain as the dataset size grows, becoming slow and
unresponsive, and ultimately delivering a poor end-user experience.

A graph database can store complex, densely connected access control structures
spanning billions of parties and resources. Its structured yet schema-free data model
supports both hierarchical and nonhierarchical structures, while its extensible prop‐

110 | Chapter 5: Graphs in the Real World

http://en.wikipedia.org/wiki/Complex_event_processing

erty model allows for capturing rich metadata regarding every element in the system.
With a query engine that can traverse millions of relationships per second, access
lookups over large, complex structures execute in milliseconds.

As with network management and analysis, a graph database access control solution
allows for both top-down and bottom-up queries:

• Which resources—company structures, products, services, agreements, and end
users—can a particular administrator manage? (Top-down)

• Which resource can an end user access?
• Given a particular resource, who can modify its access settings? (Bottom-up)

Graph database access control and authorization solutions are particularly applicable
in the areas of content management, federated authorization services, social network‐
ing preferences, and software as a service (SaaS) offerings, where they realize minutes
to milliseconds increases in performance over their hand-rolled, relational predeces‐
sors.

Real-World Examples
In this section we describe three example use cases in detail: social and recommenda‐
tions, authorization and access control, and logistics. Each use case is drawn from one
or more production applications of a graph database (specifically in these cases,
Neo4j). Company names, context, data models, and queries have been tweaked to
eliminate accidental complexity and to highlight important design and implementa‐
tion choices.

Social Recommendations (Professional Social Network)
Talent.net is a social recommendations application that enables users to discover their
own professional network, and identify other users with particular skill sets. Users
work for companies, work on projects, and have one or more interests or skills. Based
on this information, Talent.net can describe a user’s professional network by identify‐
ing other subscribers who share his or her interests. Searches can be restricted to the
user’s current company, or extended to encompass the entire subscriber base. Tal‐
ent.net can also identify individuals with specific skills who are directly or indirectly
connected to the current user. Such searches are useful when looking for a subject
matter expert for a current engagement.

Talent.net shows how a powerful inferential capability can be developed using a graph
database. Although many line-of-business applications are deductive and precise—
calculating tax or salary, or balancing debits and credits, for example—a new seam of
end-user value opens up when we apply inductive algorithms to our data. This is
what Talent.net does. Based on people’s interests and skills, and their work history, the

Real-World Examples | 111

application can suggest likely candidates to include in one’s professional network.
These results are not precise in the way a payroll calculation must be precise, but they
are undoubtedly useful nonetheless.

Talent.net infers connections between people. Contrast this with LinkedIn, where
users explicitly declare they know or have worked with someone. This is not to say
that LinkedIn is a precise social networking capability, because it too applies induc‐
tive algorithms to generate further insight. But with Talent.net even the primary tie,
(A)-[:KNOWS]->(B), is inferred, rather than volunteered.

The first version of Talent.net depends on users having supplied information regard‐
ing their interests, skills, and work history so that it can infer their professional social
relations. But with the core inferential capabilities in place, the platform is set to gen‐
erate even greater insight for less end-user effort. Skills and interests, for example, can
be inferred from the processes and products a person’s day-to-day work activities.
Whether writing code, writing a document, or exchanging emails, a user must inter‐
act with a backend system. By intercepting these interactions, Talent.net can capture
data that indicates what skills a person has, and what activities they engage in. Other
sources of data that help contextualize a user include group memberships and
meetup lists. Although the use case presented here does not cover these higher-order
inferential features, their implementation requires mostly application integration and
partnership agreements rather than any significant change to the graph or the algo‐
rithms used.

Talent.net data model
To help describe the Talent.net data model, we’ve created a small sample graph, as
shown in Figure 5-1, which we’ll use throughout this section to illustrate the Cypher
queries behind the main Talent.net use cases.

The sample graph shown here has just two companies, each with several employees.
An employee is connected to his employer by a WORKS_FOR relationship. Each
employee is INTERESTED_IN one or more topics, and has WORKED_ON one or more
projects. Occasionally, employees from different companies work on the same
project.

This structure addresses two important use cases:

• Given a user, infer social relations—that is, identify their professional social net‐
work—based on shared interests and skills.

• Given a user, recommend someone that they have worked with, or who has
worked with people they have worked with, who has a particular skill.

The first use case helps build communities around shared interests. The second helps
identify people to fill specific project roles.

112 | Chapter 5: Graphs in the Real World

Figure 5-1. Sample of the Talent.net social network

Inferring social relations
Talent.net’s graph allows it to infer a user’s professional social network by finding
people who share that user’s interests. The strength of the recommendation depends
on the number of shared interests. If Sarah is interested in Java, graphs, and REST,
Ben in graphs and REST, and Charlie in graphs, cars, and medicine, then there is a
likely tie between Sarah and Ben based on their mutual interest in graphs and REST,
and another tie between Sarah and Charlie based on their mutual interest in graphs,
with the tie between Sarah and Ben stronger than the one between Sarah and Charlie
(two shared interests versus one).

Figure 5-2 shows the pattern representing colleagues who share a user’s interests. The
subject node refers to the subject of the query (in the preceding example, this is
Sarah). This node can be looked up in an index. The remaining nodes will be discov‐
ered once the pattern is anchored to the subject node and then flexed around the
graph.

Real-World Examples | 113

The Cypher to implement this query is shown here:

MATCH (subject:User {name:{name}})
MATCH (subject)-[:WORKS_FOR]->(company:Company)<-[:WORKS_FOR]-(person:User),
 (subject)-[:INTERESTED_IN]->(interest)<-[:INTERESTED_IN]-(person:User)
RETURN person.name AS name,
 count(interest) AS score,
 collect(interest.name) AS interests
ORDER BY score DESC

Figure 5-2. Pattern to find colleagues who share a user’s interests

The query works as follows:

• The first MATCH finds the subject (here, Sarah) in the nodes labeled User and
assigns the result to the subject identifier.

• The second MATCH then matches this User with people who work for the same
company, and who share one or more of their interests. If the subject of the query
is Sarah, who works for Acme, then in the case of Ben, MATCH will match twice:
Ben works for Acme, and is interested in graphs (first match), and REST (second
match). In the case of Charlie, it will match once: Charlie works for Acme, and is
interested in graphs.

• RETURN creates a projection of the matched data. For each matched colleague, we
extract their name, count the number of interests they have in common with the
subject of the query (aliasing this result as score), and, using collect, create a

114 | Chapter 5: Graphs in the Real World

comma-separated list of these mutual interests. Where a person has multiple
matches, as does Ben in our example, count and collect aggregate their matches
into a single row in the returned results. (In fact, both count and collect can
perform this aggregating function independently of one another.)

• Finally, we order the results based on each colleague’s score, highest first.

Running this query against our sample graph, with Sarah as the subject, yields the fol‐
lowing results:

+---------------------------------------+
| name | score | interests |
+---------------------------------------+
| "Ben" | 2 | ["Graphs","REST"] |
| "Charlie" | 1 | ["Graphs"] |
+---------------------------------------+
2 rows

Figure 5-3 shows the portion of the graph that was matched to generate these results.

Figure 5-3. Colleagues who share Sarah’s interests

Notice that this query only finds people who work for the same company as Sarah. If
we want to extend the search to find people who work for other companies, we need
to modify the query slightly:

MATCH (subject:User {name:{name}})
MATCH (subject)-[:INTERESTED_IN]->(interest:Topic)
 <-[:INTERESTED_IN]-(person:User),
 (person)-[:WORKS_FOR]->(company:Company)

Real-World Examples | 115

RETURN person.name AS name,
 company.name AS company,
 count(interest) AS score,
 collect(interest.name) AS interests
ORDER BY score DESC

The changes are as follows:

• In the MATCH clause, we no longer require matched persons to work for the same
company as the subject of the query. (We do, however, still capture the company
with which a matched person is associated, because we want to return this infor‐
mation in the results.)

• In the RETURN clause we now include the company details for each matched per‐
son.

Running this query against our sample data returns the following results:

+---+
| name | company | score | interests |
+---+
"Arnold"	"Startup, Ltd"	3	["Java","Graphs","REST"]
"Ben"	"Acme, Inc"	2	["Graphs","REST"]
"Gordon"	"Startup, Ltd"	1	["Graphs"]
"Charlie"	"Acme, Inc"	1	["Graphs"]
+---+
4 rows

Figure 5-4 shows the portion of the graph that was matched to generate these results.

Figure 5-4. People who share Sarah’s interests

116 | Chapter 5: Graphs in the Real World

Although Ben and Charlie still feature in the results, it turns out that Arnold, who
works for Startup, Ltd., has most in common with Sarah: three topics compared to
Ben’s two and Charlie’s one.

Finding colleagues with particular interests
In the second Talent.net use case, we turn from inferring social relations based on
shared interests to finding individuals who have a particular skillset, and who have
either worked with the person who is the subject of the query, or worked with people
who have worked with the subject. By applying the graph in this manner we can find
individuals to staff project roles based on their social ties to people we trust—or at
least with whom we have worked.

The social ties in question arise from individuals having worked on the same project.
Contrast this with the previous use case, where the social ties were inferred based on
shared interests. If people have worked on the same project, we infer a social tie. The
projects, then, form intermediate nodes that bind two or more people together. In
other words, a project is an instance of collaboration that has brought several people
into contact with one another. Anyone we discover in this fashion is a candidate for
including in our results—as long as they possess the interests or skills we are looking
for.

Here’s a Cypher query that finds colleagues, and colleagues-of-colleagues, who have
one or more particular interests:

MATCH (subject:User {name:{name}})
MATCH p=(subject)-[:WORKED_ON]->(:Project)-[:WORKED_ON*0..2]-(:Project)
 <-[:WORKED_ON]-(person:User)-[:INTERESTED_IN]->(interest:Topic)
WHERE person<>subject AND interest.name IN {interests}
WITH person, interest, min(length(p)) as pathLength
ORDER BY interest.name
RETURN person.name AS name,
 count(interest) AS score,
 collect(interest.name) AS interests,
 ((pathLength - 1)/2) AS distance
ORDER BY score DESC
LIMIT {resultLimit}

This is quite a complex query. Let’s break it down little and look at each part in more
detail:

• The first MATCH finds the subject of the query in the nodes labeled User and
assigns the result to the subject identifier.

• The second MATCH finds people who are connected to the subject by way of hav‐
ing worked on the same project, or having worked on the same project as people
who have worked with the subject. For each person we match, we capture his
interests. This match is then further refined by the WHERE clause, which excludes

Real-World Examples | 117

nodes that match the subject of the query, and ensures that we only match people
who are interested in the things we care about. For each successful match, we
assign the entire path of the match—that is, the path that extends from the sub‐
ject of the query all the way through the matched person to his interest—to the
identifier p. We’ll look at this MATCH clause in more detail shortly.

• WITH pipes the results to the RETURN clause, filtering out redundant paths as it
does so. Redundant paths are present in the results at this point because collea‐
gues and colleagues-of-colleagues are often reachable through different paths,
some longer than others. We want to filter these longer paths out. That’s exactly
what the WITH clause does. The WITH clause emits triples comprising a person, an
interest, and the length of the path from the subject of the query through the per‐
son to his interest. Given that any particular person/interest combination may
appear more than once in the results, but with different path lengths, we want to
aggregate these multiple lines by collapsing them to a triple containing only the
shortest path, which we do using min(length(p)) as pathLength.

• RETURN creates a projection of the data, performing more aggregation as it does
so. The data piped by the WITH clause to RETURN contains one entry per person
per interest. If a person matches two of the supplied interests, there will be two
separate data entries. We aggregate these entries using count and collect: count
to create an overall score for a person, collect to create a comma-separated list
of matched interests for that person. As part of the results, we also calculate how
far the matched person is from the subject of the query. We do this by taking the
pathLength for that person, subtracting one (for the INTERESTED_IN relationship
at the end of the path), and then dividing by two (because the person is separated
from the subject by pairs of WORKED_ON relationships). Finally, we order the
results based on score, highest score first, and limit them according to a result
Limit parameter supplied by the query’s client.

The second MATCH clause in the preceding query uses a variable-length path,
[:WORKED_ON*0..2], as part of a larger pattern to match people who have worked
directly with the subject of the query, as well as people who have worked on the same
project as people who have worked with the subject. Because each person is separated
from the subject of the query by one or two pairs of WORKED_ON relationships, Tal‐
ent.net could have written this portion of the query as MATCH p=(subject)-

[:WORKED_ON*2..4]-(person)-[:INTERESTED_IN]->(interest), with a variable-
length path of between two and four WORKED_ON relationships. However, long
variable-length paths can be relatively inefficient. When writing such queries, it is
advisable to restrict variable-length paths to as narrow a scope as possible. To increase
the performance of the query, Talent.net uses a fixed-length outgoing WORKED_ON rela‐
tionship that extends from the subject to her first project, and another fixed-length

118 | Chapter 5: Graphs in the Real World

WORKED_ON relationship that connects the matched person to a project, with a smaller
variable-length path in between.

Running this query against our sample graph, and again taking Sarah as the subject of
the query, if we look for colleagues and colleagues-of-colleagues who have interests in
Java, travel, or medicine, we get the following results:

+--+
| name | score | interests | distance |
+--+
| "Arnold" | 2 | ["Java","Travel"] | 2 |
| "Charlie" | 1 | ["Medicine"] | 1 |
+--+
2 rows

Note that the results are ordered by score, not distance. Arnold has two out of the
three interests, and therefore scores higher than Charlie, who only has one, even
though he is at two removes from Sarah, whereas Charlie has worked directly with
Sarah.

Figure 5-5 shows the portion of the graph that was traversed and matched to generate
these results.

Figure 5-5. Finding people with particular interests

Let’s take a moment to understand how this query executes in more detail. Figure 5-6
shows three stages in the execution of the query. (For visual clarity we’ve removed
labels and emphasized the important property values.) The first stage shows each of
the paths as they are matched by the MATCH and WHERE clauses. As we can see, there is
one redundant path: Charlie is matched directly, through Next Gen Platform, but

Real-World Examples | 119

also indirectly, by way of Quantum Leap and Emily. The second stage represents the
filtering that takes place in the WITH clause. Here we emit triples comprising the
matched person, the matched interest, and the length of the shortest path from the
subject through the matched person to her interest. The third stage represents the
RETURN clause, wherein we aggregate the results on behalf of each matched person,
and calculate her score and distance from the subject.

Figure 5-6. Query pipeline

120 | Chapter 5: Graphs in the Real World

Adding WORKED_WITH relationships
The query for finding colleagues and colleagues-of-colleagues with particular inter‐
ests is the one most frequently executed on Talent.net’s site, and the success of the site
depends in large part on its performance. The query uses pairs of WORKED_ON relation‐
ships (for example, ('Sarah')-[:WORKED_ON]->('Next Gen Platform')<-

[:WORKED_ON]-('Charlie')) to infer that users have worked with one another.
Although reasonably performant, this is nonetheless inefficient, because it requires
traversing two explicit relationships to infer the presence of a single implicit relation‐
ship.

To eliminate this inefficiency, Talent.net decided to precompute a new kind of rela‐
tionship, WORKED_WITH, thereby enriching the graph with shortcuts for these
performance-critical access patterns. As we discussed in “Iterative and Incremental
Development” on page 74, it’s quite common to optimize graph access by adding a
direct relationship between two nodes that would otherwise be connected only by
way of intermediaries.

In terms of the Talent.net domain, WORKED_WITH is a bidirectional relationship. In the
graph, however, it is implemented using a unidirectional relationship. Although a
relationship’s direction can often add useful semantics to its definition, in this
instance the direction is meaningless. This isn’t a significant issue, so long as queries
that operate with WORKED_WITH relationships ignore the relationship direction.

Graph databases support traversal of relationships in either direc‐
tion at the same low cost, so the decision as to whether to include a
reciprocal relationship should be driven from the domain. For
example, PREVIOUS and NEXT may not both be necessary in a linked
list, but in a social network that represents sentiment, it is impor‐
tant to be explicit about who loves whom, and not assume reci‐
procity.

Calculating a user’s WORKED_WITH relationships and adding them to the graph isn’t dif‐
ficult, nor is it particularly expensive in terms of resource consumption. It can, how‐
ever, add milliseconds to any end-user interactions that update a user’s profile with
new project information, so Talent.net has decided to perform this operation asyn‐
chronously to end-user activities. Whenever a user changes his project history, Tal‐
ent.net adds a job to a queue. This job recalculates the user’s WORKED_WITH
relationships. A single writer thread polls this queue and executes the jobs using the
following Cypher statement:

MATCH (subject:User {name:{name}})
MATCH (subject)-[:WORKED_ON]->()<-[:WORKED_ON]-(person:User)
WHERE NOT((subject)-[:WORKED_WITH]-(person))
WITH DISTINCT subject, person

Real-World Examples | 121

CREATE UNIQUE (subject)-[:WORKED_WITH]-(person)
RETURN subject.name AS startName, person.name AS endName

Figure 5-7 shows what our sample graph looks like once it has been enriched with
WORKED_WITH relationships.

Figure 5-7. Talent.net graph enriched with WORKED_WITH relationships

Using the enriched graph, Talent.net now finds colleagues and colleagues-of-
colleagues with particular interests using a slightly simpler version of the query we
looked at earlier:

MATCH (subject:User {name:{name}})
MATCH p=(subject)-[:WORKED_WITH*0..1]-(:Person)-[:WORKED_WITH]-(person:User)
 -[:INTERESTED_IN]->(interest:Topic)
WHERE person<>subject AND interest.name IN {interests}
WITH person, interest, min(length(p)) as pathLength
RETURN person.name AS name,
 count(interest) AS score,
 collect(interest.name) AS interests,
 (pathLength - 1) AS distance
ORDER BY score DESC
LIMIT {resultLimit}

122 | Chapter 5: Graphs in the Real World

Authorization and Access Control
TeleGraph Communications is an international communications services company.
Millions of domestic and business users subscribe to its products and services. For
several years, it has offered its largest business customers the ability to self-service
their accounts. Using a browser-based application, administrators within each of
these customer organizations can add and remove services on behalf of their employ‐
ees. To ensure that users and administrators see and change only those parts of the
organization and the products and services they are entitled to manage, the applica‐
tion employs a complex access control system, which assigns privileges to many mil‐
lions of users across tens of millions of product and service instances.

TeleGraph has decided to replace the existing access control system with a graph
database solution. There are two drivers here: performance and business responsive‐
ness.

Performance issues have dogged TeleGraph’s self-service application for several years.
The original system is based on a relational database, which uses recursive joins to
model complex organizational structures and product hierarchies, and stored proce‐
dures to implement the access control business logic. Because of the join-intensive
nature of the data model, many of the most important queries are unacceptably slow.
For large companies, generating a view of the things an administrator can manage
takes many minutes. This creates a very poor user experience, and hampers the
revenue-generating opportunities presented by the self-service offering.

TeleGraph has ambitious plans to move into new regions and markets, effectively
increasing its customer base by an order of magnitude. But the performance issues
that affect the original application suggest it is no longer fit for today’s needs, never
mind tomorrow’s. A graph database solution, in contrast, offers the performance,
scalability, and adaptiveness necessary for dealing with a rapidly changing market.

TeleGraph data model
Figure 5-8 shows a sample of the TeleGraph data model. (For clarity, labels are pre‐
sented at the top of each set of nodes once only, rather than being attached to every
node. In the real data, all nodes have at least one label.)

Real-World Examples | 123

Figure 5-8. Access control graph

This model comprises two hierarchies. In the first hierarchy, administrators within
each customer organization are assigned to groups. These groups are then accorded
various permissions against that organization’s organizational structure:

124 | Chapter 5: Graphs in the Real World

• ALLOWED_INHERIT connects an administrator group to an organizational unit,
thereby allowing administrators within that group to manage the organizational
unit. This permission is inherited by children of the parent organizational unit.
We see an example of inherited permissions in the TeleGraph example data
model in the relationships between Group 1 and Acme, and the child of Acme,
Spinoff. Group 1 is connected to Acme using an ALLOWED_INHERIT relationship.
Ben, as a member of Group 1, can manage employees both of Acme and Spinoff
thanks to this ALLOWED_INHERIT relationship.

• ALLOWED_DO_NOT_INHERIT connects an administrator group to an organizational
unit in a way that allows administrators within that group to manage the organi‐
zational unit, but not any of its children. Sarah, as a member of Group 2, can
administer Acme, but not its child Spinoff, because Group 2 is connected to Acme
by an ALLOWED_DO_NOT_INHERIT relationship, not an ALLOWED_INHERIT relation‐
ship.

• DENIED forbids administrators from accessing an organizational unit. This per‐
mission is inherited by children of the parent organizational unit. In the Tele‐
Graph diagram, this is best illustrated by Liz and her permissions with respect to
Big Co, Acquired Ltd, Subsidiary, and One-Map Shop. As a result of her mem‐
bership of Group 4 and its ALLOWED_INHERIT permission on Big Co, Liz can
manage Big Co. But despite this being an inheritable relationship, Liz cannot
manage Acquired Ltd or Subsidiary because Group 5, of which Liz is a mem‐
ber, is DENIED access to Acquired Ltd and its children (which includes Subsid
iary). Liz can, however, manage One-Map Shop, thanks to an
ALLOWED_DO_NOT_INHERIT permission granted to Group 6, the last group to
which Liz belongs.

DENIED takes precedence over ALLOWED_INHERIT, but is subordinate to
ALLOWED_DO_NOT_INHERIT. Therefore, if an administrator is connected to a company
by way of ALLOWED_DO_NOT_INHERIT and DENIED, ALLOWED_DO_NOT_INHERIT prevails.

Fine-Grained Relationships, or Relationships with Properties?
Notice that the TeleGraph access control data model uses fine-grained relationships
(ALLOWED_INHERIT, ALLOWED_DO_NOT_INHERIT, and DENIED) rather than a single rela‐
tionship type qualified by properties—something like PERMISSION with allowed and
inherited boolean properties. TeleGraph performance-tested both approaches and
determined that using fine-grained relationships was almost twice as fast as using
properties. For more details on designing relationships, see Chapter 4.

Real-World Examples | 125

Finding all accessible resources for an administrator
The TeleGraph application uses many different Cypher queries. We’ll look at just a
few of them here.

First up is the ability to find all the resources an administrator can access. Whenever
an onsite administrator logs in to the system, he is presented with a list of all the
employees and employee accounts he can administer. This list is generated based on
the results returned from the following query:

MATCH (admin:Admin {name:{adminName}})
MATCH paths=(admin)-[:MEMBER_OF]->(:Group)-[:ALLOWED_INHERIT]->(:Company)
 <-[:CHILD_OF*0..3]-(company:Company)<-[:WORKS_FOR]-(employee:Employee)
 -[:HAS_ACCOUNT]->(account:Account)
WHERE NOT ((admin)-[:MEMBER_OF]->(:Group)
 -[:DENIED]->(:Company)<-[:CHILD_OF*0..3]-(company))
RETURN employee.name AS employee, account.name AS account
UNION
MATCH (admin:Admin {name:{adminName}})
MATCH paths=(admin)-[:MEMBER_OF]->(:Group)-[:ALLOWED_DO_NOT_INHERIT]->(:Company)
 <-[:WORKS_FOR]-(employee:Employee)-[:HAS_ACCOUNT]->(account:Account)
RETURN employee.name AS employee, account.name AS account

Like all the other queries we’ll be looking at in this section, this query comprises two
separate queries joined by a UNION operator. The query before the UNION operator
handles ALLOWED_INHERIT relationships qualified by any DENIED relationships. The
query following the UNION operator handles any ALLOWED_DO_NOT_INHERIT permis‐
sions. This pattern, ALLOWED_INHERIT minus DENIED, followed by
ALLOWED_DO_NOT_INHERIT, is repeated in all of the access control example queries that
we’ll be looking at.

The first query here, the one before the UNION operator, can be broken down as fol‐
lows:

• The first MATCH selects the logged-in administrator from the nodes labeled Admin
istrator, and binds the result to the admin identifier.

• MATCH matches all the groups to which this administrator belongs, and from these
groups, all the parent companies connected by way of an ALLOWED_INHERIT rela‐
tionship. The MATCH then uses a variable-length path ([:CHILD_OF*0..3]) to dis‐
cover children of these parent companies, and thereafter the employees and
accounts associated with all matched companies (whether parent company or
child). At this point, the query has matched all companies, employees, and
accounts accessible by way of ALLOWED_INHERIT relationships.

• WHERE eliminates matches whose company, or parent companies, are connected by
way of a DENIED relationship to the administrator’s groups. This WHERE clause is

126 | Chapter 5: Graphs in the Real World

invoked for each match. If there is a DENIED relationship anywhere between the
admin node and the company node bound by the match, that match is eliminated.

• RETURN creates a projection of the matched data in the form of a list of employee
names and accounts.

The second query here, following the UNION operator, is a little simpler:

• The first MATCH selects the logged-in administrator from the nodes labeled Admin
istrator, and binds the result to the admin identifier.

• The second MATCH simply matches companies (plus employees and accounts) that
are directly connected to an administrator’s groups by way of an
ALLOWED_DO_NOT_INHERIT relationship.

The UNION operator joins the results of these two queries together, eliminating any
duplicates. Note that the RETURN clause in each query must contain the same projec‐
tion of the results. In other words, the column names in the two result sets must
match.

Figure 5-9 shows how this query matches all accessible resources for Sarah in the
sample TeleGraph graph. Note that, because of the DENIED relationship from Group 2
to Skunkworkz, Sarah cannot administer Kate and Account 7.

Cypher supports both UNION and UNION ALL operators. UNION elim‐
inates duplicate results from the final result set, whereas UNION ALL
includes any duplicates.

Real-World Examples | 127

Figure 5-9. Finding all accessible resources for a user

Determining whether an administrator has access to a resource
The query we’ve just looked at returned a list of employees and accounts an adminis‐
trator can manage. In a web application, each of these resources (employee, account)
is accessible through its own URI. Given a friendly URI (e.g., http://TeleGraph/

128 | Chapter 5: Graphs in the Real World

http://TeleGraph/accounts/5436)

accounts/5436), what’s to stop someone from hacking a URI and gaining illegal access
to an account?

What’s needed is a query that will determine whether an administrator has access to a
specific resource. This is that query:

MATCH (admin:Admin {name:{adminName}}),
 (company:Company)-[:WORKS_FOR|HAS_ACCOUNT*1..2]
 -(resource:Resource {name:{resourceName}})
MATCH p=(admin)-[:MEMBER_OF]->(:Group)-[:ALLOWED_INHERIT]->(:Company)
 <-[:CHILD_OF*0..3]-(company)
WHERE NOT ((admin)-[:MEMBER_OF]->(:Group)-[:DENIED]->(:Company)
 <-[:CHILD_OF*0..3]-(company))
RETURN count(p) AS accessCount
UNION
MATCH (admin:Admin {name:{adminName}}),
 (company:Company)-[:WORKS_FOR|HAS_ACCOUNT*1..2]
 -(resource:Resource {name:{resourceName}})
MATCH p=(admin)-[:MEMBER_OF]->()-[:ALLOWED_DO_NOT_INHERIT]->(company)
RETURN count(p) AS accessCount

This query works by determining whether an administrator has access to the com‐
pany to which an employee or an account belongs. Given an employee or account, we
need to determine the company with which this resource is associated, and then work
out whether the administrator has access to that company.

How do we identify the company to which an employee or account belongs? By label‐
ling both as Resource (as well as either Company or Account). An employee is connec‐
ted to a company resource by a WORKS_FOR relationship. An account is associated with
a company by way of an employee. HAS_ACCOUNT connects the employee to the
account. WORKS_FOR then connects this employee to the company. In other words, an
employee is one hop away from a company, whereas an account is two hops away
from a company.

With that bit of insight, we can see that this resource authorization check is similar to
the query for finding all companies, employees, and accounts—only with several
small differences:

• The first MATCH findz the company to which an employee or account belongs. It
uses Cypher’s OR operator, |, to match both WORKS_FOR and HAS_ACCOUNT rela‐
tionships at depth one or two.

• The WHERE clause in the query before the UNION operator eliminates matches
where the company in question is connected to one of the administrator’s groups
by way of a DENIED relationship.

Real-World Examples | 129

http://TeleGraph/accounts/5436)

• The RETURN clauses for the queries before and after the UNION operator return a
count of the number of matches. For an administrator to have access to a
resource, one or both of these accessCount values must be greater than 0.

Because the UNION operator eliminates duplicate results, the overall result set for this
query can contain either one or two values. The client-side algorithm for determining
whether an administrator has access to a resource can be expressed easily in Java:

private boolean isAuthorized(Result result)
{
 Iterator<Long> accessCountIterator = result.columnAs("accessCount");
 while (accessCountIterator.hasNext())
 {
 if (accessCountIterator.next() > 0L)
 {
 return true;
 }
 }
 return false;
}

Finding administrators for an account
The previous two queries represent “top-down” views of the graph. The last Tele‐
Graph query we’ll discuss here provides a “bottom-up” view of the data. Given a
resource—an employee or account—who can manage it? Here’s the query:

MATCH (resource:Resource {name:{resourceName}})
MATCH p=(resource)-[:WORKS_FOR|HAS_ACCOUNT*1..2]-(company:Company)
 -[:CHILD_OF*0..3]->()<-[:ALLOWED_INHERIT]-()<-[:MEMBER_OF]-(admin:Admin)
WHERE NOT ((admin)-[:MEMBER_OF]->(:Group)-[:DENIED]->(:Company)
 <-[:CHILD_OF*0..3]-(company))
RETURN admin.name AS admin
UNION
MATCH (resource:Resource {name:{resourceName}})
MATCH p=(resource)-[:WORKS_FOR|HAS_ACCOUNT*1..2]-(company:Company)
 <-[:ALLOWED_DO_NOT_INHERIT]-(:Group)<-[:MEMBER_OF]-(admin:Admin)
RETURN admin.name AS admin

As before, the query consists of two independent queries joined by a UNION operator.
Of particular note are the following clauses:

• The first MATCH clause uses a Resource label, which allows it to identify both
employees and accounts.

• The second MATCH clauses contain a variable-length path expression that uses the
| operator to specify a path that is one or two relationships deep, and whose rela‐
tionship types comprise WORKS_FOR or HAS_ACCOUNT. This expression accommo‐

130 | Chapter 5: Graphs in the Real World

dates the fact that the subject of the query may be either an employee or an
account.

Figure 5-10 shows the portions of the graph matched by the query when asked to find
the administrators for Account 10.

Figure 5-10. Finding an administrator for a specific account

Real-World Examples | 131

Geospatial and Logistics
Global Post is a global courier whose domestic operation delivers millions of parcels
to more than 30 million addresses each day. In recent years, as a result of the rise in
online shopping, the number of parcels has increased significantly. Amazon and eBay
deliveries now account for more than half of the parcels routed and delivered by
Global Post each day.

With parcel volumes continuing to grow, and facing strong competition from other
courier services, Global Post has begun a large change program to upgrade all aspects
of its parcel network, including buildings, equipment, systems, and processes.

One of the most important and time-critical components in the parcel network is the
route calculation engine. Between one and three thousand parcels enter the network
each second. As parcels enter the network they are mechanically sorted according to
their destination. To maintain a steady flow during this process, the engine must cal‐
culate a parcel’s route before it reaches a point where the sorting equipment has to
make a choice, which happens only seconds after the parcel has entered the network
—hence the strict time requirements on the engine.

Not only must the engine route parcels in milliseconds, but it must do so according
to the routes scheduled for a particular period. Parcel routes change throughout the
year, with more trucks, delivery people, and collections over the Christmas period
than during the summer, for example. The engine must, therefore, apply its calcula‐
tions using only those routes that are available for a particular period.

On top of accommodating different routes and levels of parcel traffic, the new parcel
network must also allow for significant change and evolution. The platform that
Global Post develops today will form the business-critical basis of its operations for
the next 10 years or more. During that time, the company anticipates large portions
of the network—including equipment, premises, and transport routes—will change
to match changes in the business environment. The data model underlying the route
calculation engine must, therefore, allow for rapid and significant schema evolution.

Global Post data model
Figure 5-11 shows a simple example of the Global Post parcel network. The network
comprises parcel centers, which are connected to delivery bases, each of which covers
several delivery areas. These delivery areas, in turn, are subdivided into delivery seg‐
ments covering many delivery units. There are around 25 national parcel centers and
roughly 2 million delivery units (corresponding to postal or zip codes).

132 | Chapter 5: Graphs in the Real World

Figure 5-11. Elements in the Global Post network

Over time, the delivery routes change. Figures 5-12, 5-13, and 5-14 show three dis‐
tinct delivery periods. For any given period, there is at most one route between a
delivery base and any particular delivery area or segment. In contrast, there are multi‐
ple routes between delivery bases and parcel centers throughout the year. For any
given point in time, therefore, the lower portions of the graph (the individual sub‐
graphs below each delivery base) comprise simple tree structures, whereas the upper
portions of the graph, made up of delivery bases and parcel centers, are more inter‐
connected.

Real-World Examples | 133

Figure 5-12. Structure of the delivery network for Period 1

Figure 5-13. Structure of the delivery network for Period 2

134 | Chapter 5: Graphs in the Real World

Figure 5-14. Structure of the delivery network for Period 3

Notice that delivery units are not included in the production data. This is because
each delivery unit is always associated with the same delivery segments, irrespective
of the period. Because of this invariant, it is possible to index each delivery segment
by its many delivery units. To calculate the route to a particular delivery unit, the sys‐
tem need only actually calculate the route to its associated delivery segment, the name
of which can be recovered from the index using the delivery unit as a key. This opti‐
mization helps both reduce the size of the production graph, and reduce the number
of traversals needed to calculate a route.

The production database contains the details of all the different delivery periods. As
shown in Figure 5-15, the presence of so many period-specific relationships makes
for a densely connected graph.

In the production data, nodes are connected by multiple relationships, each of which
is timestamped with a start_date and end_date property. Relationships are of two
types: CONNECTED_TO, which connects parcel centers and delivery bases, and DELIV
ERY_ROUTE, which connects delivery bases to delivery areas, and delivery areas to
delivery segments. These two different types of relationships effectively partition the
graph into its upper and lower parts, a strategy that provides for very efficient traver‐
sals. Figure 5-16 shows three of the timestamped CONNECTED_TO relationships con‐
necting a parcel center to a delivery base.

Real-World Examples | 135

Figure 5-15. Sample of the Global Post network

Route calculation

As described in the previous section, the CONNECTED_TO and DELIVERY_ROUTE rela‐
tionships partition the graph into upper and lower parts, with the upper parts made
up of complexly connected parcel centers and delivery centers, the lower parts of
delivery bases, delivery areas, and delivery segments organized—for any given period
—in simple tree structures.

Route calculations involve finding the cheapest route between two locations in the
lower portions of the graph. The starting location is typically a delivery segment or
delivery area, whereas the end location is always a delivery segment. A delivery seg‐
ment, as we discussed earlier, is effectively a key for a delivery unit. Irrespective of the
start and end locations, the calculated route must go via at least one parcel center in
the upper part of the graph.

136 | Chapter 5: Graphs in the Real World

Figure 5-16. Timestamp properties on relationships

In terms of traversing the graph, a calculation can be split into three legs. Legs one
and two, shown in Figure 5-17, work their way upward from the start and end loca‐
tions, respectively, with each terminating at a delivery center. Because there is at most
one route between any two elements in the lower portion of the graph for any given
delivery period, traversing from one element to the next is simply a matter of finding
an incoming DELIVERY ROUTE relationship whose interval timestamps encompass the
current delivery period. By following these relationships, the traversals for legs one
and two navigate a pair of tree structures rooted at two different delivery centers.
These two delivery centers then form the start and end locations for the third leg,
which crosses the upper portion of the graph.

Real-World Examples | 137

Figure 5-17. Shortest path to delivery bases from start and end points

As with legs one and two, the traversal for leg three, as shown in Figure 5-18, looks
for relationships—this time, CONNECTED_TO relationships—whose timestamps encom‐
pass the current delivery period. Even with this time filtering in place, however, there
are, for any given period, potentially several routes between any two delivery centers
in the upper portion of the graph. The third leg traversal must, therefore, sum the
cost of each route, and select the cheapest, making this a shortest weighted path calcu‐
lation.

138 | Chapter 5: Graphs in the Real World

Figure 5-18. Shortest path between delivery bases

To complete the calculation, we need then simply to add the paths for legs one, three,
and two, which gives the full path from the start to the end location.

Finding the shortest delivery route using Cypher
The Cypher query to implement the parcel route calculation engine is as follows:

MATCH (s:Location {name:{startLocation}}),
 (e:Location {name:{endLocation}})
MATCH upLeg = (s)<-[:DELIVERY_ROUTE*1..2]-(db1)
WHERE all(r in relationships(upLeg)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})
WITH e, upLeg, db1
MATCH downLeg = (db2)-[:DELIVERY_ROUTE*1..2]->(e)
WHERE all(r in relationships(downLeg)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})
WITH db1, db2, upLeg, downLeg
MATCH topRoute = (db1)<-[:CONNECTED_TO]-()-[:CONNECTED_TO*1..3]-(db2)
WHERE all(r in relationships(topRoute)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})
WITH upLeg, downLeg, topRoute,
 reduce(weight=0, r in relationships(topRoute) | weight+r.cost) AS score

Real-World Examples | 139

 ORDER BY score ASC
 LIMIT 1
RETURN (nodes(upLeg) + tail(nodes(topRoute)) + tail(nodes(downLeg))) AS n

At first glance, this query appears quite complex. It is, however, made up of four sim‐
pler queries joined together with WITH clauses. We’ll look at each of these subqueries
in turn.

Here’s the first subquery:

MATCH (s:Location {name:{startLocation}}),
 (e:Location {name:{endLocation}})
MATCH upLeg = (s)<-[:DELIVERY_ROUTE*1..2]-(db1)
WHERE all(r in relationships(upLeg)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})

This query calculates the first leg of the overall route. It can be broken down as fol‐
lows:

• The first MATCH finds the start and end locations in the subset of nodes labeled
Location, binding them to the s and e identifiers, respectively.

• The second MATCH finds the route from the start location, s, to a delivery base
using a directed, variable-length DELIVERY_ROUTE path. This path is then bound
to the identifier upLeg. Because delivery bases are always the root nodes of DELIV
ERY_ROUTE trees, and therefore have no incoming DELIVERY_ROUTE relationships,
we can be confident that the db1 node at the end of this variable-length path rep‐
resents a delivery base and not some other parcel network element.

• WHERE applies additional constraints to the path upLeg, ensuring that we only
match DELIVERY_ROUTE relationships whose start_date and end_date proper‐
ties encompass the supplied delivery period.

The second subquery calculates the second leg of the route, which comprises the path
from the end location up to the delivery base whose DELIVERY_ROUTE tree includes
that end location as a leaf node. This query is very similar to the first:

WITH e, upLeg, db1
MATCH downLeg = (db2)-[:DELIVERY_ROUTE*1..2]->(e)
WHERE all(r in relationships(downLeg)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})

The WITH clause here chains the first subquery to the second, piping the end location
and the first leg’s path and delivery base to the second subquery. The second sub‐
query uses only the end location, e, in its MATCH clause; the rest is provided so that it
can be piped to subsequent queries.

140 | Chapter 5: Graphs in the Real World

The third subquery identifies all candidate paths for the third leg of the route—that
is, the route between delivery bases db1 and db2—as follows:

WITH db1, db2, upLeg, downLeg
MATCH topRoute = (db1)<-[:CONNECTED_TO]-()-[:CONNECTED_TO*1..3]-(db2)
WHERE all(r in relationships(topRoute)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})

This subquery is broken down as follows:

• WITH chains this subquery to the previous one, piping delivery bases db1 and db2
together with the paths identified in legs one and two to the current query.

• MATCH identifies all paths between the first and second leg delivery bases, to a
maximum depth of four, and binds them to the topRoute identifier.

• WHERE constrains the topRoute paths to those whose start_date and end_date
properties encompass the supplied delivery period.

The fourth and final subquery selects the shortest path for leg three, and then calcu‐
lates the overall route:

WITH upLeg, downLeg, topRoute,
 reduce(weight=0, r in relationships(topRoute) | weight+r.cost) AS score
 ORDER BY score ASC
 LIMIT 1
RETURN (nodes(upLeg) + tail(nodes(topRoute)) + tail(nodes(downLeg))) AS n

This subquery works as follows:

• WITH pipes one or more triples, comprising upLeg, downLeg, and topRoute paths,
to the current query. There will be one triple for each of the paths matched by the
third subquery, with each path being bound to topRoute in successive triples (the
paths bound to upLeg and downLeg will stay the same, because the first and sec‐
ond subqueries matched only one path each). Each triple is accompanied by a
score for the path bound to topRoute for that triple. This score is calculated
using Cypher’s reduce function, which for each triple sums the cost properties
on the relationships in the path currently bound to topRoute. The triples are then
ordered by this score, lowest first, and then limited to the first triple in the sor‐
ted list.

• RETURN sums the nodes in the paths upLeg, topRoute, and downLeg to produce
the final results. The tail function drops the first node in each of the paths top
Route and downLeg, because that node will already be present in the preceding
path.

Real-World Examples | 141

Implementing route calculation with the Traversal Framework
The time-critical nature of the route calculation imposes strict demands on the route
calculation engine. As long as the individual query latencies are low enough, it’s
always possible to scale horizontally for increased throughput. The Cypher-based sol‐
ution is fast, but with many thousands of parcels entering the network each second,
every millisecond impacts the cluster footprint. For this reason, Global Post adopted
an alternative approach: calculating routes using Neo4j’s Traversal Framework.

A traversal-based implementation of the route calculation engine must solve two
problems: finding the shortest paths, and filtering the paths based on time period.
We’ll look at how we filter paths based on time period first.

Traversals should only follow relationships that are valid for the specified delivery
period. In other words, as the traversal progresses through the graph, it should be
presented with only those relationships whose periods of validity, as defined by their
start_date and end_date properties, contain the specified delivery period.

We implement this relationship filtering using a PathExpander. Given a path from a
traversal’s start node to the node where it is currently positioned, a PathExpander’s
expand() method returns the relationships that can be used to traverse further. This
method is called by the Traversal Framework each time the framework advances
another node into the graph. If needed, the client can supply some initial state, called
the branch state, to the traversal. The expand() method can use (and even change)
the supplied branch state in the course of deciding which relationships to return. The
route calculator’s ValidPathExpander implementation uses this branch state to sup‐
ply the delivery period to the expander.

Here’s the code for the ValidPathExpander:

private static class ValidPathExpander implements PathExpander<Interval>
{
 private final RelationshipType relationshipType;
 private final Direction direction;

 private ValidPathExpander(RelationshipType relationshipType,
 Direction direction)
 {
 this.relationshipType = relationshipType;
 this.direction = direction;
 }

 @Override
 public Iterable<Relationship> expand(Path path,
 BranchState<Interval> deliveryInterval)
 {
 List<Relationship> results = new ArrayList<Relationship>();
 for (Relationship r : path.endNode()
 .getRelationships(relationshipType, direction))

142 | Chapter 5: Graphs in the Real World

 {
 Interval relationshipInterval = new Interval(
 (Long) r.getProperty("start_date"),
 (Long) r.getProperty("end_date"));
 if (relationshipInterval.contains(deliveryInterval.getState()))
 {
 results.add(r);
 }
 }

 return results;
 }
}

The ValidPathExpander’s constructor takes two arguments: a relationshipType and
a direction. This allows the expander to be reused for different types of relation‐
ships. In the case of the Global Post graph, the expander will be used to filter both
CONNECTED_TO and DELIVERY_ROUTE relationships.

The expander’s expand() method takes as parameters the path that extends from the
traversal’s start node to the node on which the traversal is currently positioned, and
the deliveryInterval branch state as supplied by the client. Each time it is called,
expand() iterates the relevant relationships on the current node (the current node is
given by path.endNode()). For each relationship, the method then compares the rela‐
tionship’s interval with the supplied delivery interval. If the relationship’s interval con‐
tains the delivery interval, the relationship is added to the results.

Having looked at the ValidPathExpander, we can now turn to the ParcelRouteCalcu
lator itself. This class encapsulates all the logic necessary to calculate a route between
the point where a parcel enters the network and the final delivery destination. It
employs a similar strategy to the Cypher query we’ve already looked at. That is, it
works its way up the graph from both the start node and the end node in two separate
traversals, until it finds a delivery base for each leg. It then performs a shortest weigh‐
ted path search that joins these two delivery bases.

Here’s the beginning of the ParcelRouteCalculator class:

public class ParcelRouteCalculator
{
 private static final PathExpander<Interval> DELIVERY_ROUTE_EXPANDER =
 new ValidPathExpander(withName("DELIVERY_ROUTE"),
 Direction.INCOMING);

 private static final PathExpander<Interval> CONNECTED_TO_EXPANDER =
 new ValidPathExpander(withName("CONNECTED_TO"),
 Direction.BOTH);

 private static final TraversalDescription DELIVERY_BASE_FINDER =
 Traversal.description()

Real-World Examples | 143

 .depthFirst()
 .evaluator(new Evaluator()
 {
 private final RelationshipType DELIVERY_ROUTE =
 withName("DELIVERY_ROUTE");

 @Override
 public Evaluation evaluate(Path path)
 {
 if (isDeliveryBase(path))
 {
 return Evaluation.INCLUDE_AND_PRUNE;
 }

 return Evaluation.EXCLUDE_AND_CONTINUE;
 }

 private boolean isDeliveryBase(Path path)
 {
 return !path.endNode().hasRelationship(
 DELIVERY_ROUTE, Direction.INCOMING);
 }
 });

 private static final CostEvaluator<Double> COST_EVALUATOR =
 CommonEvaluators.doubleCostEvaluator("cost");
 public static final Label LOCATION = DynamicLabel.label("Location");
 private GraphDatabaseService db;

 public ParcelRouteCalculator(GraphDatabaseService db)
 {
 this.db = db;
 }
 ...
}

Here we define two expanders—one for DELIVERY_ROUTE relationships, another for
CONNECTED_TO relationships—and the traversal that will find the two legs of our route.
This traversal terminates whenever it encounters a node with no incoming DELIV
ERY_ROUTE relationships. Because each delivery base is at the root of a delivery route
tree, we can infer that a node without any incoming DELIVERY_ROUTE relationships
represents a delivery base in our graph.

Each route calculation engine maintains a single instance of this route calculator. This
instance is capable of servicing multiple requests. For each route to be calculated, the
client calls the calculator’s calculateRoute() method, passing in the names of the
start and end points, and the interval for which the route is to be calculated:

144 | Chapter 5: Graphs in the Real World

public Iterable<Node> calculateRoute(String start,
 String end,
 Interval interval)
{
 try (Transaction tx = db.beginTx())
 {
 TraversalDescription deliveryBaseFinder =
 createDeliveryBaseFinder(interval);

 Path upLeg = findRouteToDeliveryBase(start, deliveryBaseFinder);
 Path downLeg = findRouteToDeliveryBase(end, deliveryBaseFinder);

 Path topRoute = findRouteBetweenDeliveryBases(
 upLeg.endNode(),
 downLeg.endNode(),
 interval);

 Set<Node> routes = combineRoutes(upLeg, downLeg, topRoute);
 tx.success();
 return routes;
 }
}

calculateRoute() first obtains a deliveryBaseFinder for the specified interval,
which it then uses to find the routes for the two legs. Next, it finds the route between
the delivery bases at the top of each leg, these being the last nodes in each leg’s path.
Finally, it combines these routes to generate the final results.

The createDeliveryBaseFinder() helper method creates a traversal description
configured with the supplied interval:

private TraversalDescription createDeliveryBaseFinder(Interval interval)
{
 return DELIVERY_BASE_FINDER.expand(DELIVERY_ROUTE_EXPANDER,
 new InitialBranchState.State<>(interval, interval));
}

This traversal description is built by expanding the ParcelRouteCalculator’s static
DELIVERY_BASE_FINDER traversal description using the DELIVERY_ROUTE_EXPANDER.
The branch state for the expander is initialized at this point with the interval supplied
by the client. This enables us to use the same base traversal description instance
(DELIVERY_BASE_FINDER) for multiple requests. This base description is expanded
and parameterized for each request.

Properly configured with an interval, the traversal description is then supplied to
findRouteToDeliveryBase(), which looks up a starting node in the location index,
and then executes the traversal:

Real-World Examples | 145

private Path findRouteToDeliveryBase(String startPosition,
 TraversalDescription deliveryBaseFinder)
{
 Node startNode = IteratorUtil.single(
 db.findNodesByLabelAndProperty(LOCATION, "name", startPosition));
 return deliveryBaseFinder.traverse(startNode).iterator().next();
}

That’s the two legs taken care of. The last part of the calculation requires us to find
the shortest path between the delivery bases at the top of each of the legs. calculate
Route() takes the last node from each leg’s path, and supplies these two nodes
together with the client-supplied interval to findRouteBetweenDeliveryBases().
Here’s the implementation of findRouteBetweenDeliveryBases():

private Path findRouteBetweenDeliveryBases(Node deliveryBase1,
 Node deliveryBase2,
 Interval interval)
{
 PathFinder<WeightedPath> routeBetweenDeliveryBasesFinder =
 GraphAlgoFactory.dijkstra(
 CONNECTED_TO_EXPANDER,
 new InitialBranchState.State<>(interval, interval),
 COST_EVALUATOR);

 return routeBetweenDeliveryBasesFinder
 .findSinglePath(deliveryBase1, deliveryBase2);
}

Rather than use a traversal description to find the shortest route between two nodes,
this method uses a shortest weighted path algorithm from Neo4j’s graph algorithm
library—in this instance, we’re using the Dijkstra algorithm (see “Path-Finding with
Dijkstra’s Algorithm” on page 173 for more details on the Dijkstra algorithm).
This algorithm is configured with ParcelRouteCalculator’s static CONNEC

TED_TO_EXPANDER, which in turn is initialized with the client-supplied branch state
interval. The algorithm is also configured with a cost evaluator (another static mem‐
ber), which simply identifies the property on a relationship representing that relation‐
ship’s weight or cost. A call to findSinglePath on the Dijkstra path finder returns the
shortest path between the two delivery bases.

That’s the hard work done. All that remains is to join these routes to form the final
results. This is relatively straightforward, the only wrinkle being that the down leg’s
path must be reversed before being added to the results (the leg was calculated from
final destination upward, whereas it should appear in the results delivery base down‐
ward):

private Set<Node> combineRoutes(Path upLeg,
 Path downLeg,
 Path topRoute)
{

146 | Chapter 5: Graphs in the Real World

 LinkedHashSet<Node> results = new LinkedHashSet<>();
 results.addAll(IteratorUtil.asCollection(upLeg.nodes()));
 results.addAll(IteratorUtil.asCollection(topRoute.nodes()));
 results.addAll(IteratorUtil.asCollection(downLeg.reverseNodes()));
 return results;
}

Summary
In this chapter, we’ve looked at some common real-world use cases for graph databa‐
ses, and described in detail three case studies that show how graph databases have
been used to build a social network, implement access control, and manage complex
logistics calculations.

In the next chapter, we dive deeper into the internals of a graph database. In the con‐
cluding chapter, we look at some analytical techniques and algorithms for processing
graph data.

Summary | 147

CHAPTER 6

Graph Database Internals

In this chapter, we peek under the hood and discuss the implementation of graph
databases, showing how they differ from other means of storing and querying com‐
plex, variably-structured, densely connected data. Although it is true that no single
universal architecture pattern exists, even among graph databases, this chapter
describes the most common architecture patterns and components you can expect to
find inside a graph database.

We illustrate the discussion in this chapter using the Neo4j graph database, for several
reasons. Neo4j is a graph database with native processing capabilities as well as native
graph storage (see Chapter 1 for a discussion of native graph processing and storage).
In addition to being the most common graph database in use at the time of writing, it
has the transparency advantage of being open source, making it easy for the adven‐
turesome reader to go a level deeper and inspect the code. Finally, it is a database the
authors know well.

Native Graph Processing
We’ve discussed the property graph model several times throughout this book. By
now you should be familiar with its notion of nodes connected by way of named and
directed relationships, with both the nodes and relationships serving as containers for
properties. Although the model itself is reasonably consistent across graph database
implementations, there are numerous ways to encode and represent the graph in the
database engine’s main memory. Of the many different engine architectures, we say
that a graph database has native processing capabilities if it exhibits a property called
index-free adjacency.

A database engine that utilizes index-free adjacency is one in which each node main‐
tains direct references to its adjacent nodes. Each node, therefore, acts as a micro-

149

index of other nearby nodes, which is much cheaper than using global indexes. It
means that query times are independent of the total size of the graph, and are instead
simply proportional to the amount of the graph searched.

A nonnative graph database engine, in contrast, uses (global) indexes to link nodes
together, as shown in Figure 6-1. These indexes add a layer of indirection to each tra‐
versal, thereby incurring greater computational cost. Proponents for native graph
processing argue that index-free adjacency is crucial for fast, efficient graph traver‐
sals.

To understand why native graph processing is so much more effi‐
cient than graphs based on heavy indexing, consider the following.
Depending on the implementation, index lookups could be O(log
n) in algorithmic complexity versus O(1) for looking up immediate
relationships. To traverse a network of m steps, the cost of the
indexed approach, at O(m log n), dwarfs the cost of O(m) for an
implementation that uses index-free adjacency.

Figure 6-1. Nonnative graph processing engines use indexing to traverse between nodes

150 | Chapter 6: Graph Database Internals

Figure 6-1 shows how a nonnative approach to graph processing works. To find Ali‐
ce’s friends we have first to perform an index lookup, at cost O(log n). This may be
acceptable for occasional or shallow lookups, but it quickly becomes expensive when
we reverse the direction of the traversal. If, instead of finding Alice’s friends, we
wanted to find out who is friends with Alice, we would have to perform multiple
index lookups, one for each node that is potentially friends with Alice. This makes the
cost far more onerous. Whereas it’s O(log n) cost to find out who are Alice’s friends,
it’s O(m log n) to find out who is friends with Alice.

Index-Free Adjacency Leads to Low-Cost “Joins”
With index-free adjacency, bidirectional joins are effectively precomputed and stored
in the database as relationships. In contrast, when using indexes to simulate connec‐
tions between records, there is no actual relationship stored in the database. From
this, two problems arise:

Firstly, using a global index lookup is typically far more expensive algorithmically
than traversing a physical relationship. Indexes typically cost O(log(n)) in time,
whereas—at least in Neo4j—traversing a relationship is O(1) in time. In theory, for
even modest values of n, the logarithmic costs can be many times more expensive
than constant time. In practice, the performance can be even worse, as a result of the
graph and its global indexes contending for resources like caches and I/O (e.g., when
page contention occurs between index and graph data).

Secondly, using indexes to simulate connections becomes problematic when we try to
traverse in the “opposite” direction from the one for which the index was constructed.
Now we are faced with the choice of creating a reverse-lookup index for each traversal
scenario, or we have to perform a brute-force search through the original index,
which is an O(n) operation. Given the poor algorithmic performance in this situation,
joins like this are simply too costly to be of any practical use for online systems.

Index lookups can work for small networks, such as the one in Figure 6-1, but are far
too costly for queries over larger graphs. Instead of using index lookups to fulfill the
role of relationships at query time, graph databases with native graph processing
capabilities use index-free adjacency to ensure high-performance traversals.
Figure 6-2 shows how relationships eliminate the need for index lookups.

Native Graph Processing | 151

Figure 6-2. Neo4j uses relationships, not indexes, for fast traversals

Recall that in a general-purpose graph database, relationships can be traversed in
either direction (tail to head, or head to tail) extremely cheaply. As we see in
Figure 6-2, to find Alice’s friends using a graph, we simply follow her outgoing
FRIEND relationships, at O(1) cost each. To find who is friends with Alice, we simply
follow all of Alice’s incoming FRIEND relationships to their source, again at O(1) cost
each.

Given these costs, it’s clear that, in theory at least, graph traversals can be very effi‐
cient. But such high-performance traversals only become reality when they are sup‐
ported by an architecture designed for that purpose.

Native Graph Storage
If index-free adjacency is the key to high-performance traversals, queries, and writes,
then one key aspect of the design of a graph database is the way in which graphs are
stored. An efficient, native graph storage format supports extremely rapid traversals
for arbitrary graph algorithms—an important reason for using graphs. For illustrative
purposes we’ll use the Neo4j database as an example of how a graph database is archi‐
tected.

First, let’s contextualize our discussion by looking at Neo4j’s high-level architecture,
presented in Figure 6-3. In what follows we’ll work bottom-up, from the files on disk,
through the programmatic APIs, and up to the Cypher query language. Along the
way we’ll discuss the performance and dependability characteristics of Neo4j, and the
design decisions that make Neo4j a performant, reliable graph database.

152 | Chapter 6: Graph Database Internals

8 Record layout from Neo4j 2.2; other versions may have different sizes.

Figure 6-3. Neo4j architecture

Neo4j stores graph data in a number of different store files. Each store file contains the
data for a specific part of the graph (e.g., there are separate stores for nodes, relation‐
ships, labels, and properties). The division of storage responsibilities—particularly
the separation of graph structure from property data—facilitates performant graph
traversals, even though it means the user’s view of their graph and the actual records
on disk are structurally dissimilar. Let’s start our exploration of physical storage by
looking at the structure of nodes and relationships on disk as shown in Figure 6-4.8

Figure 6-4. Neo4j node and relationship store file record structure

Native Graph Storage | 153

The node store file stores node records. Every node created in the user-level graph
ends up in the node store, the physical file for which is neostore.nodestore.db. Like
most of the Neo4j store files, the node store is a fixed-size record store, where each
record is nine bytes in length. Fixed-size records enable fast lookups for nodes in the
store file. If we have a node with id 100, then we know its record begins 900 bytes into
the file. Based on this format, the database can directly compute a record’s location, at
cost O(1), rather than performing a search, which would be cost O(log n).

The first byte of a node record is the in-use flag. This tells the database whether the
record is currently being used to store a node, or whether it can be reclaimed on
behalf of a new node (Neo4j’s .id files keep track of unused records). The next four
bytes represent the ID of the first relationship connected to the node, and the follow‐
ing four bytes represent the ID of the first property for the node. The five bytes for
labels point to the label store for this node (labels can be inlined where there are rela‐
tively few of them). The final byte extra is reserved for flags. One such flag is used to
identify densely connected nodes, and the rest of the space is reserved for future use.
The node record is quite lightweight: it’s really just a handful of pointers to lists of
relationships, labels, and properties.

Correspondingly, relationships are stored in the relationship store file, neo

store.relationshipstore.db. Like the node store, the relationship store also con‐
sists of fixed-sized records. Each relationship record contains the IDs of the nodes at
the start and end of the relationship, a pointer to the relationship type (which is
stored in the relationship type store), pointers for the next and previous relationship
records for each of the start and end nodes, and a flag indicating whether the current
record is the first in what’s often called the relationship chain.

The node and relationship stores are concerned only with the
structure of the graph, not its property data. Both stores use fixed-
sized records so that any individual record’s location within a store
file can be rapidly computed given its ID. These are critical design
decisions that underline Neo4j’s commitment to high-performance
traversals.

In Figure 6-5, we see how the various store files interact on disk. Each of the two
node records contains a pointer to that node’s first property and first relationship in a
relationship chain. To read a node’s properties, we follow the singly linked list struc‐
ture beginning with the pointer to the first property. To find a relationship for a node,
we follow that node’s relationship pointer to its first relationship (the LIKES relation‐
ship in this example). From here, we then follow the doubly linked list of relation‐
ships for that particular node (that is, either the start node doubly linked list, or the
end node doubly linked list) until we find the relationship we’re interested in. Having
found the record for the relationship we want, we can read that relationship’s proper‐

154 | Chapter 6: Graph Database Internals

ties (if there are any) using the same singly linked list structure as is used for node
properties, or we can examine the node records for the two nodes the relationship
connects using its start node and end node IDs. These IDs, multiplied by the node
record size, give the immediate offset of each node in the node store file.

Doubly Linked Lists in the Relationship Store
Don’t worry if the relationship store structure seems a little complex at first. It’s not as
simple as the node store or property store.

It’s helpful to think of a relationship record as “belonging” to two nodes—the start
node and the end node of the relationship. Clearly, we don’t want to store two rela‐
tionship records, because that would be wasteful. And yet it’s equally clear that the
relationship record should somehow belong to both the start node and the end node.

That’s why there are pointers (aka record IDs) for two doubly linked lists. One is the
list of relationships visible from the start node. The other is the list of relationships
visible from the end node. That each list is doubly linked simply enables us to rapidly
iterate through that list in either direction, and insert and delete relationships effi‐
ciently.

Choosing to follow a different relationship involves iterating through a linked list of
relationships until we find a good candidate (e.g., matching the correct type, or hav‐
ing some matching property value). Once we have a suitable relationship we’re back
in business, multiplying ID by record size, and thereafter chasing pointers.

Figure 6-5. How a graph is physically stored in Neo4j

Native Graph Storage | 155

With fixed-sized records and pointer-like record IDs, traversals are implemented
simply by chasing pointers around a data structure, which can be performed at very
high speed. To traverse a particular relationship from one node to another, the data‐
base performs several cheap ID computations (these computations are much cheaper
than searching global indexes, as we’d have to do if faking a graph in a nongraph
native database):

1. From a given node record, locate the first record in the relationship chain by
computing its offset into the relationship store—that is, by multiplying its ID by
the fixed relationship record size. This gets us directly to the right record in the
relationship store.

2. From the relationship record, look in the second node field to find the ID of the
second node. Multiply that ID by the node record size to locate the correct node
record in the store.

Should we wish to constrain the traversal to relationships with particular types, we’d
add a lookup in the relationship type store. Again, this is a simple multiplication of
ID by record size to find the offset for the appropriate relationship type record in the
relationship store. Similarly if we choose to constrain by label, we reference the label
store.

In addition to the node and relationship stores, which contain the graph structure, we
have property store files, which persist the user’s data in key-value pairs. Recall that
Neo4j, being a property graph database, allows properties—name-value pairs—to be
attached to both nodes and relationships. The property stores, therefore, are refer‐
enced from both node and relationship records.

Records in the property store are physically stored in the neostore.propertys
tore.db file. As with the node and relationship stores, property records are of a fixed
size. Each property record consists of four property blocks and the ID of the next
property in the property chain (remember, properties are held as a singly linked list
on disk as compared to the doubly linked list used in relationship chains). Each prop‐
erty occupies between one and four property blocks—a property record can, there‐
fore, hold a maximum of four properties. A property record holds the property type
(Neo4j allows any primitive JVM type, plus strings, plus arrays of the JVM primitive
types), and a pointer to the property index file (neostore.propertystore.db.index),
which is where the property name is stored. For each property’s value, the record
contains either a pointer into a dynamic store record or an inlined value. The
dynamic stores allow for storing large property values. There are two dynamic stores:
a dynamic string store (neostore.propertystore.db.strings) and a dynamic array
store (neostore.propertystore.db.arrays). Dynamic records comprise linked lists

156 | Chapter 6: Graph Database Internals

of fixed-sized records; a very large string, or large array, may, therefore, occupy more
than one dynamic record.

Inlining and Optimizing Property Store Utilization
Neo4j supports store optimizations, whereby it inlines some properties into the prop‐
erty store file directly (neostore.propertystore.db). This happens when property
data can be encoded to fit in one or more of a record’s four property blocks. In prac‐
tice this means that data like phone numbers and zip codes can be inlined in the
property store file directly, rather than being pushed out to the dynamic stores. This
results in reduced I/O operations and improved throughput, because only a single file
access is required.

In addition to inlining certain compatible property values, Neo4j also maintains space
discipline on property names. For example, in a social graph, there will likely be many
nodes with properties like first_name and last_name. It would be wasteful if each
property name was written out to disk verbatim, and so instead property names are
indirectly referenced from the property store through the property index file. The
property index allows all properties with the same name to share a single record, and
thus for repetitive graphs—a very common use case—Neo4j achieves considerable
space and I/O savings.

Having an efficient storage layout is only half the picture. Despite the store files hav‐
ing been optimized for rapid traversals, hardware considerations can still have a sig‐
nificant impact on performance. Memory capacity has increased significantly in
recent years; nonetheless, very large graphs will still exceed our ability to hold them
entirely in main memory. Spinning disks have millisecond seek times in the order of
single digits, which, though fast by human standards, are ponderously slow in com‐
puting terms. Solid state disks (SSDs) are far better (because there’s no significant
seek penalty waiting for platters to rotate), but the path between CPU and disk is still
more latent than the path to L2 cache or main memory, which is where ideally we’d
like to operate on our graph.

To mitigate the performance characteristics of mechanical/electronic mass storage
devices, many graph databases use in-memory caching to provide probabilistic low-
latency access to the graph. From Neo4j 2.2, an off-heap cache is used to deliver this
performance boost.

As of Neo4j 2.2, Neo4j uses an LRU-K page cache. The page cache is an LRU-K page-
affined cache, meaning the cache divides each store into discrete regions, and then
holds a fixed number of regions per store file. Pages are evicted from the cache based
on a least frequently used (LFU) cache policy, nuanced by page popularity. That is,
unpopular pages will be evicted from the cache in preference to popular pages, even if

Native Graph Storage | 157

the latter haven’t been touched recently. This policy ensures a statistically optimal use
of caching resources.

Programmatic APIs
Although the filesystem and caching infrastructures are fascinating in themselves,
developers rarely interact with them directly. Instead, developers manipulate a graph
database through a query language, which can be either imperative or declarative.
The examples in this book use the Cypher query language, the declarative query lan‐
guage native to Neo4j, because it is an easy language to learn and use. Other APIs
exist, however, and depending on what we are doing, we may need to prioritize dif‐
ferent concerns. It’s important to understand the choice of APIs and their capabilities
when embarking on a new project. If there is any one thing to take away from this
section, it is the notion that these APIs can be thought of as a stack, as depicted in
Figure 6-6: at the top we prize expressiveness and declarative programming; at the
bottom we prize precision, imperative style, and (at the lowest layer) “bare metal”
performance.

Figure 6-6. Logical view of the user-facing APIs in Neo4j

We discussed Cypher in some detail in Chapter 3. In the following sections we’ll step
through the remaining APIs from the bottom to the top. This API tour is meant to be
illustrative. Not all graph databases have the same number of layers, nor necessarily
layers that behave and interact in precisely the same way. Each API has its advantages
and disadvantages, which you should investigate so you can make an informed deci‐
sion.

Kernel API
At the lowest level of the API stack are the kernel’s transaction event handlers. These
allow user code to listen to transactions as they flow through the kernel, and there‐
after to react (or not) based on the data content and lifecycle stage of the transaction.

158 | Chapter 6: Graph Database Internals

http://docs.neo4j.org/chunked/stable/transactions-events.html

8 Doctor Who is the world’s longest-running science fiction show and a firm favorite of the Neo4j team.

Kernel Transaction Event Handlers
A typical use case for transaction event handlers is to prevent physical deletion of
records. A handler can be set up to intercept deletion of a node and instead simply
mark that node as logically deleted (or in a more sophisticated manner, move the
node “back in time” by creating timestamped archive relationships).

Core API
Neo4j’s Core API is an imperative Java API that exposes the graph primitives of
nodes, relationships, properties, and labels to the user. When used for reads, the API
is lazily evaluated, meaning that relationships are only traversed as and when the call‐
ing code demands the next node. Data is retrieved from the graph as quickly as the
API caller can consume it, with the caller having the option to terminate the traversal
at any point. For writes, the Core API provides transaction management capabilities
to ensure atomic, consistent, isolated, and durable persistence.

In the following code, we see a snippet of code borrowed from the Neo4j tutorial in
which we try to find human companions from the Doctor Who universe:8

// Index lookup for the node representing the Doctor is omitted for brevity

Iterable<Relationship> relationships =
 doctor.getRelationships(Direction.INCOMING, COMPANION_OF);

for (Relationship rel : relationships)
{
 Node companionNode = rel.getStartNode();
 if (companionNode.hasRelationship(Direction.OUTGOING, IS_A))
 {
 Relationship singleRelationship = companionNode
 .getSingleRelationship(IS_A,
 Direction.OUTGOING);
 Node endNode = singleRelationship.getEndNode();
 if (endNode.equals(human))
 {
 // Found one!
 }
 }
}

This code is very imperative: we simply loop round the Doctor’s companions and
check to see if any of the companion nodes have an IS_A relationship to the node rep‐

Programmatic APIs | 159

https://github.com/jimwebber/neo4j-tutorial

resenting the human species. If the companion node is connected to the human spe‐
cies node, we do something with it.

Because it is an imperative API, the Core API requires us to fine-tune it to the under‐
lying graph structure. This can be very fast. At the same time, however, it means we
end up baking knowledge of our specific domain structure into our code. Compared
to the higher-level APIs (particularly Cypher) more code is needed to achieve an
equivalent goal. Nonetheless, the affinity between the Core API and the underlying
record store is plain to see—the structures used at the store and cache level are
exposed relatively faithfully by the Core API to user code.

Traversal Framework
The Traversal Framework is a declarative Java API. It enables the user to specify a set
of constraints that limit the parts of the graph the traversal is allowed to visit. We can
specify which relationship types to follow, and in which direction (effectively specify‐
ing relationship filters); we can indicate whether we want the traversal to be per‐
formed breadth-first or depth-first; and we can specify a user-defined path evaluator
that is triggered with each node encountered. At each step of the traversal, this eval‐
uator determines how the traversal is to proceed next. The following code snippet
shows the Traversal API in action:

Traversal.description()
 .relationships(DoctorWhoRelationships.PLAYED, Direction.INCOMING)
 .breadthFirst()
 .evaluator(new Evaluator()
 {
 public Evaluation evaluate(Path path)
 {
 if (path.endNode().hasRelationship(
 DoctorWhoRelationships.REGENERATED_TO))
 {
 return Evaluation.INCLUDE_AND_CONTINUE;
 }
 else
 {
 return Evaluation.EXCLUDE_AND_CONTINUE;
 }
 }
 });

With this snippet it’s plain to see the predominantly declarative nature of the Traver‐
sal Framework. The relationships() method declares that only PLAYED relation‐
ships in the INCOMING direction may be traversed. Thereafter, we declare that the
traversal should be executed in a breadthFirst() manner, meaning it will visit all
nearest neighbors before going further outward.

160 | Chapter 6: Graph Database Internals

The Traversal Framework is declarative with regard to navigating graph structure. For
our implementation of the Evaluator, however, we drop down to the imperative
Core API. That is, we use the Core API to determine, given the path to the current
node, whether or not further hops through the graph are necessary (we can also use
the Core API to modify the graph from inside an evaluator). Again, the native graph
structures inside the database bubble close to the surface here, with the graph primi‐
tives of nodes, relationships, and properties taking center stage in the API.

Core API, Traversal Framework, or Cypher?
Given these several different methods for querying a graph, which should we choose?

The Core API allows developers to fine-tune their queries so that they exhibit high
affinity with the underlying graph. A well-written Core API query is often faster than
any other approach. The downside is that such queries can be verbose, requiring con‐
siderable developer effort. Moreover, their high affinity with the underlying graph
makes them tightly coupled to its structure. When the graph structure changes, they
can often break. Cypher can be more tolerant of structural changes—things such as
variable-length paths help mitigate variation and change.

The Traversal Framework is both more loosely coupled than the Core API (because it
allows the developer to declare informational goals), and less verbose, and as a result
a query written using the Traversal Framework typically requires less developer effort
than the equivalent written using the Core API. Because it is a general-purpose
framework, however, the Traversal Framework tends to perform marginally less well
than a well-written Core API query.

If we find ourselves in the unusual situation of coding with the Core API or Traversal
Framework (and thus eschewing Cypher and its affordances), it’s because we are
working on an edge case where we need to finely craft an algorithm that cannot be
expressed effectively using Cypher’s pattern matching. Choosing between the Core
API and the Traversal Framework is a matter of deciding whether the higher abstrac‐
tion/lower coupling of the Traversal Framework is sufficient, or whether the close-to-
the-metal/higher coupling of the Core API is in fact necessary for implementing an
algorithm correctly and in accordance with our performance requirements.

This concludes our brief survey of graph programming APIs, using the native Neo4j
APIs as an example. We’ve seen how these APIs reflect the structures used in the
lower levels of the Neo4j stack, and how this alignment permits idiomatic and rapid
graph traversals.

It’s not enough for a database to be fast, however; it must also be dependable. This
brings us to a discussion of the nonfunctional characteristics of graph databases.

Programmatic APIs | 161

8 The formal definition of dependability is the “trustworthiness of a computing system, which allows reliance to
be justifiably placed on the service it delivers” as per http://www.dependability.org/.

Nonfunctional Characteristics
At this point we’ve understood what it means to construct a native graph database,
and have seen how some of these graph-native capabilities are implemented, using
Neo4j as our example. But to be considered dependable, any data storage technology
must provide some level of guarantee as to the durability and accessibility of the
stored data.8

One common measure by which relational databases are traditionally evaluated is the
number of transactions per second they can process. In the relational world, it is
assumed that these transactions uphold the ACID properties (even in the presence of
failures) such that data is consistent and recoverable. For nonstop processing and
managing of large volumes, a relational database is expected to scale so that many
instances are available to process queries and updates, with the loss of an individual
instance not unduly affecting the running of the cluster as a whole.

At a high level at least, much the same applies to graph databases. They need to guar‐
antee consistency, recover gracefully from crashes, and prevent data corruption. Fur‐
ther, they need to scale out to provide high availability, and scale up for performance.
In the following sections we’ll explore what each of these requirements means for a
graph database architecture. Once again, we’ll expand on certain points by delving
into Neo4j’s architecture as a means of providing concrete examples. It should be
pointed out that not all graph databases are fully ACID. It is important, therefore, to
understand the specifics of the transaction model of your chosen database. Neo4j’s
ACID transactionality shows the considerable levels of dependability that can be
obtained from a graph database—levels we are accustomed to obtaining from
enterprise-class relational database management systems.

Transactions
Transactions have been a bedrock of dependable computing systems for decades.
Although many NOSQL stores are not transactional, in part because there’s an unva‐
lidated assumption that transactional systems scale less well, transactions remain a
fundamental abstraction for dependability in contemporary graph databases—
including Neo4j. (There is some truth to the claim that transactions limit scalability,
insofar as distributed two-phase commit can exhibit unavailability problems in
pathological cases, but in general the effect is much less marked than is often
assumed.)

Transactions in Neo4j are semantically identical to traditional database transactions.
Writes occur within a transaction context, with write locks being taken for consis‐

162 | Chapter 6: Graph Database Internals

http://www.dependability.org/

tency purposes on any nodes and relationships involved in the transaction. On suc‐
cessful completion of the transaction, changes are flushed to disk for durability, and
the write locks released. These actions maintain the atomicity guarantees of the trans‐
action. Should the transaction fail for some reason, the writes are discarded and the
write locks released, thereby maintaining the graph in its previous consistent state.

Should two or more transactions attempt to change the same graph elements concur‐
rently, Neo4j will detect a potential deadlock situation, and serialize the transactions.
Writes within a single transactional context will not be visible to other transactions,
thereby maintaining isolation.

How Transactions Are Implemented in Neo4j
The transaction implementation in Neo4j is conceptually straightforward. Each trans‐
action is represented as an in-memory object whose state represents writes to the
database. This object is supported by a lock manager, which applies write locks to
nodes and relationships as they are created, updated, and deleted. On transaction roll‐
back, the transaction object is discarded and the write locks released, whereas on suc‐
cessful completion the transaction is committed to disk.

Committing data to disk in Neo4j uses a Write Ahead Log, whereby changes are
appended as actionable entries in the active transaction log. On transaction commit
(assuming a positive response to the prepare phase) a commit entry will be written to
the log. This causes the log to be flushed to disk, thereby making the changes durable.
Once the disk flush has occurred, the changes are applied to the graph itself. After all
the changes have been applied to the graph, any write locks associated with the trans‐
action are released.

Once a transaction has committed, the system is in a state where changes are guaran‐
teed to be in the database even if a fault then causes a non-pathological failure. This,
as we shall now see, confers substantial advantages for recoverability, and hence for
ongoing provision of service.

Recoverability
Databases are no different from any other software system in that they are susceptible
to bugs in their implementation, in the hardware they run on, and in that hardware’s
power, cooling, and connectivity. Though diligent engineers try to minimize the pos‐
sibility of failure in all of these, at some point it’s inevitable that a database will crash
—though the mean time between failures should be very long indeed.

In a well-designed system, a database server crash, though annoying, ought not affect
availability, though it may affect throughput. And when a failed server resumes oper‐

Nonfunctional Characteristics | 163

ation, it must not serve corrupt data to its users, irrespective of the nature or timing
of the crash.

When recovering from an unclean shutdown, perhaps caused by a fault or even an
overzealous operator, Neo4j checks in the most recently active transaction log and
replays any transactions it finds against the store. It’s possible that some of those
transactions may have already been applied to the store, but because replaying is an
idempotent action, the net result is the same: after recovery, the store will be consis‐
tent with all transactions successfully committed prior to the failure.

Local recovery is all that is necessary in the case of a single database instance. Gener‐
ally, however, we run databases in clusters (which we’ll discuss shortly) to assure high
availability on behalf of client applications. Fortunately, clustering confers additional
benefits to recovering instances. Not only will an instance become consistent with all
transactions successfully committed prior to its failure, as discussed earlier, it can also
quickly catch up with other instances in the cluster, and thereby be consistent with all
transactions successfully committed subsequent to its failure. That is, once local
recovery has completed, a replica can ask other members of the cluster—typically the
master—for any newer transactions. It can then apply these newer transactions to its
own dataset via transaction replay.

Recoverability deals with the capability of the database to set things right after a fault
has arisen. In addition to recoverability, a good database needs to be highly available
to meet the increasingly sophisticated needs of data-heavy applications.

Availability
In addition to being valuable in and of themselves, Neo4j’s transaction and recovery
capabilities also benefit its high-availability characteristics. The database’s ability to
recognize and, if necessary, repair an instance after crashing means that data quickly
becomes available again without human intervention. And of course, more live
instances increases the overall availability of the database to process queries.

It’s uncommon to want individual disconnected database instances in a typical pro‐
duction scenario. More often, we cluster database instances for high availability.
Neo4j uses a master-slave cluster arrangement to ensure that a complete replica of the
graph is stored on each machine. Writes are replicated out from the master to the
slaves at frequent intervals. At any point, the master and some slaves will have a com‐
pletely up-to-date copy of the graph, while other slaves will be catching up (typically,
they will be but milliseconds behind).

For writes, the classic write-master with read-slaves is a popular topology. With this
setup, all database writes are directed at the master, and read operations are directed
at slaves. This provides asymptotic scalability for writes (up to the capacity of a single

164 | Chapter 6: Graph Database Internals

spindle) but allows for near linear scalability for reads (accounting for the modest
overhead in managing the cluster).

Although write-master with read-slaves is a classic deployment topology, Neo4j also
supports writing through slaves. In this scenario, the slave to which a write has been
directed by the client first ensures that it is consistent with the master (it “catches
up”); thereafter, the write is synchronously transacted across both instances. This is
useful when we want immediate durability in two database instances. Furthermore,
because it allows writes to be directed to any instance, it offers additional deployment
flexibility. This comes at the cost of higher write latency, however, due to the forced
catchup phase. It does not imply that writes are distributed around the system: all
writes must still pass through the master at some point.

Other Replication Options in Neo4j
In Neo4j version 1.8 onward it’s possible to specify that writes to the master are repli‐
cated in a best-effort manner to an arbitrary number of replicas before a transaction
is considered complete. This provides an alternative to the “at least two” level of dura‐
bility achieved by writing through slaves. See “Replication” on page 81 for more
details.

Another aspect of availability is contention for access to resources. An operation that
contends for exclusive access (e.g., for writes) to a particular part of the graph may
suffer from sufficiently high latency as to appear unavailable. We’ve seen similar con‐
tention with coarse-grained table-level locking in RDBMSs, where writes are latent
even when there’s logically no contention.

Fortunately, in a graph, access patterns tend to be more evenly spread, especially
where idiomatic graph-local queries are executed. A graph-local operation is one that
starts at one or more given places in the graph and then traverses the surrounding
subgraphs. The starting points for such queries tend to be things that are especially
significant in the domain, such as users or products. These starting points result in
the overall query load being distributed with low contention. In turn, clients perceive
greater responsiveness and higher availability.

Nonfunctional Characteristics | 165

The Benefits of Idiomatic Queries
Jackie Stewart, the Formula 1 racing driver, is reputed to have said that to drive a car
well you don’t need to be an engineer but you do need mechanical sympathy. That is,
the best performance comes as a result of the driver and car working together harmo‐
niously.

In much the same way, graph database queries are considered mechanically sympa‐
thetic to the database when they are framed as idiomatic, graph-local queries that
begin their traversal from one or more start points. The underlying infrastructure,
including caching and store access, is optimized to support this kind of workload.

Idiomatic queries have beneficial side effects. For example, because caching is aligned
with idiomatic searches, queries that are themselves idiomatic tend to exploit caches
better and run faster than nonidiomatic queries. In turn, queries that run fast free up
the database to run more of them, which means higher throughput and the sense of
better availability from the client’s point of view because there’s less waiting around.

Unidiomatic queries (e.g., those which pick random nodes/relationships rather than
traversing) exhibit the opposite characteristics: they disrespect the underlying caching
layers and therefore run more slowly because more disk I/O is needed. Because the
queries run slowly, the database can process fewer of them per second, which means
the availability of the database to do useful work diminishes from the client’s point of
view.

Whatever the database, understanding the underlying storage and caching infrastruc‐
ture will help us construct idiomatic—and hence, mechanically sympathetic—queries
that maximize performance.

Our final observation on availability is that scaling for cluster-wide replication has a
positive impact, not just in terms of fault-tolerance, but also responsiveness. Because
there are many machines available for a given workload, query latency is low and
availability is maintained. But as we’ll now discuss, scale itself is more nuanced than
simply the number of servers we deploy.

Scale
The topic of scale has become more important as data volumes have grown. In fact,
the problems of data at scale, which have proven difficult to solve with relational
databases, have been a substantial motivation for the NOSQL movement. In some
sense, graph databases are no different; after all, they also need to scale to meet the
workload demands of modern applications. But scale isn’t a simple value like transac‐
tions per second. Rather, it’s an aggregate value that we measure across multiple axes.

166 | Chapter 6: Graph Database Internals

For graph databases, we will decompose our broad discussion on scale into three key
themes:

1. Capacity (graph size)
2. Latency (response time)
3. Read and write throughput

Capacity
Some graph database vendors have chosen to eschew any upper bounds in graph size
in exchange for performance and storage cost. Neo4j has taken a somewhat unique
approach historically, having maintained a “sweet spot” that achieves faster perfor‐
mance and lower storage (and consequently diminished memory footprint and IO-
ops) by optimizing for graph sizes that lie at or below the 95th percentile of use cases.
The reason for the trade-off lies in the use of fixed record sizes and pointers, which
(as discussed in “Native Graph Storage” on page 152) it uses extensively inside of the
store. At the time of writing, the current release of Neo4j can support single graphs
having tens of billions of nodes, relationships, and properties. This allows for graphs
with a social networking dataset roughly the size of Facebook’s.

The Neo4j team has publicly expressed the intention to support
100B+ nodes/relationships/properties in a single graph as part of
its roadmap.

How large must a dataset be to take advantage of all of the benefits a graph database
has to offer? The answer is, smaller than you might think. For queries of second or
third degree, the performance benefits show with datasets having a few single-digit
thousand nodes. The higher the degree of the query, the more extreme the delta. The
ease-of-development benefits are of course unrelated to data volume, and available
regardless of the database size. The authors have seen meaningful production applica‐
tions range from as small as a few tens of thousands of nodes, and a few hundred
thousand relationships, to billions of nodes and relationships.

Latency
Graph databases don’t suffer the same latency problems as traditional relational data‐
bases, where the more data we have in tables—and in indexes—the longer the join
operations (this simple fact of life is one of the key reasons that performance tuning is
nearly always the very top issue on a relational DBA’s mind). With a graph database,
most queries follow a pattern whereby an index is used simply to find a starting node
(or nodes). The remainder of the traversal then uses a combination of pointer chasing

Nonfunctional Characteristics | 167

and pattern matching to search the data store. What this means is that, unlike rela‐
tional databases, performance does not depend on the total size of the dataset, but
only on the data being queried. This leads to performance times that are nearly con‐
stant (that is, are related to the size of the result set), even as the size of the dataset
grows (though as we discussed in Chapter 3, it’s still sensible to tune the structure of
the graph to suit the queries, even if we’re dealing with lower data volumes).

Throughput
We might think a graph database would need to scale in the same way as other data‐
bases. But this isn’t the case. When we look at IO-intensive application behaviors, we
see that a single complex business operation typically reads and writes a set of related
data. In other words, the application performs multiple operations on a logical sub‐
graph within the overall dataset. With a graph database such multiple operations can
be rolled up into larger, more cohesive operations. Further, with a graph-native store,
executing each operation takes less computational effort than the equivalent rela‐
tional operation. Graphs scale by doing less work for the same outcome.

For example, imagine a publishing scenario in which we’d like to read the latest piece
from an author. In a RDBMS we typically select the author’s works by joining the
authors table to a table of publications based on matching author ID, and then order‐
ing the publications by publication date and limiting to the newest handful. Depend‐
ing on the characteristics of the ordering operation, that might be a O(log(n))
operation, which isn’t so very bad.

However, as shown in Figure 6-7, the equivalent graph operation is O(1), meaning
constant performance irrespective of dataset size. With a graph we simply follow the
outbound relationship called WROTE from the author to the work at the head of a list
(or tree) of published articles. Should we wish to find older publications, we simply
follow the PREV relationships and iterate through a linked list (or, alternatively,
recurse through a tree). Writes follow suit because we always insert new publications
at the head of the list (or root of a tree), which is another constant time operation.
This compares favorably to the RDBMS alternative, particularly because it naturally
maintains constant time performance for reads.

Of course, the most demanding deployments will overwhelm a single machine’s
capacity to run queries, and more specifically its I/O throughput. When that happens,
it’s straightforward to build a cluster with Neo4j that scales horizontally for high
availability and high read throughput. For typical graph workloads, where reads far
outstrip writes, this solution architecture can be ideal.

168 | Chapter 6: Graph Database Internals

Figure 6-7. Constant time operations for a publishing system

Should we exceed the capacity of a cluster, we can spread a graph across database
instances by building sharding logic into the application. Sharding involves the use of
a synthetic identifier to join records across database instances at the application level.
How well this will perform depends very much on the shape of the graph. Some
graphs lend themselves very well to this. Mozilla, for instance, uses the Neo4j graph
database as part of its next-generation cloud browser, Pancake. Rather than having a
single large graph, it stores a large number of small independent graphs, each tied to
an end user. This makes it very easy to scale.

Of course, not all graphs have such convenient boundaries. If our graph is large
enough that it needs to be broken up, but no natural boundaries exist, the approach
we use is much the same as what we would use with a NOSQL store like MongoDB:
we create synthetic keys, and relate records via the application layer using those keys
plus some application-level resolution algorithm. The main difference from the Mon‐
goDB approach is that a native graph database will provide you with a performance
boost anytime you are doing traversals within a database instance, whereas those
parts of the traversal that run between instances will run at roughly the same speed as
a MongoDB join. Overall performance should be markedly faster, however.

The Holy Grail of Graph Scalability
The future goal of most graph databases is to be able to partition a graph across mul‐
tiple machines without application-level intervention, so that read and write access to
the graph can be scaled horizontally. In the general case this is known to be an NP
Hard problem, and thus impractical to solve.

A naïve solution to the problem can lead to unpredictable query times as a result of
graph traversals unexpectedly jumping between machines over the (slow) network. A
sensible implementation, by contrast, understands minimum point cut within the

Nonfunctional Characteristics | 169

1 See http://en.wikipedia.org/wiki/Cut_(graph_theory)

context of a particular domain, thereby minimizing cross-machine traversals.1 While
there is exciting research work going on in the area at the time of writing, there is no
database yet that provably supports this behavior.

Summary
In this chapter we’ve shown how property graphs are an excellent choice for prag‐
matic data modeling. We’ve explored the architecture of a graph database, with par‐
ticular reference to the architecture of Neo4j, and discussed the nonfunctional
characteristics of graph database implementations and what it means for them to be
dependable.

170 | Chapter 6: Graph Database Internals

http://en.wikipedia.org/wiki/Cut_(graph_theory)

CHAPTER 7

Predictive Analysis with Graph Theory

In this chapter we’re going to examine some analytical techniques and algorithms for
processing graph data. Both graph theory and graph algorithms are mature and well-
understood fields of computing science and we’ll demonstrate how both can be used
to mine sophisticated information from graph databases. Although the reader with a
background in computing science will no doubt recognize these algorithms and tech‐
niques, the discussion in this chapter is handled without recourse to mathematics, to
encourage the curious layperson to dive in.

Depth- and Breadth-First Search
Before we look at higher-order analytical techniques we need to reacquaint ourselves
with the fundamental breadth-first search algorithm, which is the basis for iterating
over an entire graph. Most of the queries we’ve seen throughout this book have been
depth-first rather than breadth-first in nature. That is, they traverse outward from a
starting node to some end node before repeating a similar search down a different
path from the same start node. Depth-first is a good strategy when we’re trying to fol‐
low a path to discover discrete pieces of information.

171

Informed Depth-First Search
The classic depth-first algorithm search is uninformed. That is, it simply searches a
path until it finds the end of the graph. Once at the end, it backtracks to the start node
and tries a different path. Because graph databases are semantically rich, however, we
can terminate a search along a particular branch early (for example, once we’ve found
a node with no compatible outgoing relationships, or have traversed “far enough”).
Such informed searches can result in lower execution times. These are exactly the
kinds of searches performed by our Cypher queries and Java traversals in previous
chapters.

Though we’ve used depth-first search as our underlying strategy for general graph
traversals, many interesting algorithms traverse the entire graph in a breadth-first
manner. That is, they explore the graph one layer at a time, first visiting each node at
depth 1 from the start node, then each of those at depth 2, then depth 3, and so on,
until the entire graph has been visited. This progression is easily visualized starting at
the node labeled O (for origin) and progressing outward a layer at a time, as shown in
Figure 7-1.

Figure 7-1. The progression of a breadth-first search

Termination of the search depends on the algorithm being executed—most useful
algorithms aren’t pure breadth-first search but are informed to some extent. Breadth-

172 | Chapter 7: Predictive Analysis with Graph Theory

first search is often used in path-finding algorithms or when the entire graph needs to
be systematically searched (for the likes of graph global algorithms we discussed in
Chapter 3).

Path-Finding with Dijkstra’s Algorithm
Breadth-first search underpins numerous classical graph algorithms, including Dijk‐
stra’s algorithm. Dijkstra (as it is often abbreviated) is used to find the shortest path
between two nodes in a graph. Dijkstra’s algorithm is mature, having been published
in 1956, and thereafter widely studied and optimized by computer scientists. It
behaves as follows:

1. Pick the start and end nodes, and add the start node to the set of solved nodes
(that is, the set of nodes with known shortest path from the start node) with
value 0 (the start node is by definition 0 path length away from itself).

2. From the starting node, traverse breadth-first to the nearest neighbors and
record the path length against each neighbor node.

3. Take the shortest path to one of these neighbors (picking arbitrarily in the case of
ties) and mark that node as solved, because we now know the shortest path from
the start node to this neighbor.

4. From the set of solved nodes, visit the nearest neighbors (notice the breath-first
progression) and record the path lengths from the start node against these new
neighbors. Don’t visit any neighboring nodes that have already been solved,
because we know the shortest paths to them already.

5. Repeat steps 3 and 4 until the destination node has been marked solved.

Efficiency of Dijkstra’s Algorithm
Dijkstra’s algorithm is quite efficient because it computes only the lengths of a rela‐
tively small subset of the possible paths through the graph. When we’ve solved a node,
the shortest path from the start node is then known, allowing all subsequent paths to
safely build on that knowledge.

In fact, the fastest known worst-case implementation of Dijkstra’s algorithm has a
performance of O(|R| + |N| log |N|). That is, the algorithm runs in time proportional
to the number of relationships in the graph, plus the size of the number of nodes mul‐
tiplied by the log of the size of the node set. The original was O(|R|^2), meaning it ran
in time proportional to the square of the size of the number of relationships in the
graph.

Path-Finding with Dijkstra’s Algorithm | 173

Dijkstra is often used to find real-world shortest paths (e.g., for navigation). Here’s an
example. In Figure 7-2 we see a logical map of Australia. Our challenge is to discover
the shortest driving route between Sydney on the east coast (marked SYD) and Perth,
marked PER, which is a continent away, on the west coast. The other major towns
and cities are marked with their respective airport codes; we’ll discover many of them
along the way.

Figure 7-2. A logical representation of Australia and its arterial road network

Starting at the node representing Sydney in Figure 7-3, we know the shortest path to
Sydney is 0 hours, because we’re already there. In terms of Dijkstra’s algorithm, Syd‐
ney is now solved insofar as we know the shortest path from Sydney to Sydney.
Accordingly, we’ve grayed out the node representing Sydney, added the path length
(0), and thickened the node’s border—a convention that we’ll maintain throughout
the remainder of this example.

Moving one level out from Sydney, our candidate cities are Brisbane, which lies to the
north by 9 hours; Canberra, Australia’s capital city, which lies 4 hours to the west; and
Melbourne, which is 12 hours to the south.

The shortest path we can find is Sydney to Canberra, at 4 hours, and so we consider
Canberra to be solved, as shown in Figure 7-4.

174 | Chapter 7: Predictive Analysis with Graph Theory

Figure 7-3. The shortest path from Sydney to Sydney is unsurprisingly 0 hours

Figure 7-4. Canberra is the closest city to Sydney

Path-Finding with Dijkstra’s Algorithm | 175

The next nodes out from our solved nodes are Melbourne, at 10 hours from Sydney
via Canberra, or 12 hours from Sydney directly, as we’ve already seen. We also have
Alice Springs, which is 15 hours from Canberra and 19 hours from Sydney, or Bris‐
bane, which is 9 hours direct from Sydney.

Accordingly, we explore the shortest path, which is 9 hours from Sydney to Brisbane,
and consider Brisbane solved at 9 hours, as shown in Figure 7-5.

Figure 7-5. Brisbane is the next closest city

The next neighboring nodes from our solved ones are Melbourne, which is 10 hours
via Canberra or 12 hours direct from Sydney along a different road; Cairns, which is
31 hours from Sydney via Brisbane; and Alice Springs, which is 40 hours via Brisbane
or 19 hours via Canberra.

Accordingly, we choose the shortest path, which is Melbourne, being 10 hours from
Sydney via Canberra. This is shorter than the existing 12 hours direct link. We now
consider Melbourne solved, as shown in Figure 7-6.

176 | Chapter 7: Predictive Analysis with Graph Theory

Figure 7-6. Reaching Melbourne, the third-closest city to the start node of Sydney

In Figure 7-7, the next layer of neighboring nodes from our solved ones are Adelaide
at 18 hours from Sydney (via Canberra and Melbourne); Cairns, at 31 hours from
Sydney (via Brisbane); and Alice Springs, at 19 hours from Sydney via Canberra, or
40 hours via Brisbane. We choose Adelaide and consider it solved at a cost of 18
hours.

We don’t consider the path Melbourne→Sydney because its desti‐
nation is a solved node—in fact, in this case, it’s the start node,
Sydney.

The next layer of neighboring nodes from our solved ones are Perth—our final desti‐
nation—which is 50 hours from Sydney via Adelaide; Alice Springs, which is 19
hours from Sydney via Canberra or 33 hours via Adelaide; and Cairns, which is 31
hours from Sydney via Brisbane.

We choose Alice Springs in this case because it has the current shortest path, even
though with a bird’s eye view we know that actually it’ll be shorter in the end to go
from Adelaide to Perth—just ask any passing bushman. Our cost is 19 hours, as
shown in Figure 7-8.

Path-Finding with Dijkstra’s Algorithm | 177

Figure 7-7. Solving Adelaide

Figure 7-8. Taking a “detour” through Alice Springs

178 | Chapter 7: Predictive Analysis with Graph Theory

In Figure 7-9, the next layer of neighboring nodes from our solved ones are Cairns at
31 hours via Brisbane or 43 hours via Alice Springs, or Darwin at 34 hours via Alice
Springs, or Perth via Adelaide at 50 hours. So we’ll take the route to Cairns via Bris‐
bane and consider Cairns solved with a shortest driving time from Sydney at 31
hours.

Figure 7-9. Back to Cairns on the east coast

The next layer of neighboring nodes from our solved ones are Darwin at 34 hours
from Alice Springs, 61 hours via Cairns, or Perth via Adelaide at 50 hours. Accord‐
ingly, we choose the path to Darwin from Alice Springs at a cost of 34 hours and con‐
sider Darwin solved, as we can see in Figure 7-10.

Finally, the only neighboring node left is Perth itself, as we can see in Figure 7-11. It is
accessible via Adelaide at a cost of 50 hours or via Darwin at a cost of 82 hours.
Accordingly, we choose the route via Adelaide and consider Perth from Sydney
solved at a shortest path of 50 hours.

Path-Finding with Dijkstra’s Algorithm | 179

Figure 7-10. To Darwin in Australia’s “top-end”

Figure 7-11. Finally reaching Perth, a mere 50 driving hours from Sydney

180 | Chapter 7: Predictive Analysis with Graph Theory

Dijkstra’s algorithm works well, but because its exploration is undirected, there are
some pathological graph topologies that can cause worst-case performance problems.
In these situations, we explore more of the graph than is intuitively necessary—in
some cases, we explore the entire graph. Because each possible node is considered
one at a time in relative isolation, the algorithm necessarily follows paths that intui‐
tively will never contribute to the final shortest path.

Despite Dijkstra’s algorithm having successfully computed the shortest path between
Sydney and Perth, anyone with any intuition about map reading would likely not
have chosen to explore the route northward from Adelaide because it feels longer. If
we had some heuristic mechanism to guide us, as in a best-first search (e.g., prefer to
head west over east, prefer south over north) we might have avoided the side-trips to
Brisbane, Cairns, Alice Springs, and Darwin in this example. But best-first searches
are greedy, and try to move toward the destination node even if there is an obstacle
(e.g., a dirt track) in the way. We can do better.

The A* Algorithm
The A* (pronounced “A-star”) algorithm improves on the classic Dijkstra algorithm.
It is based on the observation that some searches are informed, and that by being
informed we can make better choices over which paths to take through the graph. In
our example, an informed search wouldn’t go from Sydney to Perth by traversing an
entire continent to Darwin first. A* is like Dijkstra in that it can potentially search a
large swathe of a graph, but it’s also like a greedy best-first search insofar as it uses a
heuristic to guide it. A* combines aspects of Dijkstra’s algorithm, which prefers nodes
close to the current starting point, and best-first search, which prefers nodes closer to
the destination, to provide a provably optimal solution for finding shortest paths in a
graph.

In A* we split the path cost into two parts: g(n), which is the cost of the path from the
starting point to some node n; and h(n), which represents the estimated cost of the
path from the node n to the destination node, as computed by a heuristic (an intelli‐
gent guess). The A* algorithm balances g(n) and h(n) as it iterates the graph, thereby
ensuring that at each iteration it chooses the node with the lowest overall cost f(n) =
g(n) + h(n).

As we’ve seen, breadth-first algorithms are particularly good for path finding. But
they have other uses as well. Using breadth-first search as our method for iterating
over all elements of a graph, we can now consider a number of interesting higher-
order algorithms from graph theory that yield predictive insight into the behavior of
connected data.

The A* Algorithm | 181

8 In particular, see Granovetter’s pivotal work on the strength of weak ties in social communities: http://stan
ford.io/17XjisT. For Easley and Kleinberg, see http://bit.ly/13e0ZuZ.

Graph Theory and Predictive Modeling
Graph theory is a mature and well-understood field of study concerning the nature of
networks (or from our point of view, connected data). The analytic techniques that
have been developed by graph theoreticians can be brought to bear on a range of
interesting problems. Now that we understand the low-level traversal mechanisms,
such as breadth-first search, we can start to consider higher-order analyses.

Graph theory techniques are broadly applicable to a wide range of problems. They
are especially useful when we first want to gain some insight into a new domain—or
even understand what kind of insight it’s possible to extract from a domain. In such
cases there are a range of techniques from graph theory and social sciences that we
can straightforwardly apply to gain insight.

In the next few sections we’ll introduce some of the key concepts in social graph
theory. We’ll introduce these concepts in the context of a social domain based on the
works of sociologists Mark Granovetter, and David Easley and Jon Kleinberg.8

Property Graphs and Graph Theory
Much of the work on graph theory assumes a slightly different model to the property
graphs we’ve been using throughout this book. This work tends to ignore direction
and labeling of graphs, instead assuming undirected relationships with a single label
derived from the domain (e.g., Friend or Colleague).

We’re going to take a hybrid approach here. We’ll add names to relationships where it
helps add domain-specific meaning. In many cases, however, we will ignore relation‐
ship direction. This won’t impact the analysis, however. The graph structure upholds
the same principles irrespective of its construction.

Triadic Closures
A triadic closure is a common property of social graphs, where we observe that if two
nodes are connected via a path involving a third node, there is an increased likelihood
that the two nodes will become directly connected at some point in the future. This is
a familiar social occurrence. If we happen to be friends with two people who don’t
know one another, there’s an increased chance that those two people will become
direct friends at some point in the future. The very fact that we are friends with both
of them gives each the means and the motive to become friends directly. That is,
there’s an increased chance the two will meet one another through hanging around

182 | Chapter 7: Predictive Analysis with Graph Theory

http://stanford.io/17XjisT
http://stanford.io/17XjisT
http://bit.ly/13e0ZuZ

with us, and a good chance that if they do meet, they’ll trust one another based on
their mutual trust in us and our friendship choices. The very fact of their both being
our friend is an indicator that with respect to each other they may be socially similar.

From his analysis, Granovetter noted that a subgraph upholds the strong triadic clo‐
sure property if it has a node A with strong relationships to two other nodes, B and C.
B and C then have at least a weak, and potentially a strong, relationship between them.
This is a bold assertion, and it won’t always hold for all subgraphs in a graph. None‐
theless, it is sufficiently commonplace, particularly in social networks, as to be a
credible predictive indicator.

Strong and Weak Relationships
We’re not going to define weak and strong relationships, because they’re specific to
each domain. In a social communications network, a strong social relationship might
be said to exist between friends who’ve exchanged phone calls in the last week,
whereas a weak social relationship might be said to connect friends who’ve merely
observed one another’s Facebook status.

Let’s see how the strong triadic closure property works as a predictive aid in a work‐
place graph. We’ll start with a simple organizational hierarchy in which Alice man‐
ages Bob and Charlie, but where there are not yet any connections between her
subordinates, as shown in Figure 7-12.

Figure 7-12. Alice manages Bob and Charlie

This is a rather strange situation for the workplace. After all, it’s unlikely that Bob and
Charlie will be total strangers to one another. As shown in Figure 7-13, whether
they’re high-level executives and therefore peers under Alice’s executive management
or whether they’re assembly-line workers and therefore close colleagues under Alice
acting as foreman, even informally we might expect Bob and Charlie to be somehow
connected.

Graph Theory and Predictive Modeling | 183

Figure 7-13. Bob and Charlie work together under Alice

Because Bob and Charlie both work with Alice, there’s a strong possibility they’re
going to end up working together, as we see in Figure 7-13. This is consistent with the
strong triadic closure property, which suggests that either Bob is a peer of Charlie
(we’ll call this a weak relationship) or that Bob works with Charlie (which we’ll term a
strong relationship). Adding a third WORKS_WITH or PEER_OF relationship between Bob
and Charlie closes the triangle—hence the term triadic closure.

The empirical evidence from many domains, including sociology, public health, psy‐
chology, anthropology, and even technology (e.g., Facebook, Twitter, LinkedIn), sug‐
gests that the tendency toward triadic closure is real and substantial. This is
consistent with anecdotal evidence and sentiment. But simple geometry isn’t all that’s
at work here: the quality of the relationships involved in a graph also have a signifi‐
cant bearing on the formation of stable triadic closures.

Structural Balance
If we recall Figure 7-12, it’s intuitive to see how Bob and Charlie can become cowork‐
ers (or peers) under Alice’s management. For example purposes, we’re going to make
an assumption that the MANAGES relationship is somewhat negative (after all, people
don’t like getting bossed around) whereas the PEER_OF and WORKS_WITH relationship
are positive (because people generally like their peers and the folks they work with).

We know from our previous discussion on the strong triadic closure principle that in
Figure 7-12 where Alice MANAGES Bob and Charlie, a triadic closure should be formed.
That is, in the absence of any other constraints, we would expect at least a PEER_OF, a
WORKS_WITH, or even a MANAGES relationship between Bob and Charlie.

A similar tendency toward creating a triadic closure exists if Alice MANAGES Bob who
in turn WORKS_WITH Charlie, as we can see in Figure 7-14. Anecdotally this rings true:
if Bob and Charlie work together it makes sense for them to share a manager, espe‐

184 | Chapter 7: Predictive Analysis with Graph Theory

cially if the organization seemingly allows Charlie to function without managerial
supervision.

Figure 7-14. Alice manages Bob who works with Charlie

However, applying the strong triadic closure principle blindly can lead to some rather
odd and uncomfortable-looking organization hierarchies. For instance, if Alice
MANAGES Bob and Charlie but Bob also MANAGES Charlie, we have a recipe for discon‐
tent. Nobody would wish it upon Charlie that he’s managed both by his boss and his
boss’s boss as in Figure 7-15.

Figure 7-15. Alice manages Bob and Charlie, while Bob also manages Charlie

Similarly, it’s uncomfortable for Bob if he is managed by Alice while working with
Charlie who is also Alice’s workmate. This cuts awkwardly across organization layers
as we see in Figure 7-16. It also means Bob could never safely let off steam about Ali‐
ce’s management style amongst a supportive peer group.

Graph Theory and Predictive Modeling | 185

Figure 7-16. Alice manages Bob who works with Charlie, while also working with Char‐
lie

The awkward hierarchy in Figure 7-16 whereby Charlie is both a peer of the boss and
a peer of another worker is unlikely to be socially pleasant, so Charlie and Alice will
agitate against it (either wanting to be a boss or a worker). It’s similar for Bob who
doesn’t know for sure whether to treat Charlie in the same way he treats his manager
Alice (because Charlie and Alice are peers) or as his own direct peer.

It’s clear that the triadic closures in Figures 7-15 and 7-16 are uncomfortable to us,
eschewing our innate preference for structural symmetry and rational layering. This
preference is given a name in graph theory: structural balance.

Anecdotally, there’s a much more acceptable, structurally balanced triadic closure if
Alice MANAGES Bob and Charlie, but where Bob and Charlie are themselves work‐
mates connected by a WORKS_WITH relationship, as we can see in Figure 7-17.

Figure 7-17. Workmates Bob and Charlie are managed by Alice

The same structural balance manifests itself in an equally acceptable triadic closure
where Alice, Bob, and Charlie are all workmates. In this arrangement the workers are

186 | Chapter 7: Predictive Analysis with Graph Theory

in it together, which can be a socially amicable arrangement that engenders camarad‐
erie as in Figure 7-18.

Figure 7-18. Alice, Bob, and Charlie are all workmates

In Figures 7-17 and 7-18, the triadic closures are idiomatic and constructed with
either three WORKS_WITH relationships or two MANAGES and a single WORKS_WITH rela‐
tionship. They are all balanced triadic closures. To understand what it means to have
balanced and unbalanced triadic closures, we’ll add more semantic richness to the
model by declaring that the WORKS_WITH relationship is socially positive (because cow‐
orkers spend a lot of time interacting), whereas MANAGES is a negative relationship
because managers spend overall less of their time interacting with individuals in their
charge.

Given this new dimension of positive and negative sentiment, we can now ask the
question “What is so special about these balanced structures?” It’s clear that strong
triadic closure is still at work, but that’s not the only driver. In this case the notion of
structural balance also has an effect. A structurally balanced triadic closure consists of
relationships of all strong sentiments (our WORKS_WITH or PEER_OF relationships) or
two relationships having negative sentiments (MANAGES in our case) with a single posi‐
tive relationship.

We see this often in the real world. If we have two good friends, then social pressure
tends toward those good friends themselves becoming good friends. It’s unusual that
those two friends themselves are enemies because that puts a strain on all our friend‐
ships. One friend cannot express his dislike of the other to us, because the other per‐
son is our friend too! Given those pressures, it’s one outcome that the group will
resolve its differences and good friends will emerge. This would change our unbal‐
anced triadic closure (two relationships with positive sentiments and one negative) to
a balanced closure because all relationships would be of a positive sentiment much
like our collaborative scheme where Alice, Bob, and Charlie all work together in
Figure 7-18.

Graph Theory and Predictive Modeling | 187

However, the plausible (though arguably less pleasant) outcome would be where we
take sides in the dispute between our “friends,” creating two relationships with nega‐
tive sentiments—effectively ganging up on an individual. Now we can engage in gos‐
sip about our mutual dislike of a former friend and the closure again becomes
balanced. Equally we see this reflected in the organizational scenario where Alice, by
managing Bob and Charlie, becomes, in effect, their workplace enemy as in
Figure 7-17.

Mining Organizational Data in the Real World
We don’t have to derive these graphs from analyzing organizational charts, because
that’s a static and often inconsistent view of how an organization really works. A prac‐
tical and timely way of generating the graph would instead be to run these kinds of
analyses over the history of electronic communication between individuals within a
company.

It’s straightforward to store and query these interactions as a graph in a graph data‐
base, and from that we’d be able to make predictive analyses about the evolution of
organizational structure by looking for opportunities to create balanced closures.
Such structures might be a boon—that we observe employees are already self-
organizing for a successful outcome; or they might be indicative of some malpractice
—that some employees are moving into shadowy corners to commit corporate fraud!
Either way, the predictive power of graphs enables us to engage those issues proac‐
tively.

Balanced closures add another dimension to the predictive power of graphs. Simply
by looking for opportunities to create balanced closures across a graph, even at very
large scale, we can modify the graph structure for accurate predictive analyses. But we
can go further, and in the next section we’ll bring in the notion of local bridges, which
give us valuable insight into the communications flow of our organization, and from
that knowledge comes the ability to adapt it to meet future challenges.

Local Bridges
An organization of only three people as we’ve been using is anomalous, and the
graphs we’ve studied in this section are best thought of as small subgraphs as part of a
larger organizational hierarchy. When we start to consider managing a larger organi‐
zation we expect a much more complex graph structure, but we can also apply other
heuristics to the structure to help make sense of the business. In fact, once we have
introduced other parts of the organization into the graph, we can reason about global
properties of the graph based on the locally acting strong triadic closure principle.

188 | Chapter 7: Predictive Analysis with Graph Theory

In Figure 7-19, we’re presented with a counterintuitive scenario where two groups in
the organization are managed by Alice and Davina, respectively. However, we have
the slightly awkward structure that Alice not only runs a team with Bob and Charlie,
but also manages Davina. Though this isn’t beyond the realm of possibility (Alice
may indeed have such responsibilities), it feels intuitively awkward from an organiza‐
tional design perspective.

Figure 7-19. Alice has skewed line management responsibility

From a graph theory perspective it’s also unlikely. Because Alice participates in two
strong relationships, she MANAGES Charlie (and Bob) and MANAGES Davina, naturally
we’d like to create a triadic closure by adding at least a PEER_OF relationship between
Davina and Charlie (and Bob). But Alice is also involved in a local bridge to Davina—
together they’re a sole communication path between groups in the organization. Hav‐
ing the relationship Alice MANAGES Davina means we’d in fact have to create the clo‐
sure. These two properties—local bridge and strong triadic closure—are in
opposition.

Yet if Alice and Davina are peers (a weak relationship), then the strong triadic closure
principle isn’t activated because there’s only one strong relationship—the MANAGES
relationship to Bob (or Charlie)—and the local bridge property is valid as we can see
in Figure 7-20.

What’s interesting about this local bridge is that it describes a communication chan‐
nel between groups in our organization. Such channels are extremely important to
the vitality of our enterprise. In particular, to ensure the health of our company we’d
make sure that local bridge relationships are healthy and active, or equally we might
keep an eye on local bridges to ensure that no impropriety (embezzlement, fraud,
etc.) occurs.

Local Bridges | 189

Figure 7-20. Alice and Davina are connected by a local bridge

Finding Your Next Job
This notion of weak links is particularly pertinent in algorithms like (social) job
search. The remarkable thing about job searches is that it’s rarely a close friend that
provides the best recommendation, but a looser acquaintance.

Why should this be? Our close friends share a similar world view (they’re in the same
graph component) and have similar access to the available jobs data and hold similar
opinions about those jobs. A friend across a local bridge is clearly in a different social
network (a different component), with correspondingly different access to jobs and a
different viewpoint about them. So if you’re going to find a job, look across a local
bridge because that’s where people who have different knowledge to you and your
friends hang out.

This same property of local bridges being weak links (PEER_OF in our example organi‐
zation) is a property that is prevalent throughout social graphs. This means we can
start to make predictive analyses of how our organization will evolve based on empir‐
ically derived local bridge and strong triadic closure notions. So given an arbitrary
organizational graph, we can see how the business structure is likely to evolve and
plan for those eventualities.

Summary
Graphs are truly remarkable structures. Our understanding of them is rooted in hun‐
dreds of years of mathematical and scientific study. And yet we’re only just beginning
to understand how to apply them to our personal, social, and business lives. The tech‐
nology is here, open and available to all in the form of the modern graph database.
The opportunities are endless.

190 | Chapter 7: Predictive Analysis with Graph Theory

As we’ve seen throughout this book, graph theory algorithms and analytical techni‐
ques are not demanding. We need only understand how to apply them to achieve our
goals. We leave this book with a simple call to arms: embrace graphs and graph data‐
bases. Take all that you’ve learned about modeling with graphs, graph database archi‐
tecture, designing and implementing a graph database solution, and applying graph
algorithms to complex business problems, and go build the next truly pioneering
information system.

Summary | 191

APPENDIX A

NOSQL Overview

Recent years have seen a meteoric rise in the popularity of a family of data storage
technologies known as NOSQL (a cheeky acronym for Not Only SQL, or more con‐
frontationally, No to SQL). But NOSQL as a term defines what those data stores are
not—they’re not SQL-centric relational databases—rather than what they are, which
is an interesting and useful set of storage technologies whose operational, functional,
and architectural characteristics are many and varied.

Why were these new databases created? What problems do they address? Here we’ll
discuss some of the new data challenges that have emerged in the past decade. We’ll
then look at four families of NOSQL databases, including graph databases.

The Rise of NOSQL
Historically, most enterprise-level web apps ran on top of a relational database. But in
the past decade, we’ve been faced with data that is bigger in volume, changes more
rapidly, and is more structurally varied than can be dealt with by traditional RDBMS
deployments. The NOSQL movement has arisen in response to these challenges.

It’s no surprise that as storage has increased dramatically, volume has become the
principal driver behind the adoption of NOSQL stores by organizations. Volume may
be defined simply as the size of the stored data.

As is well known, large datasets become unwieldy when stored in relational databases.
In particular, query execution times increase as the size of tables and the number of
joins grow (so-called join pain). This isn’t the fault of the databases themselves.
Rather, it is an aspect of the underlying data model, which builds a set of all possible
answers to a query before filtering to arrive at the correct solution.

193

In an effort to avoid joins and join pain, and thereby cope better with extremely large
datasets, the NOSQL world has adopted several alternatives to the relational model.
Though more adept at dealing with very large datasets, these alternative models tend
to be less expressive than the relational one (with the exception of the graph model,
which is actually more expressive).

But volume isn’t the only problem modern web-facing systems have to deal with.
Besides being big, today’s data often changes very rapidly. Velocity is the rate at which
data changes over time.

Velocity is rarely a static metric. Internal and external changes to a system and the
context in which it is employed can have considerable impact on velocity. Coupled
with high volume, variable velocity requires data stores to not only handle sustained
levels of high write loads, but also deal with peaks.

There is another aspect to velocity, which is the rate at which the structure of the data
changes. In other words, in addition to the value of specific properties changing, the
overall structure of the elements hosting those properties can change as well. This
commonly occurs for two reasons. The first is fast-moving business dynamics. As the
business changes, so do its data needs. The second is that data acquisition is often an
experimental affair. Some properties are captured “just in case,” others are introduced
at a later point based on changed needs. The ones that prove valuable to the business
stay around, others fall by the wayside. Both these forms of velocity are problematic
in the relational world, where high write loads translate into a high processing cost,
and high schema volatility has a high operational cost.

Although commentators have later added other useful requirements to the original
quest for scale, the final key aspect is the realization that data is far more varied than
the data we’ve dealt with in the relational world. For existential proof, think of all
those nulls in our tables and the null checks in our code. This has driven out the final
widely agreed upon facet, variety, which we define as the degree to which data is reg‐
ularly or irregularly structured, dense or sparse, connected or disconnected.

ACID versus BASE
When we first encounter NOSQL it’s often in the context of what many of us are
already familiar with: relational databases. Although we know the data and query
model will be different (after all, there’s no SQL), the consistency models used by
NOSQL stores can also be quite different from those employed by relational databa‐
ses. Many NOSQL databases use different consistency models to support the differ‐
ences in volume, velocity, and variety of data discussed earlier.

194 | Appendix A: NOSQL Overview

8 The .NET-based RavenDB has bucked the trend among aggregate stores in supporting ACID transactions. As
we show elsewhere in the book, ACID properties are still upheld by many graph databases.

Let’s explore what consistency features are available to help keep data safe, and what
trade-offs are involved when using (most) NOSQL stores.8

In the relational database world, we’re all familiar with ACID transactions, which
have been the norm for some time. The ACID guarantees provide us with a safe envi‐
ronment in which to operate on data:

Atomic
All operations in a transaction succeed or every operation is rolled back.

Consistent
On transaction completion, the database is structurally sound.

Isolated
Transactions do not contend with one another. Contentious access to state is
moderated by the database so that transactions appear to run sequentially.

Durable
The results of applying a transaction are permanent, even in the presence of
failures.

These properties mean that once a transaction completes, its data is consistent (so-
called write consistency) and stable on disk (or disks, or indeed in multiple distinct
memory locations). This is a wonderful abstraction for the application developer, but
requires sophisticated locking, which can cause logical unavailability, and is typically
considered to be a heavyweight pattern for most use cases.

For many domains, ACID transactions are far more pessimistic than the domain
actually requires. In the NOSQL world, ACID transactions have gone out of fashion
as stores loosen the requirements for immediate consistency, data freshness, and
accuracy in order to gain other benefits, like scale and resilience. Instead of using
ACID, the term BASE has arisen as a popular way of describing the properties of a
more optimistic storage strategy:

Basic availability
The store appears to work most of the time.

Soft-state
Stores don’t have to be write-consistent, nor do different replicas have to be
mutually consistent all the time.

Eventual consistency
Stores exhibit consistency at some later point (e.g., lazily at read time).

NOSQL Overview | 195

The BASE properties are considerably looser than the ACID guarantees, and there is
no direct mapping between them. A BASE store values availability (because that is a
core building block for scale), but does not offer guaranteed consistency of replicas at
write time. BASE stores provide a less strict assurance: that data will be consistent in
the future, perhaps at read time (e.g., Riak), or will always be consistent, but only for
certain processed past snapshots (e.g., Datomic).

Given such loose support for consistency, we as developers need to be more knowl‐
edgable and rigorous when considering data consistency. We must be familiar with
the BASE behavior of our chosen stores and work within those constraints. At the
application level we must choose on a case-by-case basis whether we will accept
potentially inconsistent data, or whether we will instruct the database to provide con‐
sistent data at read time, while incurring the latency penalty that that implies. (In
order to guarantee consistent reads, the database will need to compare all replicas of a
data element, and in an inconsistent outcome even perform remedial repair work on
that data.) From a development perspective this is a far cry from the simplicity of
relying on transactions to manage consistent state on our behalf, and though that’s
not necessarily a bad thing, it does require effort.

The NOSQL Quadrants
Having discussed the BASE model that underpins consistency in NOSQL stores, we’re
ready to start looking at the numerous user-level data models. To disambiguate these
models, we’ve devised a simple taxonomy, as shown in Figure A-1. This taxonomy
divides the contemporary NOSQL space into four quadrants. Stores in each quadrant
address a different kind of functional use case—though nonfunctional requirements
can also strongly influence our choice of database.

In the following sections we’ll deal with each of these quadrants, highlighting the
characteristics of the data model, operational aspects, and drivers for adoption.

Document Stores
Document databases offer the most immediately familiar paradigm for developers
used to working with hierarchically structured documents. Document databases store
and retrieve documents, just like an electronic filing cabinet. Documents tend to
comprise maps and lists, allowing for natural hierarchies—much as we’re used to with
formats like JSON and XML.

196 | Appendix A: NOSQL Overview

Figure A-1. The NOSQL store quadrants

At the simplest level, documents can be stored and retrieved by ID. Providing an
application remembers the IDs it’s interested in (e.g., usernames), a document store
can act much like a key-value store (of which we’ll see more later). But in the general
case, document stores rely on indexes to facilitate access to documents based on their
attributes. For example, in an ecommerce scenario, we might use indexes to represent
distinct product types so that they can be offered up to potential sellers, as shown in
Figure A-2. In general, indexes are used to retrieve sets of related documents from the
store for an application to use.

Much like indexes in relational databases, indexes in a document store enable us to
trade write performance for greater read performance. Writes are more costly,
because they also maintain indexes, but reads require scanning fewer records to find
pertinent data. For write-heavy records, it’s worth bearing in mind that indexes might
actually degrade performance overall.

Where data hasn’t been indexed, queries are typically much slower, because a full
search of the dataset has to happen. This is obviously an expensive task and is to be
avoided wherever possible—and as we shall see, rather than process these queries
internally, it’s normal for document database users to externalize this kind of process‐
ing in parallel compute frameworks.

NOSQL Overview | 197

Figure A-2. Indexing reifies sets of entities in a document store

Because the data model of a document store is one of disconnected entities, docu‐
ment stores tend to have interesting and useful operational characteristics. They
should scale horizontally, due to there being no contended state between mutually
independent records at write time, and no need to transact across replicas.

Sharding
Most document databases require users to plan for sharding of data across instances
to support horizontal scaling. Scaling out thus becomes an explicit aspect of develop‐
ment and operations. Key-value and column family databases, in contrast, tend not to
require this planning, because they allocate data to replicas as a normal part of their
internal implementation. This is sometimes puzzlingly cited as a positive reason for
choosing document stores, most likely because it induces a (misplaced) excitement
that scaling via sharding is something to be embraced and lauded, rather than some‐
thing to be skillfully and diligently mastered.

For writes, document databases have, historically, provided transactionality limited to
the level of an individual record. That is, a document database will ensure that writes
to a single document are atomic—assuming the administrator has opted for safe
levels of persistence when setting up the database. Support for operating across sets of
documents atomically is emerging in this category, but it is not yet mature. In the
absence of multikey transactions, it is down to application developers to write com‐
pensating logic in application code.

198 | Appendix A: NOSQL Overview

Because stored documents are not connected (except through indexes), there are
numerous optimistic concurrency control mechanisms that can be used to help rec‐
oncile concurrent contending writes for a single document without having to resort
to strict locks. In fact, some document stores (like CouchDB) have made this a key
point of their value proposition: documents can be held in a multimaster database
that automatically replicates concurrently accessed, contended state across instances
without undue interference from the user.

In other stores, the database management system may also be able to distinguish and
reconcile writes to different parts of a document, or even use timestamps to reconcile
several contended writes into a single logically consistent outcome. This is a reason‐
able optimistic trade-off insofar as it reduces some of the need for transactions by
using alternative mechanisms that optimistically control storage while striving to
provide lower latency and higher throughput.

Key-Value Stores
Key-value stores are cousins of the document store family, but their lineage comes
from Amazon’s Dynamo database. They act like large, distributed hashmap data
structures that store and retrieve opaque values by key.

As shown in Figure A-3, the key space of the hashmap is spread across numerous
buckets on the network. For fault-tolerance reasons, each bucket is replicated onto
several machines. The formula for number of replicas required is given by R = 2F +1,
where F is the number of failures we can tolerate. The replication algorithm seeks to
ensure that machines aren’t exact copies of each other. This allows the system to load-
balance while a machine and its buckets recover. It also helps avoid hotspots, which
can cause inadvertent self denial-of-service.

From the client’s point of view, key-value stores are easy to use. A client stores a data
element by hashing a domain-specific identifier (key). The hash function is crafted
such that it provides a uniform distribution across the available buckets, thereby
ensuring that no single machine becomes a hotspot. Given the hashed key, the client
can use that address to store the value in a corresponding bucket. Clients use a similar
process to retrieve stored values.

NOSQL Overview | 199

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Figure A-3. Key-value stores act like distributed hashmap data structures

Consistent Hashing
Failures will occur in all computer systems. In dependable systems these failures are
masked via redundant replacements being switched in for faulty components. In a
key-value store—as with any distributed database—individual machines will likely
become unavailable during normal operation as networks go down, or as hardware
fails. Such events are considered normal, so long as the side effects of recovering from
such failures don’t cause further problems. For example, if a machine supporting a
particular hash-range fails, it should not prevent new values in that range from being
stored or cause unavailability while internal reorganization occurs.

This is where consistent hashing comes into play. With this technique, writes to a
failed hash-range are cheaply remapped to the next available machine without dis‐
turbing the entire stored dataset. In fact, in many cases, only a fraction of the keys
within the failed range need to be remapped, rather than the whole set. When the
failed machine recovers or is replaced, consistent hashing again ensures that only a
fraction of the total key space is remapped.

200 | Appendix A: NOSQL Overview

http://en.wikipedia.org/wiki/Consistent_hashing

Given such a model, applications wishing to store data in, or retrieve data from, a
key-value store need only know (or compute) the corresponding key. Although there
is a very large number of possible keys in the key set, in practice keys tend to fall out
quite naturally from the application domain. Usernames and email addresses, Carte‐
sian coordinates for places of interest, Social Security numbers, and zip codes are all
natural keys for various domains. With a sensibly designed system, the chance of los‐
ing data in the store due to a missing key is low.

The key-value data model is similar to the document data model. What differentiates
them is the level of insight each offers into its data.

In theory, key-value stores are oblivious to the information contained in their values.
Pure key-value stores simply concern themselves with efficient storage and retrieval
of opaque data on behalf of applications, unencumbered by its nature and application
usage.

Opacity and Access to Subelements Inside Structured Data
Opacity has a downside. When extracting an element of data from a stored value, cli‐
ents often have to retrieve the whole value, and then filter out the unwanted parent or
sibling data elements. Compared to document stores, which perform such operations
on the server, this can be somewhat inefficient.

In practice, such distinctions aren’t always so clear-cut. Some of the popular key-
value stores—Riak, for instance—also offer visibility into certain types of structured
stored data like XML and JSON. It also supports some core data types (called CRDTs)
that can be confidently merged even in the presence of concurrent writes. At a prod‐
uct level, then, there is some overlap between the document and key-value stores.

Although simple, the key-value model, much as the document model, offers little in
the way of data insight to the application developer. To retrieve sets of useful informa‐
tion from across individual records, we typically use an external processing infra‐
structure, such as MapReduce. This is highly latent compared to executing queries in
the data store.

Key-value stores offer certain operational and scale advantages. Descended as they
are from Amazon’s Dynamo database—a platform designed for a nonstop shopping
cart service—they tend to be optimized for high availability and scale. Or, as the
Amazon team puts it, they should work even “if disks are failing, network routes are
flapping, or data centers are being destroyed by tornados.”

NOSQL Overview | 201

Column Family
Column family stores are modeled on Google’s BigTable. The data model is based on
a sparsely populated table whose rows can contain arbitrary columns, the keys for
which provide natural indexing.

In our discussion we’ll use terminology from Apache Cassandra.
Cassandra isn’t necessarily a faithful interpretation of BigTable, but
it is widely deployed, and its terminology well understood.

In Figure A-4, we see the four common building blocks used in column family data‐
bases. The simplest unit of storage is the column itself, consisting of a name-value
pair. Any number of columns can be combined into a super column, which gives a
name to a sorted set of columns. Columns are stored in rows, and when a row con‐
tains columns only, it is known as a column family. When a row contains super col‐
umns, it is known as a super column family.

Figure A-4. The four building blocks of column family storage

202 | Appendix A: NOSQL Overview

http://research.google.com/archive/bigtable.html

It might seem odd to focus on rows when the data model is ostensibly columnar, but
individual rows are important, because they provide the nested hashmap structure
into which we denormalize our data. In Figure A-5 we show how we might map a
recording artist and his albums into a super column family structure—logically, it’s
really nothing more than maps of maps.

Figure A-5. Storing line-of-business data in a super column family

In a column family database, each row in the table represents a particular overarching
entity (e.g., everything about an artist). These column families are containers for
related pieces of data, such as the artist’s name and discography. Within the column
families we find actual key-value data, such as album release dates and the artist’s date
of birth.

Helpfully, this row-oriented view can be turned 90 degrees to arrive at a column-
oriented view. Where each row gives a complete view of one entity, the column view
naturally indexes particular aspects across the whole dataset. For example, as we see
in Figure A-6, by “lining up” keys we are able to find all the rows where the artist is
English. From there it’s easy to extract complete artist data from each row. It’s not
connected data as we’d find in a graph, but it does at least provide some insight into a
set of related entities.

Column family databases are distinguished from document and key-value stores not
only by their more expressive data model, but also by their operational characteris‐
tics. Apache Cassandra, for example, which is based on a Dynamo-like infrastructure,
is architected for distribution, scale, and failover. Under the covers it uses several
storage engines that deal with high write loads—the kind of peak write loads gener‐
ated by popular interactive TV shows.

NOSQL Overview | 203

Figure A-6. Keys form a natural index through rows in a column family database

Overall, column family databases are reasonably expressive, and operationally very
competent. And yet they’re still aggregate stores, just like document and key-value
databases, and as such still lack joins. Querying them for insight into data at scale
requires processing by some external application infrastructure.

Query versus Processing in Aggregate Stores
In the preceding sections we’ve highlighted the similarities and differences between
the document, key-value, and column family data models. On balance, the similari‐
ties are greater than the differences. In fact, the similarities are so great, the three
types are sometimes referred to jointly as aggregate stores. Aggregate stores persist

204 | Appendix A: NOSQL Overview

http://martinfowler.com/bliki/NosqlDistilled.html

standalone complex records that reflect the Domain-Driven Design notion of an
aggregate.

Though each aggregate store has a different storage strategy, they all have a great deal
in common when it comes to querying data. For simple ad hoc queries, each tends to
provide features such as indexing, simple document linking, or a query language. For
more complex queries, applications commonly identify and extract a subset of data
from the store before piping it through some external processing infrastructure such
as a MapReduce framework. This is done when the necessary deep insight cannot be
generated simply by examining individual aggregates.

MapReduce, like BigTable, is another technique that comes to us from Google. The
most prevalent open source implementation of MapReduce is Apache Hadoop and its
attendant ecosystem.

MapReduce is a parallel programming model that splits data and operates on it in
parallel before gathering it back together and aggregating it to provide focused infor‐
mation. If, for example, we wanted to use it to count how many American artists
there are in a recording artists database, we’d extract all the artist records and discard
the non-American ones in the map phase, and then count the remaining records in
the reduce phase.

Even with a lot of machines and a fast network infrastructure, MapReduce can be
quite latent. Normally, we’d use the features of the data store to provide a more
focused dataset—perhaps using indexes or other ad hoc queries—and then MapRe‐
duce that smaller dataset to arrive at our answer.

Aggregate stores are not built to deal with highly connected data. We can try to use
them for that purpose, but we have to add code to fill in where the underlying data
model leaves off, resulting in a development experience that is far from seamless, and
operational characteristics that are generally speaking not very fast, particularly as the
number of hops (or “degree” of the query) increases. Aggregate stores may be good at
storing data that’s big, but they aren’t great at dealing with problems that require an
understanding of how things are connected.

Graph Databases
A graph database is an online, operational database management system with Create,
Read, Update, and Delete (CRUD) methods that expose a graph data model. Graph
databases are generally built for use with transactional (OLTP) systems. Accordingly,
they are normally optimized for transactional performance, and engineered with
transactional integrity and operational availability in mind.

Two properties of graph databases are useful to understand when investigating graph
database technologies:

NOSQL Overview | 205

http://domaindrivendesign.org/
http://research.google.com/archive/mapreduce.html

8 See Rodriguez, Marko A., and Peter Neubauer. 2011. “The Graph Traversal Pattern.” In Graph Data Manage‐
ment: Techniques and Applications, ed. Sherif Sakr and Eric Pardede, 29-46. Hershey, PA: IGI Global.

The underlying storage
Some graph databases use native graph storage, which is optimized and designed
for storing and managing graphs. Not all graph database technologies use native
graph storage, however. Some serialize the graph data into a relational database,
object-oriented database, or other types of NOSQL stores.

The processing engine
Some definitions of graph databases require that they be capable of index-free
adjacency, meaning that connected nodes physically “point” to each other in the
database.8 Here we take a slightly broader view. Any database that from the user’s
perspective behaves like a graph database (i.e., exposes a graph data model
through CRUD operations), qualifies as a graph database. We do acknowledge,
however, the significant performance advantages of index-free adjacency, and
therefore use the term native graph processing in reference to graph databases that
leverage index-free adjacency.

Graph databases—in particular native ones—don’t depend heavily on indexes because
the graph itself provides a natural adjacency index. In a native graph database, the
relationships attached to a node naturally provide a direct connection to other related
nodes of interest. Graph queries use this locality to traverse through the graph by
chasing pointers. These operations can be carried out with extreme efficiency, tra‐
versing millions of nodes per second, in contrast to joining data through a global
index, which is many orders of magnitude slower.

Besides adopting a specific approach to storage and processing, a graph database will
also adopt a specific data model. There are several different graph data models in
common usage, including property graphs, hypergraphs, and triples. We discuss each
of these models below.

Property Graphs
A property graph has the following characteristics:

• It contains nodes and relationships.
• Nodes contain properties (key-value pairs).
• Nodes can be labeled with one or more labels.
• Relationships are named and directed, and always have a start and end node.
• Relationships can also contain properties.

206 | Appendix A: NOSQL Overview

http://arxiv.org/abs/1004.1001

Hypergraphs
A hypergraph is a generalized graph model in which a relationship (called a hyper-
edge) can connect any number of nodes. Whereas the property graph model permits
a relationship to have only one start node and one end node, the hypergraph model
allows any number of nodes at either end of a relationship. Hypergraphs can be useful
where the domain consists mainly of many-to-many relationships. For example, in
Figure A-7 we see that Alice and Bob are the owners of three vehicles. We express this
using a single hyper-edge, whereas in a property graph we would use six relation‐
ships.

Figure A-7. A simple (directed) hypergraph

As we discussed in Chapter 3, graphs enable us to model our problem domain in a
way that is easy to visualize and understand, and which captures with high fidelity the
many nuances of the data we encounter in the real world. Although in theory hyper‐
graphs produce accurate, information-rich models, in practice it’s very easy for us to
miss some detail while modeling. To illustrate this point, let’s consider the graph
shown in Figure A-8, which is the property graph equivalent of the hypergraph
shown in Figure A-7.

The property graph shown here requires several OWNS relationships to express what
the hypergraph captured with just one. But in using several relationships, not only are
we able to use a familiar and very explicit modeling technique, but we’re also able to
fine-tune the model. For example, we’ve identified the “primary driver” for each vehi‐
cle (for insurance purposes) by adding a property to the relevant relationships—
something that can’t be done with a single hyper-edge.

NOSQL Overview | 207

Figure A-8. A property graph is semantically fine-tuned

Because hyper-edges are multidimensional, hypergraphs comprise
a more general model than property graphs. That said, the two
models are isomorphic. It is always possible to represent the infor‐
mation in a hypergraph as a property graph (albeit using more rela‐
tionships and intermediary nodes). Whether a hypergraph or a
property graph is best for you is going to depend on your modeling
mindset and the kinds of applications you’re building. Anecdotally,
for most purposes property graphs are widely considered to have
the best balance of pragmatism and modeling efficiency—hence
their overwhelming popularity in the graph database space. How‐
ever, in situations where you need to capture meta-intent, effec‐
tively qualifying one relationship with another (e.g., I like the fact
that you liked that car), hypergraphs typically require fewer primi‐
tives than property graphs.

Triples
Triple stores come from the Semantic Web movement, where researchers are interes‐
ted in large-scale knowledge inference by adding semantic markup to the links that
connect web resources. To date, very little of the Web has been marked up in a useful
fashion, so running queries across the semantic layer is uncommon. Instead, most
effort in the Semantic Web appears to be invested in harvesting useful data and rela‐
tionship information from the Web (or other more mundane data sources, such as
applications) and depositing it in triple stores for querying.

A triple is a subject-predicate-object data structure. Using triples, we can capture facts,
such as “Ginger dances with Fred” and “Fred likes ice cream.” Individually, single tri‐
ples are semantically rather poor, but en-masse they provide a rich dataset from

208 | Appendix A: NOSQL Overview

http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/semanticweb/

which to harvest knowledge and infer connections. Triple stores typically provide
SPARQL capabilities to reason about and stored RDF data.

RDF—the lingua franca of triple stores and the Semantic Web—can be serialized sev‐
eral ways. The following snippet shows how triples come together to form linked
data, using the RDF/XML format:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://www.example.org/terms/">
 <rdf:Description rdf:about="http://www.example.org/ginger">
 <name>Ginger Rogers</name>
 <occupation>dancer</occupation>
 <partner rdf:resource="http://www.example.org/fred"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://www.example.org/fred">
 <name>Fred Astaire</name>
 <occupation>dancer</occupation>
 <likes rdf:resource="http://www.example.org/ice-cream"/>
 </rdf:Description>
</rdf:RDF>

W3C Support
Triple stores vary in their implementations. A store doesn’t have to have a triple-like
internal implementation to produce logical representations of triples. Most triple
stores, however, are unified by their support for Semantic Web technology such as
RDF and SPARQL.

Though there’s nothing particularly special about RDF as a means of serializing
linked data, it is endorsed by the W3C and therefore benefits from being widely
understood and well documented. The query language SPARQL benefits from similar
W3C patronage.

In the graph database space there is a similar abundance of innovation around graph
serialization formats (e.g., GEOFF) and inferencing query languages (e.g., the Cypher
query language that we use throughout this book). The key difference is that at this
point these innovations do not enjoy the patronage of a well-regarded body like the
W3C, though they do benefit from strong engagement within their user and vendor
communities.

Triple stores fall under the general category of graph databases because they deal in
data that—once processed—tends to be logically linked. They are not, however,
“native” graph databases, because they do not support index-free adjacency, nor are
their storage engines optimized for storing property graphs. Triple stores store triples
as independent artifacts, which allows them to scale horizontally for storage, but pre‐
cludes them from rapidly traversing relationships. To perform graph queries, triple
stores must create connected structures from independent facts, which adds latency

NOSQL Overview | 209

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/RDF/
http://nigelsmall.com/geoff
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

to each query. For these reasons, the sweet spot for a triple store is analytics, where
latency is a secondary consideration, rather than OLTP (responsive, online transac‐
tion processing systems).

Although graph databases are designed predominantly for traversal
performance and executing graph algorithms, it is possible to use
them as a backing store behind a RDF/SPARQL endpoint. For
example, the Blueprints SAIL API provides an RDF interface to
several graph databases, including Neo4j. In practice this implies a
level of functional isomorphism between graph databases and tri‐
ple stores. However, each store type is suited to a different kind of
workload, with graph databases being optimized for graph work‐
loads and rapid traversals.

210 | Appendix A: NOSQL Overview

https://github.com/tinkerpop/blueprints/wiki/Sail-Implementation

Index

A
A* algorithm, 181
access control, 110
ACID transactions, 106, 194-196
administrator(s)

access to resources, 128-130
finding all accessible resources for, 126-127
finding for an account, 130

aggregate stores, 21, 204
aggregates, relationships between, 15
agility of graph databases, 9
Amazon, 199
Amazon Web Services (AWS), 81
anti-patterns, avoiding, 63
Apache Cassandra, 202
Apache Hadoop, 16, 205
APIs (application programming interfaces), 9,

76, 80, 158-161
application architecture, 76-85

embedded vs. server, 76-81
load balancing, 82-85
performance testing, 91-95

application performance tests, 92
application(s), graph database

application architecture, 76-85
building, 65-104
capacity planning, 95-99
clustering, 81
data modeling for, 65-76
fine-grained vs. generic relationships for, 67
importing/bulk loading data, 99-103
iterative/incremental development, 74
modeling facts as nodes, 68-71
nodes vs. relationships for, 67

representing complex value types, 71
testing, 85-95
time modeling, 72-74

atomic transactions, 195
Atomic, Consistent, Isolated, Durable (ACID)

transactionality, 106, 194-196
authorization and access control, 110, 123-130

determining administrators access to
resource, 128-130

finding administrators for an account, 130
finding all accessible resources for an

administrator, 126-127
TeleGraph Communications data model,

123-130
availability, 164-166
average request time, 98
AWS (Amazon Web Services), 81

B
balanced triadic closures, 187
balancing, load, 82-85
BASE transactions, 194-196
basic availability, 195
batch import (data), 100-103
BigTable, 202
Blueprints SAIL API, 210
bound nodes, 46
breadth-first search algorithm, 171
brute-force processing, 17
buffer writes, 81
bulk loading (data), 99-103
business responsiveness, 106

211

C
cache sharding, 83
capacity planning, 95-99

load optimization, 98
optimization criteria, 95
performance costing, 96
redundancy, 98

capacity, scale and, 167
Cassovary, 7
CEP (Complex Event Processing), 40
Charland, Gary, 1
Christakis, Nicholas, 106
clauses, Cypher, 29-31
clustering, 81
column family stores, 202-204
column-oriented NOSQL databases, 15
communications (authorization and access

control), 110
Complex Event Processing (CEP), 40
complex transactions, 80
complex value types, representing, 71
concurrent requests, 99
Connected (Christakis and Fowler), 106
connected data

advantages of graph databases, 18-24
drawbacks of NOSQL databases, 15-18
drawbacks of relational databases, 11-14
storage of, 11-24

consistent hashing, 200
consistent stores, 99
consistent transactions, 195
constraints, 12, 47
core API, 159, 161
core data types (CRDTs), 201
cost optimization, 95
cost(s)

and index-free adjacency, 151
of performance, 96

CouchDB, 199
CRDTs (core data types), 201
CREATE clause, 31
CREATE CONSTRAINT command, 47
CREATE INDEX command, 47, 103
CREATE UNIQUE clause, 31
create, read, update, and delete (CRUD) meth‐

ods, 5, 205
cross-domain models, 41-52

beginning a query, 46-48
constraining matches in, 49

creating the Shakespeare graph, 45
declaring information patterns to find, 48
processing results in, 50
query chaining in, 51

CRUD (create, read, update, and delete) meth‐
ods, 5

Cypher
advantages/disadvantages, 161
beginning a query in, 46-48
clauses in, 29-29
constraining matches in, 49
CREATE clause, 31
CREATE CONSTRAINT command, 47
CREATE INDEX command, 47, 103
CREATE UNIQUE clause, 31
declaring information patterns to find, 48
DELETE clause, 31
DISTINCT clause, 50
FOREACH clause, 31
indexes and constraints in, 47
MATCH clause, 30, 48, 50
MERGE clause, 31, 102
PERIODIC COMMIT functionality, 103
philosophy of, 28-31
processing results in, 50
query chaining in, 51
querying graphs with, 27-31
RETURN clause, 30, 30, 50
SET clause, 31
START clause, 31
UNION clause, 31
WHERE clause, 31, 50
WITH clause, 31, 51

D
data

batch import, 100-103
connected, storage of, 11-24
importing/bulk loading, 99-103
initial import, 99
master data management, 109
representative, testing with, 93-95

data center management, 109
data mining, 4
data modeling

and complex value types, 71
avoiding anti-patterns, 63
common pitfalls, 52-63
cross-domain models, 41-52

212 | Index

describing in terms of applications needs, 66
email provenance problem domain, 52-63
evolving the domain, 58-63
fine-grained vs. generic relationships for, 67
for applications, 65-76
Global Post, 132-135
graph modeling in systems management

domain, 38-39
identifying nodes and relationships, 63
iterative/incremental development, 74
labeled property graph for, 26
modeling facts as nodes, 68-71
models and goals, 25
nodes vs. relationships for, 67
querying graphs with Cypher, 27-31
relational modeling in systems management

domain, 33-37
relational modeling vs. graph modeling,

32-41
Talent.net, 112
TeleGraph Communications, 123-125
test-driven development, 85-91
testing the domain model, 39-41
time, 72-74
with graphs, 25-64

database life cycle, 77
database refactorings, 37
DELETE clause, 31
denormalization, 35-36
depth-first search algorithm, 171
development cycles, drastically accelerated, 105
development, test-driven, 85-91
Dijkstras algorithm, 146

efficiency of, 173
path-finding with, 173-181

DISTINCT clause, 50
distributed graph compute engines, 7
document stores, 196-199
document-NOSQL databases, 15
domain modeling

evolving the domain, 58-63
provenance problem domain, 52-63
relational vs. graph modeling, 32-41
testing, 39-41

Domain-Driven Design notion, 205
domains, highly connected, 13
doubly linked lists, 155
drastically accelerated development cycles, 105
drawing data, 30

durable transactions, 195
Dynamo database, 199

E
Easley, David, 1
edges, 1
email, provenance problem domain, 52-63
embedded mode

APIs, 76
database life cycle, 77
explicit transactions, 76
GC behaviors, 77
JVM, 77
latency, 76
server mode vs., 76-81

encapsulation, server extensions and, 80
end node, 26
enterprise ready graph databases, 106
ETL (extract, transform, and load) jobs, 7
Euler, Leonhard, xi, 108
eventual consistency storage, 195
evolution, domain, 58-63
expensive joins, 12
explicit transactions, 76
extensions, server, 78-81
extract, transform, and load (ETL) jobs, 7

F
Facebook, 107, 184
facts, modeling as nodes, 68-71
fine-grained relationships, 67, 125
FOREACH clause, 31
foreign key constraints, 12
Fowler, James, 106

G
Gartner, 2
Gatling, 93
GC (garbage collection) behavior, 77

server extensions, 81
server mode, 78

generating load, 93
generic relationships, 67
geospatial applications, 108, 132-146

Global Post data model, 132-135
route calculation, 136-146

Giraph, 7
global clusters, 81

Index | 213

Global Post, 132-146
goals, data modeling, 25
Google, 64, 202, 205
graph analytics, offline, 4
graph components, 190
graph compute engines, 4, 7, 7
graph databases (graph database management

systems)
and relationships, 18-24
application building, 65-104
defined, 205
hypergraphs, 207
implementation, 149-170
in NOSQL, 205-210
internals, 149-170
nonfunctional characteristics, 162-170
performance costing, 96
power of, 8-9
properties, 5
property graphs, 206
reasons for choosing, 105
triple stores, 208-210
uses for, xi

graph matches, constraining, 49
graph modeling

in systems management domain, 38-39
relational modeling vs., 32-41

graph space
and graph compute engines, 7
and graph database management systems, 5
high level view of, 4-7

graph theory, xi
and local bridges, 188-190
and predictive modeling, 182-188
and structural balance, 184-188
and triadic closures, 182-184
predictive analysis with, 171-191
property graphs and, 182

graph(s)
basics, 1-4
data modeling with, 25-64
labeled property model, 4
labels in, 20
querying with Cypher, 27-31
real-world applications, 2
versioned, 74

Gremlin, 27
Grinder, 93
grouping nodes, 20

H
Hadoop, 16, 205
hashing, consistent, 200
high-availability, 106
highly connected domains, 13
horizontal read scalability, 106
hypergraphs, 207

I
identifiers, 28
idiomatic queries

benefits of, 166
implicitly connected data, 18
importing data, 99-103
in-memory graph compute engines, 7
incremental development, 74
index-free adjacency, 5, 16, 149, 151, 206
indexes, constraints with, 47
information patterns, declaring, 48
informed depth-first search algorithm, 172
inlining, 157
Introduction To Graph Theory (Trudeau), 1
Introductory Graph Theory (Chartrand), 1
isolated transactions, 195
iterative development, 74

J
JAX-RS, 78
JMeter, 93
job searches, 190
join pain, 193
join tables, 12
joins, expensive, 12
JVM (Java virtual machine)

and representative datasets, 94
embedded mode, 77
server extensions and, 81

K
kernel API, 158
key-value stores (NOSQL databases), 15,

199-201
Kleinberg, Jon, 1

L
label(s)

in graph, 20
nodes and, 26

214 | Index

relationships and, 44
labeled property graph, 4, 26
latency, 76, 167
LFU (least frequently used) cache policy, 157
link(s)

and walking, 16
traversing, 18

linked lists, 73
LinkedIn, 107, 184
lists

doubly linked, 155
linked, 73

load balancing, 82-85, 82
load optimization, 96, 98
local bridges, 188-190
LRU-K page cache, 157

M
MapReduce, 201, 205
master data management, 109
MATCH clause, 30, 48, 50
matches, constraining, 49
MERGE clause, 31, 102
migration, 37
minimum point cut, 169
MongoDB, 169

N
native graph processing, 5, 149-152, 206
native graph storage, 5, 152-158, 206
Neo4j

availability, 164-166
capacity, 167
clustering, 81
core API, 159
embedded mode, 76
implementation, 149-170
index-free adjacency and low-cost joins, 151
inlining and optimizing property store uti‐

lization, 157
kernel API, 158
native graph storage, 152-158
nonfunctional characteristics, 162-170
programmatic APIs, 158-161
recoverability, 163
scale, 166-170
server mode, 77
transactions, 162
Traversal Framework, 20

various replication options in, 165
Neo4j in Action (Partner and Vukotic), 20
network management, 109
network overhead, 78
Networks, Crowds, and Markets (Easley and

Kleinberg), 1
nodes, 1

add new, 19
for data modeling, 67
grouping, 20
identifying, 63
labels and, 26
modeling facts as, 68-71
relationships and, 26
relationships vs, 67
representing complex value types as, 71
tagging, 26

nonfunctional characteristics, 162-170
availability, 164-166
recoverability, 163
scale, 166-170
transactions, 162

NOSQL data storage
ACID vs. BASE, 194-196
column family stores, 15, 202-204
document stores, 15, 196-199
drawbacks of, 15-18
graph databases in, 205-210
hypergraphs, 207
key-value stores, 15, 199-201
overview, 193-210
property graphs, 206
quadrants, 196-205
query vs. processing in aggregate stores, 204
rise of, 193
triple stores, 208-210

O
O algorithms, 17
O-notation, 17
offline graph analytics, 4
OLAP (online analytical processing), 4
OLTP (online transactional processing) databa‐

ses, 4, 205
online analytical processing (OLAP), 4
online graph persistence, 4
online transactional processing (OLTP) databa‐

ses, 4, 205

Index | 215

opacity, access to subelements inside structured
data and, 201

optimization
capacity planning criteria, 95
cost, 95
for load, 98
load, 96
of application performance, 96
performance, 96
property store utilization, 157
redundancy, 96

P
page caches, 157
path-finding with Dijkstras algorithm, 173-181
paths, 28
Pegasus, 7
performance

costing of, 96
of graph databases, 8
optimization options, 96

performance optimization, 96
performance testing, 91-95

application performance tests, 92
query performance tests, 91
with representative data, 93-95

PERIODIC COMMIT functionality, 103
pitfalls, data modeling, 52-63
platforms, 77
power of graph databases, 8-9
predictive analysis

A* algorithm, 181
depth- and breadth-first search, 171
path-finding with Dijkstras algorithm,

173-181
with graph theory, 171-191

predictive modeling, graph theory and, 182-188
Pregel, 7
processing

in aggregate stores, 204
of results in cross-domain models, 50

processing engine, 5, 206
professional social network, social recommen‐

dations case example, 111-122
programmatic APIs, 158-161

core API, 159
kernel API, 158
Traversal Framework, 160

properties, relationships with, 125

property graphs
characteristics, 206
graph theory and, 182

property store utilization, 157

Q
quadrants, NOSQL data storage, 196-205
queries

chaining in cross-domain models, 51
choosing method for, 161
for cross-domain models, 46-48
idiomatic, 166
in aggregate stores, 204
performance tests for, 91
reciprocal, 12
unidiomatic, 166
various languages, 27
with Cypher, 27-31, 46-48, 51

query chaining, 51
query language(s), 27
queues, buffer writes using, 81

R
R-Tree, 23
Rails, 37
RDF (Resource Description Framework) tri‐

ples, 5
read traffic, separating write traffic from, 82
real-world applications, 105-147

authorization and access control, 110,
123-130

case examples, 111-146
common use cases, 106-111
data center management, 109
geospatial applications, 108, 132-146
master data management, 109
network management, 109
recommendation algorithms, 107
social data, 106
social recommendations (professional social

network case example), 111-122
why organizations choose graph databases,

105
reciprocal queries, 12
recommendation algorithms, 107
recoverability, 163
redundancy

optimization, 96
planning for, 98

216 | Index

relational databases, 11-14, 21
relational modeling

graph modeling vs., 32-41
in systems management domain, 33-37

relationship chains, 154
relationship store, 155
relationship(s), 1

add new, 19
and graph databases, 18-24
and NOSQL databases, 15-18
and relational databases, 11-14
fine-grained vs. generic, 67
fine-grained vs. relationships with proper‐

ties, 125
for data modeling, 67
identifying, 63
labels and, 44
nodes and, 26
nodes vs., 67
strong vs. weak, 183
with properties, 125

replication
clustering, 81
in Neo4j, 165

representative data, testing with, 93-95
Resource Description Framework (RDF) tri‐

ples, 5
REST API, 77, 78
results processing in cross-domain models, 50
RETURN clause, 30, 50
Riak, 16
route calculation, 136-146

S
SaaS (software as a service) offerings, 111
scale, 166-170

capacity, 167
latency, 167
throughput, 168

scaling, 77
search algorithms, depth- and breadth-first,

171
server extensions, 78-81

APIs and, 80
complex transactions and, 80
encapsulation and, 80
GC behaviors, 81
JVM and, 81
response formats, 80

testing, 89
server mode

benefits of, 77
embedded mode vs., 76-81
GC behaviors, 78
platforms, 77
REST API, 77
scaling, 77

SET clause, 31
Seven Bridges of Konigsberg problem, 108
Shakespeare graph (cross-domain modeling),

45
sharding, 169, 198
shortest weighted path calculation, 138
single machine graph compute engines, 7
social data, 106
social graphs, 107
social networks

recommendations case example, 111-122
test-driven data model, 86-89

social recommendations (professional social
network), 111-122
adding WORKED_WITH relationships,

121-122
data model, 112
finding colleagues with particular interests,

117-120
inferring social relations, 113-117

social relations, inferring, 113-117
soft-state storage, 195
software as a service (SaaS) offerings, 111
solid state disks (SSDs), 157
SOR databases, 7
specification by example, 29
START clause, 31
start node, 26
storage

basic availability, 195
eventual consistency, 195
of connected data, 11-24
soft-state, 195

store files, 153
strong relationships, 183
strong triadic closure property, 183
structural balance, 184-188, 186
super column, 202
system of record (SOR) databases, 7
systems management domain

graph modeling in, 38-39

Index | 217

relational modeling in, 33-37

T
tagging nodes, 26
Talent.net, 111-122
TeleGraph Communications, 123-130
test-driven data model development, 85-91
testing

application, 85-95, 92
domain model, 39-41
performance, 91-95
query performance, 91
server extensions, 89
with representative data, 93-95

throughput, 168
time

and linked lists, 73
modeling, 72-74
timeline trees, 72
versioning, 74

timeline trees, 72
transaction commit, 163
transaction event handlers, 158
transaction state, 78
transaction(s), 162

atomic, 195
complex, 80
consistent, 195
durable, 195
isolated, 195

transactional systems, 205
Traversal Framework, 160

advantages/disadvantages, 161
route calculation with, 142-146

traversing links, 18
traversing relationships, 121
triadic closures, 182-184
triple stores, 208-210
Trudeau, Richard J., 1
Twitter, 2-2, 184

U
underlying storage, 5, 206
unidiomatic queries, 166
uninformed depth-first search, 172
UNION clause, 31

V
values, complex, 71
variable length paths, 40
variety, 194
Velocity, 194
verbing, 64
versioned graphs, 74
versioning, 74
vertices, 1
volume, 193

W
W3C, triple store support by, 209
walking skeletons, 92
walking, links and, 16
weak relationships, 183
WHERE clause, 31, 49-50, 50
WITH clause, 31, 51
Write Ahead Log, 163
write traffic, separating read traffic from, 82

218 | Index

About the Authors
Ian Robinson is the co-author of REST in Practice (O’Reilly, 2010). Ian is an engineer
at Neo Technology, working on a distributed version of the Neo4j database. Prior to
joining the engineering team, Ian served as Neo’s Director of Customer Success, man‐
aging the training, professional services, and support arms of Neo, and working with
customers to design and develop mission-critical graph database solutions. Ian came
to Neo Technology from ThoughtWorks, where he was SOA Practice Lead and a
member of the CTO’s global Technical Advisory Board. Ian presents frequently at
conferences worldwide on topics including the application of graph database technol‐
ogies and RESTful enterprise integration.

Dr. Jim Webber is Chief Scientist with Neo Technology where he researches novel
graph databases and writes open source software. Previously, Jim spent time working
with big graphs like the Web for building distributed systems, which led him to being
co-author on the book REST in Practice, having previously written Developing Enter‐
prise Web Services: An Architect’s Guide (Prentice Hall, 2003). Jim is active in the
development community, presenting regularly around the world. His blog is located
at http://jimwebber.org and he tweets often as @jimwebber.

Emil Eifrem is CEO of Neo Technology and co-founder of the Neo4j project. Before
founding Neo, he was the CTO of Windh AB, where he headed the development of
highly complex information architectures for Enterprise Content Management Sys‐
tems. Committed to sustainable open source, he guides Neo along a balanced path
between free availability and commercial reliability. Emil is a frequent conference
speaker and author on NOSQL databases.

Colophon
The animal on the cover of Graph Databases is a European octopus (Eledone cir‐
rhosa), also known as a lesser octopus or horned octopus. The European octopus is
native to the rocky coasts of Ireland and England, but can also be found in the Atlan‐
tic Ocean, North Sea, and Mediterranean Sea. It mainly resides in depths of 10 to 15
meters, but has been noted as far down as 800 meters. Its identifying features include
its reddish-orange color, white underside, granulations on its skin, and ovoid mantle.

The European octopus primarily eats crabs and other crustaceans. Many fisheries in
the Mediterranean and North Seas often unintentionally catch the European octopus.
The species is not subject to stock assessment or quota control, so they can be con‐
sumed. However, their population has increased in these areas in recent years, due in
part to the overfishing of larger predatory fish.

The European octopus can grow to be between 12 and 40 centimeters long, which it
reaches in about one year. It has a relatively short life span of less than five years.

http://shop.oreilly.com/product/9780596805838.do
http://shop.oreilly.com/product/9780596805838.do
http://jimwebber.org

Compared to the octopus vulgaris (or common octopus), the European octopus
breeds at a much lower rate, laying on average 1,000 to 5,000 eggs.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Dover Pictorial Archive. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Graphs Are Everywhere, or the Birth of Graph Databases as We Know Them

	Preface
	About the Second Edition
	About This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	What Is a Graph?
	A High-Level View of the Graph Space
	Graph Databases
	Graph Compute Engines

	The Power of Graph Databases
	Performance
	Flexibility
	Agility

	Summary

	Chapter 2. Options for Storing Connected Data
	Relational Databases Lack Relationships
	NOSQL Databases Also Lack Relationships
	Graph Databases Embrace Relationships
	Summary

	Chapter 3. Data Modeling with Graphs
	Models and Goals
	The Labeled Property Graph Model
	Querying Graphs: An Introduction to Cypher
	Cypher Philosophy
	MATCH
	RETURN
	Other Cypher Clauses

	A Comparison of Relational and Graph Modeling
	Relational Modeling in a Systems Management Domain
	Graph Modeling in a Systems Management Domain
	Testing the Model

	Cross-Domain Models
	Creating the Shakespeare Graph
	Beginning a Query
	Declaring Information Patterns to Find
	Constraining Matches
	Processing Results
	Query Chaining

	Common Modeling Pitfalls
	Email Provenance Problem Domain
	A Sensible First Iteration?
	Second Time’s the Charm
	Evolving the Domain

	Identifying Nodes and Relationships
	Avoiding Anti-Patterns
	Summary

	Chapter 4. Building a Graph Database Application
	Data Modeling
	Describe the Model in Terms of the Application’s Needs
	Nodes for Things, Relationships for Structure
	Fine-Grained versus Generic Relationships
	Model Facts as Nodes
	Represent Complex Value Types as Nodes
	Time
	Iterative and Incremental Development

	Application Architecture
	Embedded versus Server
	Clustering
	Load Balancing

	Testing
	Test-Driven Data Model Development
	Performance Testing

	Capacity Planning
	Optimization Criteria
	Performance
	Redundancy
	Load

	Importing and Bulk Loading Data
	Initial Import
	Batch Import

	Summary

	Chapter 5. Graphs in the Real World
	Why Organizations Choose Graph Databases
	Common Use Cases
	Social
	Recommendations
	Geo
	Master Data Management
	Network and Data Center Management
	Authorization and Access Control (Communications)

	Real-World Examples
	Social Recommendations (Professional Social Network)
	Authorization and Access Control
	Geospatial and Logistics

	Summary

	Chapter 6. Graph Database Internals
	Native Graph Processing
	Native Graph Storage
	Programmatic APIs
	Kernel API
	Core API
	Traversal Framework

	Nonfunctional Characteristics
	Transactions
	Recoverability
	Availability
	Scale

	Summary

	Chapter 7. Predictive Analysis with Graph Theory
	Depth- and Breadth-First Search
	Path-Finding with Dijkstra’s Algorithm
	The A* Algorithm
	Graph Theory and Predictive Modeling
	Triadic Closures
	Structural Balance

	Local Bridges
	Summary

	Appendix A. NOSQL Overview
	The Rise of NOSQL
	ACID versus BASE
	The NOSQL Quadrants
	Document Stores
	Key-Value Stores
	Column Family
	Query versus Processing in Aggregate Stores
	Graph Databases
	Property Graphs
	Hypergraphs
	Triples

	Index
	About the Authors

