

.NET MAUI for C# Developers

Build cross-platform mobile and desktop applications

Jesse Liberty

Rodrigo Juarez

BIRMINGHAM—MUMBAI

.NET MAUI for C# Developers
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Gebin George

Publishing Product Manager: Kunal Sawant

Senior Editor: Rounak Kulkarni

Technical Editor: Maran Fernandes

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Alishon Mendonca

Developer Relations Marketing Executive: Sonia Chauhan and Rayyan Khan

Business Development Executive: Samriddhi Murarka

Production reference: 1170323

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83763-169-8

www.packtpub.com

http://www.packtpub.com

To Stacey, Robin, and Rachel. And to Milo, Charlie, Mowgli, Sage, and Simon.

– Jesse Liberty

To all the developers constantly learning and growing; never stop exploring new technologies and
expanding your knowledge!

– Rodrigo Juarez

Foreword

I first met Jesse Liberty nearly 5 years ago. I was a PM with a passion for developer tools, new to the
.NET world, and jumping right into one of the most ever-changing areas – mobile! At the time, we
were still working on .NET MAUI’s predecessor, Xamarin, and I was shadowing some customer
interviews with a colleague to learn the ropes. One of the first interviews we did was with Jesse, for
a feature now known and loved as XAML Hot Reload. I remember my colleague saying “Oh, this
one’s with Jesse – he’s great. He’s been ‘around the block’ with .NET so he knows what he’s talking
about, but don’t worry. He’s really friendly”. For me, these “long-time” .NET developers were the most
intimidating customers – I would Google their names and see their incredible achievements dating
back decades! How was I supposed to ask someone like Jesse meaningful product questions when
he’s been there for the creation of this whole thing and I just started?!

Fortunately, within a few minutes of our call, I could tell how genuinely excited he was to bring
someone new into .NET and show them the ropes. He had a passion (and talent!) for teaching, a bunch
of different experiences to pull from, and a desire to always keep .NET moving forward so it would
continue being the best platform for any developer. Throughout my time in the .NET world, I’ve met
countless amazing community members who have fit this profile (I can happily say I’m mostly not
intimidated by the long-time .NET folks anymore), but Jesse was one of the first, and that’s why, I was
so excited when he told me he was writing this book, .NET MAUI for C# Developers.

When we decided to build .NET MAUI, we wanted to accomplish 2 things: bring mobile into the
first-party, full .NET ecosystem (no more separate runtimes or tools or confusing slides!) and fix a
bunch of the stuff Xamarin developers complained about but couldn’t be addressed with the existing
platform. Jesse was one of those Xamarin developers, and when we shared the idea with him and other
Microsoft MVPs, he was one of the first to share his excitement. When we shipped GA, Jesse started
a blog series Learning .NET MAUI, where he took his readers along with him as he became familiar
with the platform for the first time. Jesse has also regularly discussed .NET MAUI on his podcast, Yet
Another Podcast, from our earliest days to the latest and greatest releases.

Jesse has been an author in .NET and adjacent communities for nearly 2 decades, and there is no one better
suited to get C# developers to build native mobile and desktop apps with .NET MAUI. Even if you’re new
to C#, you will learn a LOT from this book and will enjoy Jesse’s approachable and honest writing. He
takes you through the basics, from getting set up with Visual Studio to building your UI and navigation,
and even consuming RESTful APIs. With one codebase, a computer, and this book in hand, you’re well
on your way to becoming a cross-platform developer with .NET MAUI. I can’t wait to see what you build!

Maddy Montaquila (Leger)

Senior Product Manager, .NET MAUI, Microsoft

Contributors

About the authors
Jesse Liberty specializes in C#, .NET MAUI, and Git. He is a certified Xamarin developer, a Xamarin
MVP, and a Microsoft MVP.

Liberty hosts the popular Yet Another Podcast (jesseliberty.com) and he is the author of more
than a dozen best-selling programming books (http://surl.li/fljbq).

Jesse was a technical evangelist for Microsoft, a distinguished software engineer at AT&T, a software
architect for PBS, and vice president of information technology at Citibank, and he was on the teaching
staff at Brandeis University.

He is a recognized expert and has spoken at conferences worldwide.

To contact Jesse, see his Find Me page at https://jesseliberty.com/find-me.

Rodrigo Juarez is a full stack and Xamarin/MAUI developer. He has over 25 years of experience in a
wide variety of projects in the development of applications for web, desktop, and mobile using Microsoft
technologies in areas such as management, services, insurance, pharmacy, health, and banking.

http://jesseliberty.com
http://surl.li/fljbq
https://jesseliberty.com/find-me

About the reviewers
Daniel Brevitt is a seasoned software developer with over 15 years of experience in .NET development.
With a focus on mobile app development, Daniel has worked extensively with Xamarin and is passionate
about creating high-quality cross-platform mobile solutions and helping others learn to do the same.

Tidjani Belmansour is a cloud solutions architect and the director of the Azure Center of Excellence
for Cofomo, a leader in IT consulting services in Canada. Tidjani is also a Microsoft Azure MVP since
2019 and the co-organizer of the Azure Quebec Community.

He holds a bachelor’s degree in computer science and a Ph.D. in industrial engineering. He started
his computer journey in 1988 and has held various positions including that of a developer, software
architect, and cloud architect.

Tidjani is also an international speaker and a book reviewer and has authored two of the articles in
“97 Things Every Cloud Engineer Should Know” (O’Reilly editions).

You can find Tidjani on Twitter (@tidjani_b) and LinkedIn (https://www.linkedin.com/
in/tidjani-belmansour).

https://www.linkedin.com/in/tidjani-belmansour
https://www.linkedin.com/in/tidjani-belmansour

Preface xiii

Part 1 – Getting Started

1
Assembling Your Tools and Creating Your First App 3

Technical requirements 4
Getting and installing Visual Studio 5
Installing Visual Studio 5

Git 7
Opening Visual Studio 8

Quick tour of the app 10

Summary 12
Quiz 12
You try it 12

2
What We Will Build: Forget Me Not 13

Technical requirements 13
What is Forget Me Not? 13
Buddies 15
Inviting Buddies 15

Other pages 17
What you’ll learn 19
Summary 20

3
XAML and Fluent C# 21

Technical requirements 22
Understanding the structure of XAML 22

The code-behind file 23

Exploring the layout options 23

Table of Contents

Table of Contentsviii

VerticalStackLayout 24
Image 26
Label 26
Code-behind and event handlers 29

If you can do it in XAML,
you can do it in C# 31
C# versus Fluent C# 35

Summary 36
Quiz 37
Try it out 37

4
MVVM and Controls 39

Technical requirements 40
Setting up for MVVM 40
Creating folders 40
The MVVM Community Toolkit 41
Exploring views 42
Forget Me Not labels 43

Data binding 46
Creating a public property 47
Setting up BindingContext 48
Assigning values to the View Model class
properties 49
Implementing Binding 49
ViewModel versus code-behind 50

Views 51
Images 52
Button properties 56
ImageButton 57
TapGestureRecognizer 58

Entering text 60

Behaviors 72
Popups and dialogs 75
Presenting the user with a choice 77
ActionSheet 79
Displaying a prompt 80
Toast 81
Snackbar 83
BoxView 85
Frame 87

Brushes 88
The Solid brush 88
LinearGradientBrush 89
RadialGradientBrush 90

Summary 92
Quiz 93
You try it 93

5
Advanced Controls 95

Technical requirements 95
Keeping the user informed
of activity 96

ActivityIndicator 96
ProgressBar 98

Table of Contents ix

Moving event handling to
ViewModel 101
Breaking it down 103

Sending and receiving messages 104
Getting started with
WeakReferenceMessenger 105

Creating the page in C# 107
Displaying collections 111
Overriding OnAppearing 114
Understanding how the service works 115

Displaying the collection of
Preference objects 116
The code-behind 119

Styles 121
Explicit versus implicit styles 122
Style inheritance or BasedOn 123

Summary 125
Quiz 125
You try it 125

6
Layout 127

Technical requirements 127
Stack layouts 128
Grid 129
Sizing rows and columns 134
Named rows and columns 137

ScrollView 140
FlexLayout 141
Summary 144
Quiz 145
You try it 145

Part 2 – Intermediate Topics

7
Understanding Navigation 149

Technical requirements 149
Exploring the TabBar 149
Creating the About and
Buddies pages 151
Assembling the About page 152

Shell navigation 159
Routing 160

Passing values from page to page 161
Passing values with the url (?) syntax 161
Passing values with a dictionary 166

Summary 169
Quiz 169
You try it 169

Table of Contentsx

8
Storing and Retrieving Data 171

Technical requirements 171
Storing user preferences 171
UserPreferencesViewModel 175
Navigating to UserPreferences 175
Retrieving the preferences 176

Storing to a database
on your device 178
Installing SQLite 178

Getting started with SQLite 179
The Database class 180
CRUD 181

Local or remote? 182
Summary 183
Quiz 183
You try it 183

9
Unit Testing 185

Technical requirements 186
Why create unit tests? 186
Vote early and vote often 187

Creating unit tests 187
Setting the project reference 189
Creating the first unit test 189
Tweaking the project file 190
Running the test 190

ForgetMeNotDemo unit tests 191
Implementing the triple-A pattern 191
What’s wrong with this test? 194

Mocks 194
Dependency injection 195

Creating an interface 195
Modifying the class constructor 197
The .NET MAUI IoC container 198
Registering your interfaces, services,
and ViewModels 199

Using the NSubstitute package 200
Adding NSubstitute to your test fixture 202
Testing corner cases 204

Summary 205
Quiz 205
You try it 205

Table of Contents xi

Part 3 – Advanced Topics

10
Consuming REST Services 209

Technical requirements 209
Using REST Services 210
The Forget Me Not API architecture 210
Creating the projects 211
Fleshing out the models 211

Examining the API domain objects 214
Reviewing DTOs 217
Other DTO files 218

Understanding ForgetMeNot.
APIClient 220
Authentication 221
Profile 223
The Buddy region 224

Using the API 224
Creating the account 225
Modifying the Login page 225
Updating LoginPage 226
The AccountService class 229
Updating LoginViewModel 230
Using AccountService to log in 234
Setting up the Create Account page 235
Setting up CreateAccountViewModel 237
Handling the SignUp command 239
What to do if it won’t build 241

Summary 244
Quiz 244
You try it 244

11
Exploring Advanced Topics 245

Technical requirements 245
Selecting data templates at runtime 245
Declaring ItemTemplates as resources 248
The DataTemplate selection 249
The DataTemplateSelector class 251
Adding the template selector
to the page’s resources 252
Adding DataTemplateSelector to
CollectionView 253

Managing Visual State 254

Defining the common visual states 254
A button VisualState example 254

Utilizing Community
Toolkit behaviors 256
Taking action with triggers 259
Summary 261
Quiz 262
You try it 262

Table of Contentsxii

Assessments 263

Chapter 1, Assembling Your Tools
and Creating Your First App 263
Chapter 3, XAML and Fluent C# 263
Chapter 4, MVVM and Controls 263
Chapter 5, Advanced Controls 264
Chapter 6, Layout 264
Chapter 7, Understanding
Navigation 264

Chapter 8, Storing and
Retrieving Data 265
Chapter 9, Unit Testing 265
Chapter 10, Consuming
REST Services 265
Chapter 11, Exploring
Advanced Topics 265

Index 267

Other Books You May Enjoy 274

Preface

.NET MAUI is Microsoft’s cross-platform development framework for building iOS, Android,
Windows, Mac, and Tizen apps. With .NET MAUI, you build the UI and the logic once and emit
native code for each platform. It is the successor technology to Xamarin.Forms and adds powerful
new features and capabilities.

The .NET MAUI Community Toolkit supplements .NET MAUI to provide source code generators,
behaviors, and much more, greatly enhancing and extending .NET MAUI as the premier development
framework for building applications.

Who this book is for
This book is targeted at anyone who has a fundamental understanding of C# and wishes to write
cross-platform applications. If you are not a C# programmer but have experience with another object-
oriented program, you should have no trouble following the examples.

What this book covers
Chapter 1, Assembling Your Tools and Creating Your First App, shows you how to download the (free)
software you need and will teach you how to create an “out-of-the-box” app to see what is provided
to get you started.

Chapter 2, What We Will Build – Forget Me Not, introduces our non-trivial, real-world app – “Forget
Me Not.” We’ll go over what it does and then we’ll walk through the various pages to see the entire
completed project that we’ll be working on for the rest of the book.

Chapter 3, XAML and Fluent C#, explores the markup language used to create the UI of a .NET MAUI
app. We’ll also examine how you can write the UI in C# if you prefer.

Chapter 4, MVVM and Controls, examines the most popular and powerful architecture for building
.NET MAUI apps – Model-View-ViewModel (MVVM). We’ll also take a look at many of the core
controls used to create the UI.

Chapter 5, Advanced Controls, builds on the previous chapter, adding more advanced controls to create
a more powerful and robust UI.

Chapter 6, Layout, focuses on the techniques to arrange the controls on your view and create a
professional appearance.

Prefacexiv

Chapter 7, Understanding Navigation, shows how you move from one page to another and how you
can pass along data as you navigate. No serious .NET MAUI app has only one page.

Chapter 8, Storing and Retrieving Data, explores the two ways to persist data. The first is useful for storing
a user’s preferences for the program. The second involves building a relational database using SQLite.

Chapter 9, Unit Testing, shows how to use xUnit and the mocking tool nSubstitute to create powerful
unit tests. No .NET MAUI program is complete without an extensive suite of unit tests to ensure a
program is working correctly.

Chapter 10, Consuming REST Services, explores how to validate a user’s login and obtain their data
from Azure. Many modern apps get their data from the cloud, and the most popular way to do so is
by using REST services.

Chapter 11, Exploring Advanced Topics, moves into expert techniques, such as managing visual states,
using behaviors and triggers, and selecting data templates at run time.

To get the most out of this book
You will want to have at least fundamental experience with an object-oriented language, especially
C#. You do not need to know the latest advances in C#, and the example code is explained in depth.
You will want the latest version of Visual Studio; the Community Edition is free and will work fine.
If you are on a Mac (or Linux), the examples should work fine with Visual Studio for Mac, although
they were not developed on a Mac.

Software/hardware covered in the book Operating system requirements
.NET MAUI Windows, macOS, or Linux
.NET MAUI Community Toolkit Windows, macOS, or Linux

Install Visual Studio (or Visual Studio for Mac) from https://visualstudio.com. Do not
mistake it for Visual Studio Code, which is a different editor.

If you are using the digital version of this book, we advise you to type the code yourself or access it
from the book’s GitHub repository (a link is available in the next section). Doing so will help you
avoid any potential errors related to the copying and pasting of code.

Please note that there is only one repository, with branches for each chapter. The branch represents
the code for the completed chapter. If you wish to follow along, start with the branch from the
previous chapter.

https://visualstudio.com

Preface xv

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/.NET-MAUI-for-C-Sharp-Developers. If there’s an update to the
code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/z75ye.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

<VerticalStackLayout x:Name="LoginStackLayout">

 <HorizontalStackLayout WidthRequest="300">

 <Label

 Style="{StaticResource LargeLabel}"

 Text="User Name" />

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

<Entry

 HorizontalOptions="End"

 Placeholder="User Name"

 Text="{Binding Name}"

 WidthRequest="150" />

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “To get started, install the latest version
of the sqlite-net-pcl NuGet package, as shown in Figure 8.2.”

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexvi

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read .Net MAUI for C# Developers, we’d love to hear your thoughts! Please click here to
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1837631697
https://packt.link/r/1837631697

Preface xvii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837631698

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837631698

Part 1 –
Getting Started

In this part, we will get you set up with the required software and examine the project we’re going to
build. We’ll then go on to examine XAML – the markup language for .NET MAUI. Next, we’ll take
a deep look at MVVM, the architecture for it and most .NET MAUI apps, and we’ll undertake an
extensive review of the controls and structures used to build the user interface.

This part has the following chapters:

• Chapter 1, Assembling Your Tools and Creating Your First App

• Chapter 2, What We Will Build – Forget Me Not

• Chapter 3, XAML and Fluent C#

• Chapter 4, MVVM and Controls

• Chapter 5, Advanced Controls

• Chapter 6, Layout

1
Assembling Your Tools and

Creating Your First App

In this book, we’ll be building iOS, Android, Windows, and Mac applications using one common code
base. Everything you need is free unless you want to build for iOS and Mac, in which case you need
a Mac computer. I’m going to assume you have a Mac, but if you don’t, very little will change; you’ll
just be more limited in the platforms you can deploy to.

An alternative if you don’t have a Mac
James Montemagno of Microsoft has a workaround video if you don’t have a Mac. There are
severe limitations, but needs must. My personal recommendation is that if you don’t have a
Mac, do your development with Android. Here’s the video: https://www.youtube.com/
watch?v=snQ1C6Cppr8.

In the coming chapters, you will see a non-trivial .NET MAUI project that we will build incrementally.
Along the way, we will examine how to create the User Interface (UI) with XAML (a markup language)
and C#.

MAUI Blazor
An alternative, not covered in this book, is to use MAUI Blazor, which allows you to create a
cross-platform application using your Blazor skills. You can learn more about MAUI Blazor
at https://bit.ly/MauiBlazor.

In the first part of the book, we will discuss the principal architecture for .NET MAUI: Model-View-
ViewModel (MVVM). We will then dive into the diverse controls available for creating powerful UIs
followed by a chapter dedicated to techniques for laying out these controls on the page.

https://www.youtube.com/watch?v=snQ1C6Cppr8
https://www.youtube.com/watch?v=snQ1C6Cppr8
https://bit.ly/MauiBlazor

Assembling Your Tools and Creating Your First App4

We will move on to discussing the Shell navigation architecture and how you move from page to page,
passing along data as needed. We’ll look at persisting data and then stop to discuss the all-important
topic of testing your code.

While .NET MAUI provides a cornucopia of controls, there are times when you need something that
Microsoft did not anticipate, so we’ll dedicate a chapter to creating custom controls. (Once you have
a custom control, you can use it in any subsequent .NET MAUI projects you work on.)

In the final section of the book, we’ll look at consuming a REST API and creating a web frontend to
the same REST API we used for the mobile and desktop applications, this time using Blazor.

In this chapter, you will learn how to get and install Visual Studio for writing the program and Git for
managing and safeguarding your code. Each chapter’s final code will be in a dedicated branch, with
the final product in the main branch.

In this chapter, you will find the following:

• A description of Visual Studio, along with installation instructions

• A description of Git, along with installation instructions

• A description of how to create your first, out-of-the-box program, and a tour of the files in
that project

App versus application
Since we will be building for iOS and Android (which refer to apps) and also Windows and
Mac (which refer to applications), I’ll be using the two terms interchangeably.

Let’s get the software you need, and then set up Visual Studio.

Technical requirements
To follow along with this chapter and book, you will need to obtain and install Visual Studio and
Git. To do this, you will need a Windows machine (Windows 10 or later). In addition, if you want
to write for iOS and/or the Mac, you will need an Apple computer on the same network as your
Windows computer.

All of the code in this book is available at https://github.com/PacktPublishing/.
NET-MAUI-for-C-Sharp-Developers. The code for each chapter will have its own branch
and that will be noted in the Technical requirements section of the given chapter. Note that there is
no code for Chapters 1 and 2.

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers

Getting and installing Visual Studio 5

A word on Visual Studio Mac
It should be possible to follow along with this book using Visual Studio Mac, but some of the
menus and certainly many of the keystrokes will be different. In my experience, Visual Studio
Mac follows Visual Studio with a short delay in the implementation of new features. If all you
have is a Mac, by all means do your development there. If you have both, or just a Windows
machine, you’ll find it a bit easier to follow along with Visual Studio (for Windows).

While I’m at it, I’ll mention that I’m using Windows 11 on a desktop computer with 64 GB of
memory and a 1 TB disk. None of that is required for this book. You will want at least 16 GB
of memory for .NET MAUI programming.

Getting and installing Visual Studio
The first and foremost software you’ll need for this book is the latest version of Visual Studio from
Microsoft. You can, of course, write .NET and .NET MAUI apps with any number of editors and/or
Integrated Development Environments (IDEs), but Visual Studio is what I’ll be using in this book
because it is, I believe, the most powerful IDE for the job. All the examples will use Visual Studio and
your job will be much easier if you do so as well, at least while working your way through this book.

To get Visual Studio, open a browser and navigate to https://visualstudio.microsoft.
com/. Microsoft changes the appearance of this page pretty frequently, but you should see the
opportunity to download Visual Studio, Visual Studio for Mac, and Visual Studio Code.

Installing Visual Studio

On the website, click on Download Visual Studio. You can download whichever version you prefer.
Note that the Community Version is free. If you already have Visual Studio 2022 or later installed,
you need not add another copy, though they will run side by side assuming you have enough disk
space. For installation, follow these steps:

1. Once Visual Studio has been downloaded, click on the executable to begin the installation
process. The installer will update and you will be presented with the Workloads dialog box as
shown in Figure 1.1.

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

Assembling Your Tools and Creating Your First App6

Figure 1.1 – Visual Studio Workloads

2. Visual Studio lets you pick and choose what workloads you’ll need so that it is no bigger than
necessary. Be sure to check Azure development, .NET Multi-platform App UI development,
and .NET desktop development as shown in Figure 1.2.

Figure 1.2 – Selecting workloads

3. Next, click Install and get yourself a cup of coffee; this may take a few minutes. You should see
progress in the Visual Studio installer, as in Figure 1.3.

Git 7

Figure 1.3 – Visual Studio Installer

When the installation is complete, Visual Studio will open.

A word on ReSharper
ReSharper is a very powerful tool that greatly enhances productivity for .NET developers. It
is not free, however, and while I use it every day in my own work, we’ll not be using it in this
book. Since we can do everything in Visual Studio without ReSharper (though it may take a
few more keystrokes), no harm done.

With Visual Studio installed, the only remaining issue is storing, safeguarding, and retrieving the
source code. For that, we’ll use Git – the industry standard. The final application will be in the main
branch, with each chapter’s code being in a dedicated branch.

Git
The next software you need is Git. To download Git, navigate to git-scm.com/download and
choose your operating system. I’ll choose Windows. Next, I’ll choose 64-bit Git for Windows Setup
under Standalone Installer. This will cause an immediate download. Double-click on the downloaded
file to install it. If you already have Git installed, this will update it.

You do not need any of the Git GUIs, as we’ll be interacting with Git through Visual Studio.

When the installation is complete, you’ll see the following options: Launch Git Bash and View the
release notes. Uncheck both and click on Finish.

Let’s continue with our exploration of Visual Studio.

https://git-scm.com/download

Assembling Your Tools and Creating Your First App8

Opening Visual Studio
You’ll need to obtain the rest of the software from within Visual Studio, so let’s open that next. If the
installation went as expected, the launch dialog will be on the screen:

1. Click on Create a new project. (If you’ve been brought directly into Visual Studio, bypassing
the launch dialog, just click File | New Project.)

2. It is now time to pick the template we want. Templates make getting started easier. In the Search
for Templates box, enter MAUI. A few choices will be presented; you want .NET MAUI App,
as shown in the following figure:

Figure 1.4 – Creating a new project

Opening Visual Studio 9

3. Click Next. Here we give our project a name. The first project we’re going to create is not
ForgetMeNotDemo (the project that you will be building as part of this book), but rather a
sample project just to take a quick look around. Name it something creative such as SampleApp
and place it in a location on your disk where you will be able to easily find it later. Before clicking
Next, make sure your dialog looks similar to Figure 1.5.

Figure 1.5 – Naming your project

4. Click Next and use the dropdown to choose the latest version of .NET. At the time of writing,
that is .NET 7. Finally, click on Create.

Note
Because Microsoft is always updating Visual Studio, your screens or steps may vary slightly.
Don’t let that worry you. The version I am using is Visual Studio 2022, version 17.4.3. As long
as yours is the same or later, you’re all set. But just to be sure, let’s launch the sample app (F5).
You should see something that looks like Figure 1.6.

Assembling Your Tools and Creating Your First App10

Figure 1.6 – Running your app

5. On the screen that you see in the preceding figure, click the button a couple times to make
sure it is working.

Generally speaking, I will not be walking through how to do simple things on Visual Studio. The
assumption is that you are a C# programmer and so you are probably familiar with Visual Studio.
On the other hand, on the off chance that you are not, I’ll describe how to do anything that is not
immediately intuitive. Next, let’s explore the out-of-the-box app in a bit more detail.

Quick tour of the app

Let’s take a quick tour to see what comes with an out-of-the-box app. First, stop the app by pressing
the red square button in the menu bar. Make sure Solution Explorer is open (if not, go to View |
Solution Explorer). Notice that there are three folders and four files, as shown in Figure 1.7:

Opening Visual Studio 11

Figure 1.7 – Three folders and four files

The files with the .xaml extension are XAML files – that is, they use the XAML markup language. I
will not assume you know XAML, and in fact, throughout this book, I will provide layout and other
code in both XAML and fluent C#, but that is for the next chapter.

Right now, let’s open this out of the box project.

This is the entry point for the program. As you can see, it is a static class with a static method that is
responsible for creating the app itself. We’ll come back to this file in subsequent chapters.

When you open MainPage.xaml, you will see a layout with controls for the page we just looked at
(with the goofy MAUI guy waving and counting our button clicks). Again, we’re going to come back
to layout and controls, but scan this page and see whether you can guess what is going on. You may
find that it isn’t as alien as it seemed at first glance. You can, if you are so motivated, learn quite a bit
about XAML just by reading this page carefully.

Click on the triangle next to MainPage.xaml to reveal the code-behind file. Code-behind files
are always named <PageName>.xaml.cs – in this case, MainPage.xaml.cs. These files are
always in C#. Here, we see the constructor and then an event handler. When the user clicks on the
button, this event handler (OnCounterClicked) is called.

Assembling Your Tools and Creating Your First App12

By flipping back and forth between the XAML and the code-behind file, you may be able to figure
out how the button works and how the count of clicks is displayed. No need to do this, however, as
we’ll be covering all these details in upcoming chapters.

At the moment, most of the other files are nearly empty and not worth the time to examine.

Just for fun, expand the Resources folder. You’ll see that there are folders for the application icon,
fonts, images, and so forth. All the resources for all of the platforms are kept here.

Then there is a Platforms folder, which contains whatever is needed on a per-platform basis. For
example, iOS applications require an info.plist file, which you’ll find in Platforms | iOS.

There is much more to see in a .NET MAUI application, but we will tackle each part as we build
Forget Me Not™.

Summary
In this chapter, you saw how to find, download, and install Visual Studio and Git, the two tools you’ll
need throughout the book. You also created your first .NET MAUI app, and we walked through some
of its files, albeit quickly.

In the next chapter, we’ll take an extended look at XAML: the markup language for page layout and
the creation of controls. We’ll then look at creating layouts and controls in C# and a new library that
allows us to use Fluent C# to create layouts and controls.

Quiz
Test your understanding of this chapter by answering the following questions:

1. How do you create a new project?

2. How do you find Solution Explorer if it is not visible?

3. What does the .xaml extension indicate?

4. What do we call the .cs file associated with an .xaml file?

5. Where is the entry point for a .NET MAUI app?

You try it
Most chapters will have a You try it section, in which you will be encouraged to take on a task related
to what was covered in the chapter. Alas, this chapter does not have a task for you.

2
What We Will Build:

Forget Me Not

During the course of this book, we will build the core of a complete non-trivial application called
Forget Me Not. It is easiest to get somewhere when you know where you are going, so this chapter
will review the finished product from a user's point of view. That is, in this chapter, we’ll review the
functionality, and in subsequent chapters, we’ll dive into the implementation.

Technical requirements
This chapter does not review code (although all the subsequent ones will) and so there are no particular
technical requirements for this chapter.

What is Forget Me Not?
Forget Me Not™ is an application designed to help you buy presents for your buddies and to allow
them to easily buy presents for you.

The core of Forget Me Not is your list of preferences, as shown in Figure 2.1:

What We Will Build: Forget Me Not14

Figure 2.1 – Preferences

You fill in each field with whatever and however much information you like. What’s more, you can
change the prompt on the left and then fill in your new preference on the right! This gives you the
maximum flexibility in specifying your preferences and your taste in various potential present categories.

The power of this is seen once you have Buddies.

Buddies 15

Buddies
If a friend or relative has the app, you can invite them to be your Buddy. Once your relationship is
established in the cloud-based database, you can see your Buddy’s preferences, and they can see yours
(though you cannot edit each other’s preferences).

Inviting Buddies

To invite a Buddy, you navigate, using the tabs, to the Buddy list and tap on Add Buddy, which will
bring up the Share page, as shown in Figure 2.2.

Figure 2.2 – The Share page

What We Will Build: Forget Me Not16

You can now use any of the platform-specific share options, including copying the invitation. Let’s
send it as an email message, as shown in Figure 2.3.

Figure 2.3 – Email invitation

The text of the invitation is canned and automatically provided, but the user can edit it at will. The magic
link will be provided by the server for one-time access to the login page, to reciprocate the connection
to the inviting Buddy. Note that this will not be covered in this book as this work is done by the API.

Those are the key pages, but there are a couple of others.

Other pages 17

Other pages
In addition to these primary pages, there is an About page, as shown in the following figure:

Figure 2.4 – About page

What We Will Build: Forget Me Not18

Clicking on Preferences here brings up the User Preferences page, as shown in Figure 2.5.

Figure 2.5 – User Preferences

There isn’t that much more to the app. While there are only half a dozen pages, those pages do a lot
and will provide fertile ground for learning the basics and then going way beyond the essentials to
cover intermediate and then advanced topics.

What you’ll learn
Even just these few pages will give us an opportunity to discuss virtually every aspect of .NET MAUI,
including the following:

• Shell navigation

• Layout

• XAML

• Controls

• Displaying collections

• The MVVM pattern

• Data binding

• Persisting data

• Consuming REST services

• Advanced topics in managing the UI

Summary 19

• Use of the Community Toolkit

• Behaviors

• Triggers

By the time you’re finished reading this book, you will have two things: a working application and
expertise in building .NET MAUI apps!

Summary
In the coming chapters, we’ll be building the Forget Me Not app as described in this chapter. The
implementation of this seemingly simple app will allow us to explore core aspects of .NET MAUI and
then move on to intermediate and ultimately advanced topics.

As mentioned in Chapter 1, each chapter (except this one) will end with a quiz to ensure that you
are comfortable with what was covered and a You try it section where you will be encouraged to put
your new skills to the test.

I can’t wait to get started. Let’s begin with examining the markup language (XAML) and using C# for
the logic of our program.

3
XAML and Fluent C#

In this chapter, we will look at how .NET MAUI applications are created using a markup language for
the user interface and C# for all the logic.

.NET MAUI programs are (typically) written in two languages. One is C#, which is used for all the
logic, and the other is XAML (pronounced zamel, to rhyme with camel), which is used for the layout
and creation of controls. As you’ll see, the use of XAML is optional. You can create your layout and
controls all in C#, but most people don’t. However, that may be changing (more and more of the
Microsoft Learn documentation shows both ways).

When might you choose to use C#?
There are a few reasons to use C# instead of XAML, not least that you know C# and don’t want to
bother learning XAML. If you do this, however, you’ll find it difficult to read other people’s code,
as most existing Xamarin.Forms (the precursor to .NET MAUI) apps are written with XAML.

Using C# can assist in those situations where the design should change based on some condition
(such as the type of data you get at runtime). But there are other ways to handle that with XAML
as explained in Chapter 11, Advanced Topics.

This book will show C# for some pages, but the focus will be on XAML.

All of the Microsoft documentation is at least in XAML; only some is in C# and some is in Fluent C#
(a topic we’ll take up later in this chapter). Nearly all Xamarin.Forms applications and samples use
XAML and, for that reason alone, it is worth learning. More important, XAML is a highly expressive
declarative markup language that makes creating layouts and controls if not easy, then at least manageable.

XAML and Fluent C#22

This chapter will cover the following topics:

• Understanding the structure of XAML

• Code-behind and event handlers

• Exploring the layout options

• Creating the UI in C#

Technical requirements
To follow along with this chapter, you will need the following:

• Visual Studio version 17.5 or later (it’s best to update to the latest version)

• The source code covered in this chapter can be found in the GitHub repository: https://
github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/
tree/XAMLAndCSharp

Understanding the structure of XAML
XAML files have the .xaml extension, for example, MainPage.xaml, in the out-of-the-box program
as shown in Chapter 1. Let’s examine this file to explore XAML for its layout and declaration of controls.

Just an overview
This chapter will only scratch the surface of creating XAML layout and controls. Chapter 4 and
Chapter 5 will cover the details on controls and layouts, respectively.

A .NET MAUI page that is written in XAML will have a name in the format MyName.xaml, and
associated with that page will be a code-behind page (explained shortly) in the format MyName.
xaml.cs.

At the top of the XAML page is a declaration that this file is, in reality, an XML-type file. That declaration
must be at the very top of every .xaml file.

There are different types of pages (also called views). The most common is ContentPage, and here
MainPage is created as ContentPage using this code:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/

 dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ForgetMeNotDemo.View.MainPage">

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/XAMLAndCSharp
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/XAMLAndCSharp
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/XAMLAndCSharp

Exploring the layout options 23

As part of the declaration of ContentPage, we identify two namespaces (xmlns). The first
namespace is unnamed and is for .NET MAUI itself. The second namespace, named x, is for XAML.

Finally, the class that this XAML file is part of is ForgetMeNotDemo.View.MainPage.

The first part (ForgetMeNotDemo.View) is the namespace, and MainPage is the name of the
class. The View part is added to indicate the folder under the project.

Associated with every .xaml page is a code-behind page, as mentioned earlier. It is possible to put
the logic of your program in the code-behind, which is what we will do for this chapter (in the next
chapter, we’ll look at an alternative that is better for testing). In any case, there are a few things that
must go in the code-behind, as you’ll see in the next section.

The code-behind file

Every XAML file has an associated code-behind page whose name is in the format <pagename>.
xaml.cs. Thus, the code-behind for this page is MainPage.xaml.cs.

The code-behind file is typically (and correctly) named after the class (that is, the MainPage class will
be in MainPage.xaml and MainPage.xaml.cs). The namespace is explicitly declared in the file
and should follow the folder structure. Thus, if the namespace is ForgetMeNotDemo/MainPage,
then we’d expect MainPage.cs to have the ForGetMeNotDemo namespace:

namespace ForgetMeNotDemo.View;

public partial class MainPage : ContentPage

Notice that this is a partial class. In .NET MAUI, all UI classes are marked partial. Notice also that
the class indicates that it is ContentPage, which is consistent with what we saw in the XAML.

In addition to defining classes, you can use XAML to create the layout of the page, that is, where
things go in relation to one another. XAML provides a number of layout options as described next.

Exploring the layout options
Returning to MainPage.xaml, the first thing we see below ContentPage is a ScrollView
layout element. This is a layout that essentially says that anything contained in ScrollView can
(surprise!) scroll.

A layout contains other layouts and controls. It does this just as it’s done in XML, which is with opening
and closing tags. Here is the syntax:

<ScrollView>

 // … layouts and controls

</ScrollView>

XAML and Fluent C#24

A page can have only one element. Typically, that element is a layout, and since layouts can contain
other layouts and controls, an entire hierarchy can be created.

The top four elements in MainPage.xaml (out of the box) are as follows:

<ScrollView> [1]

 <VerticalStackLayout [2]

 Spacing="25"

 Padding="30,0"

 VerticalOptions="Center">

 <Image [3]

 Source="dotnet_bot.png"

 SemanticProperties.Description="Cute dot net

 bot waving hi to you!"

 HeightRequest="200"

 HorizontalOptions="Center" />

 <Label [4]

 Text="Hello, World!"

 SemanticProperties.HeadingLevel="Level1"

 FontSize="32"

 HorizontalOptions="Center" />

</ScrollView>

Why is this code different from what is in the repo?
The preceding code is what you get out of the box. In this chapter, we will enhance this code,
and the repo reflects the finished version as of the end of the chapter.

Let’s take this one element at a time. We’ve already discussed the first element, ScrollView, so let’s
start with the next, that is, VerticalStackLayout.

VerticalStackLayout

Inside ScrollView is VerticalStackLayout. As the name implies, this layout holds things
stacked one on top of another. Here, we have defined three properties for VerticalStackLayout:
Spacing, Padding, and VerticalOptions. Now, VerticalStackLayout has dozens of
properties and methods. We will learn more about this in Chapter 5, Layouts.

Exploring the layout options 25

Spacing determines the amount of vertical space there is between each of the contained elements.
Here, Spacing is set to 25 device-independent units (DIPs). Using DIPs means that you can
define the size for one device (phone, Windows, and so on) and have it look as you intend on all other
devices. At least that’s the theory. As a good friend once said, “In theory, theory and practice are the
same. But in practice, they never are.”

The second property is Padding. This is one of the ways you can control the position and alignment
of your controls. The second principal way is with Margins. This tells you the distance from the
nearest other element (or from the edge of the page), whereas Padding tells you the size of the buffer
around the current element, as shown in Figure 3.1:

Figure 3.1 – Padding and Margin

Padding is written in the format left, top, right, bottom. A Padding value of (20,10,5,0) would
have a padding on the left of 20 DIPs, 10 on the top, 5 on the right, and no DIPs on the bottom. If
the top and bottom are the same, they can be combined. The same is true for the right and left. Thus,
as we have here, Padding = "30,0", which means that the left and right will have a padding of
30 but there will be no padding on the top and bottom.

XAML and Fluent C#26

The final property in VerticalStackLayout is VerticalOptions, which indicates where
to place VerticalStackLayout with respect to its container (in this case, ScrollView). The
options for this are based on an enumeration:

• Center

• End

• Fill

• Start

This enumeration is used with a number of different layouts and controls. For now, it is enough to
know that Start means top for vertical layouts and far left for horizontal. Similarly, End means far right
for horizontal and bottom for vertical. We’ll return to these values later in the book.

Image

The third element of the page is an Image element, which in this case has four properties. The first is
the source (where to find the image). The second is called SemanticProperties.Description.
Semantic properties are added to assist those who use screen readers.

You cannot set the height directly (it is read only), but you can set HeightRequest, which we have
done here to 200 DIPs. .NET MAUI will try to provide that height depending on your other settings
on the page and the available space. Finally, we set HorizontalOptions to Center so that we
center the image on the horizontal axis.

Label

Next, we see Label. In this case, it too has four properties. The first is the text to display on the label.
The second is, again, for screen readers, indicating the organizational structure (here the label is at the
top level). The third property is FontSize. There are a couple of ways to set FontSize, as we’ll
see in Chapter 4, but here we are using DIPs. Finally, once again, we set HorizontalOptions
to Center.

If you scroll down the page, you’ll see there is another Label and a Button control (which does
pretty much what you’d guess).

At the bottom, you will see the close for VerticalStackLayout, then the close for ScrollView,
and finally the close for ContentPage itself.

Exploring the layout options 27

The XAML thus provides a highly structured approach to describing the layout. Here is the complete
XAML page:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 x:Class="ForgetMeNotDemo.MainPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <ScrollView>

 <VerticalStackLayout

 Padding="30,0"

 Spacing="25"

 VerticalOptions="Center">

 <Image

 HeightRequest="200"

 HorizontalOptions="Center"

 SemanticProperties.Description="Cute dot

 net bot waving hi to you!"

 Source="dotnet_bot.png" />

 <Label

 FontSize="32"

 HorizontalOptions="Center"

 SemanticProperties.HeadingLevel="Level1"

 Text="Hello, World!" />

 <Label

 FontSize="18"

 HorizontalOptions="Center"

 SemanticProperties.Description="

 Welcome to dot net Multi platform

 App U I"

 SemanticProperties.HeadingLevel="Level2"

 Text="Welcome to .NET Multi-platform

 App UI" />

XAML and Fluent C#28

 <Button

 x:Name="CounterBtn"

 Clicked="OnCounterClicked"

 HorizontalOptions="Center"

 SemanticProperties.Hint="Counts the number

 of times you click"

 Text="Click me" />

 </VerticalStackLayout>

 </ScrollView>

</ContentPage>

This page opens by declaring ContentPage (the most common type of page) and defines the
namespace and name of the page (which will be reflected in the code-behind as well). It then declares two
standard namespaces (using xmlns), the first for .NET MAUI and the second for the XAML markup.

We see ScrollView, and inside of that, we see VerticalStackLayout, which is set to use
padding and spacing and to be centered vertically. We’ll review these properties as we go along.

VerticalStackout contains four controls: an image, two labels, and a button. Each of these
controls has its own properties. You do not have to be concerned about these properties now; they
are explained later. The takeaway here is that layouts can contain layouts and controls. They stack like
Ukrainian dolls, one within the other (though controls do not contain controls).

Notes
Each ContentPage can have only one layout, but that layout can contain other layouts (as
we see here), and so that is not a troublesome problem.

Also, note that due to the size restriction of the printed page, some text will wrap to the next line.

You can even do this in Visual Studio by going to Tools | Options | C# | General and checking
the box for Word wrap. If you do this, I recommend also checking Show visual glyphs for word
wrap, which makes reading the code easier. While you are there, you may want to check Line
numbers, which can come in very handy, especially when tracking down compile errors. These
options are shown in Figure 3.2.

Exploring the layout options 29

Figure 3.2 – Setting Word wrap and Line numbers

Now, when your line of code is too wide to display, it will wrap and you’ll see a small arrow on the
right side indicating that the line has continued, as shown in Figure 3.3.

Figure 3.3 – Visual Studio word wrap

When something happens such as the user clicking a button, an event is raised. The event is handled
in the code-behind, which we’ll review next.

Events versus commands
Starting in the next chapter, we will stop working with events and switch to commands.
Commands are handled in the ViewModel, which makes them easier to test. For now, for
convenience, we’ll handle events and we’ll do so in the code-behind.

Code-behind and event handlers

We see in the Button control listed next that there is a Clicked property that points to a
OnCounterClicked method:

<Button

 x:Name="CounterBtn"

 Clicked="OnCounterClicked"

 HorizontalOptions="Center"

XAML and Fluent C#30

 SemanticProperties.Hint="Counts the number of times you

 click"

 Text="Click me" />

This method (onCounterClicked) is found in the code-behind file, MainPage.xaml.cs. All
event handlers take two parameters: an object that is the element that raised the event (called the
sender), and an object of type EventArgs (or a class derived from EventArgs). By convention,
the EventArgs parameter is named e.

In our case (and most cases), we don’t care about the sender and the simple EventArgs (as used
here) is empty and serves only as a base class for derived classes that provide additional information to
the event handler (thus you might have a type derived from EventArgs that provides information
that the event handler needs):

private void OnCounterClicked(object sender, EventArgs e)

{

 count++;

 if (count == 1)

 CounterBtn.Text = $"Clicked {count} time";

 else

 CounterBtn.Text = $"Clicked {count} times";

 SemanticScreenReader.Announce(CounterBtn.Text);

}

The event handler name matches the event handler identified in the XAML.

<Button

 Clicked="OnCounterClicked"

This handler’s job is only to update the text on the button each time the button is clicked. Finally, it uses
the SemanticScreenReader Announce method to show that text, again for screen readers:

The count instance field is declared at the top of the class:

public partial class MainPage : ContentPage

{

If you can do it in XAML, you can do it in C# 31

 private int count = 0;

 public MainPage()

 {

 InitializeComponent();

 }

InitializeComponent
Notice that the constructor calls InitializeComponent. This will be true in the code-
behind file of every XAML file. It is the job of InitializeComponent to initialize all the
elements of the page.

When we get to Chapter 4, you’ll see that we try to minimize the contents of the code-behind file,
principally to facilitate the creation of unit tests. At that point, we’ll substitute commands for our
events, but let’s hold off on that for now.

While nearly all the Microsoft documentation and all the existing sample code uses XAML for markup,
it is possible to create layouts and views in C#. In fact, in recent years, more and more of the Microsoft
documentation shows both.

.NET MAUI Community Toolkit
This section requires the .NET MAUI Community Toolkit that you added as a NuGet package
in the previous chapter. The Community Toolkit is actually part of a set of toolkits that are open
source projects and supplement what is in the release version of .NET MAUI. They are created
by community members who work closely with Microsoft developers. It is fair to assume that
many of the Community Toolkit features will migrate into .NET MAUI properly over time. I
would strongly urge you to use these toolkits, and this book does so.

If you can do it in XAML, you can do it in C#
Anything that can be declared in XAML can be declared in C#. Containment is managed by using the
children property of an object. Event handlers must be registered on an instance of the control.
That is, an event handler would be registered for a particular button, as you’ll see in this example.

XAML and Fluent C#32

Here is the code we wrote in XAML converted to C#:

using CommunityToolkit.Maui.Markup; [1]

namespace ForgetMeNotDemo;

class MainPageCS : ContentPage

{

 private readonly Button counterBtn = new Button [2]

 {

 Text = "Click Me",

 HorizontalOptions = LayoutOptions.Center,

 }.SemanticHint("Counts the number of times you click");

 public MainPageCS()

 {

 counterBtn.Clicked += OnCounterClicked; [3]

 Content = new VerticalStackLayout [4]

 {

 Spacing = 30,

 Padding = new Thickness(30, 0),

 VerticalOptions = LayoutOptions.Center,

 Children = [5]

 {

 new Image()

 {

 Source = "dotnet_bot.png",

 HeightRequest = 200,

 HorizontalOptions =

 LayoutOptions.Center,

 }.SemanticDescription("Cute dot net bot

 waving hi to you!"), [6]

 new Label()

 {

If you can do it in XAML, you can do it in C# 33

 Text="Hello, World",

 FontSize=32,

 HorizontalOptions =

 LayoutOptions.Center,

 }.SemanticHeadingLevel

 (SemanticHeadingLevel.Level1),

 new Label()

 {

 Text = "Welcome to .NET Multi-

 platform App UI",

 FontSize = 18,

 HorizontalOptions =

 LayoutOptions.Center,

 }.SemanticHeadingLevel

 (SemanticHeadingLevel.Level2)

 .SemanticDescription(

 "Welcome to dot net Multi

 platform App UI"),

 counterBtn, [7]

 }

 };

 }

 private int count = 0;

 private void OnCounterClicked(object sender, EventArgs e)

 [8]

 {

 count++;

 if (count == 1)

 counterBtn.Text = $"Clicked {count} time";

 else

 counterBtn.Text = $"Clicked {count} times";

XAML and Fluent C#34

 SemanticScreenReader.Announce(counterBtn.Text);

 }

}

Let’s quickly take a look at hooking up this new MainPage. To test this C# version, set the
ShellContent element in AppShell.xaml to point to your new page like this:

<ShellContent

 Title="Home"

 ContentTemplate="{DataTemplate local:MainPageCS}"

 Route="MainPageCS" />

Coming back to the XAML converted to C# code, let’s break it down for a better understanding. The
numbers refer to the numbers in square brackets in the code:

1. We begin by adding a using statement for CommunityToolkit. We need this for the
semantic hints, which are used by screen readers for people with limited or no eyesight. While
a finished project should have these for every control, we won’t be using them in this book to
save space and confusion.

2. We want to add a button, and that button will need an event handler (for the click event). In
this example, the event handler for the Clicked event is at the bottom of the file. To add an
event handler to our button, we must first define Button. We do this outside of the constructor
and we set its properties [2].

3. At the very beginning of the constructor, we assign the event handler method to the Clicked
event. As noted, that event handler method is at the bottom of the file, though of course it could
be (and perhaps should be) in its own file [3].

4. We are now ready to create VerticalStackLayout and all the elements contained within
the stack layout [4].

5. These elements will be in the stack layout’s Children collection [5].

6. Notice that the semantic description is attached to the image using a fluent syntax [6].

7. After all the other elements, we are ready to insert our button into the stack layout’s Children
collection [7].

8. We’ve put the event handler for the button at the bottom of this file, though you certainly could
move it to a different file, probably in a different folder. If you do so, however, remember to
add a using statement for that namespace [8].

If you can do it in XAML, you can do it in C# 35

A note on comments
There is a raging controversy in the industry about the use of comments in C# code. I take
a rather extreme position: code should be almost completely self-explanatory. That is, if you
use appropriate and descriptive names for variables, fields, methods, and so on, no comments
should be needed. I’m not a fanatic about this; if the code is sufficiently complex, a comment
here and there can be a big help, but comments rust and should be used sparingly. Thus, you
will find few comments in the code, though we will walk through the code in some detail in
the paragraphs that follow each listing.

A recent addition to our tool set is the ability to use Fluent C#, which can make your C# code tighter
and yet easier to read.

C# versus Fluent C#

In addition to using C# to create your pages, there is a new (as of Winter 2022) Community Toolkit
for Fluent C#. This does not change the basic approach but can make creating C# pages cleaner and
easier to understand.

To use this, you’ll need to add the CommunityToolkit.Maui.Markup NuGet package. Refer
to the following figure:

Figure 3.4 – Getting the markup package from NuGet

The project is open source and can be examined (and extended!) at https://github.com/
communitytoolkit/Maui.Markup. The ReadMe file will get you started, though we’ll cover
that material in this book as well.

The first thing you need to do is to update MauiProgram.cs to add the toolkit to the builder using
the following code snippet:

public static MauiApp CreateMauiApp()

{

 var builder = MauiApp.CreateBuilder();

 builder

 .UseMauiApp<App>()

https://github.com/communitytoolkit/Maui.Markup
https://github.com/communitytoolkit/Maui.Markup

XAML and Fluent C#36

 .UseMauiCommunityToolkit()

 .UseMauiCommunityToolkitMarkup()

 .ConfigureFonts(fonts =>

 {

 fonts.AddFont("OpenSans-Regular.ttf",

 "OpenSansRegular");

 fonts.AddFont("OpenSans-Semibold.ttf",

 "OpenSansSemibold");

 });

You can and should chain UseMauiCommunityToolkitMarkup to UseMauiCommunityToolkit
in the builder [1].

Now, you can avoid writing this:

var entry = new Entry();

entry.WidthRequest = 400;

entry.HeightRequest = 40;

Instead, you can chain all of that together and just write this:

new Entry().Size(200,40);

This makes the code much cleaner.

I will provide C# and Fluent C# examples throughout the book; although, as noted, the primary
markup language we’ll use is XAML.

Summary
In this chapter, we examined the markup language XAML, which is used to create layouts and controls.
We saw that anything that can be done in XAML can also be done in C#, and we saw that there are
two ways to write that C#: the traditional declarative way and the newer fluent form.

We examined a few important classes (Button, Label, Image, and so on) and how events can be
handled in the code-behind class. I also hinted that code-behind event handlers will be replaced by
commands and their implementation in the ViewModel in the next chapter.

In Chapter 4, we’ll dive into the principal architecture for writing apps in .NET MAUI: Model-View-
ViewModel (MVVM) and we’ll look at data binding. We’ll then explore a number of controls and
how they can work together.

Quiz 37

Quiz
1. In a sentence, what is XAML?

2. What is XAML used for?

3. What is an alternative to using XAML?

4. How do we nest one layout inside another using C#?

5. What is an event handler?

6. If an event is declared in XAML, where is the event handler?

Try it out
Time to start writing code!

Create a new project named ForgetMeNotJesse (you might want to use your own name where I
have put mine). Ideally, put that project under source control (see the Technical requirements section
at the top of this chapter).

Use the .NET MAUI template to create your project, using the latest version of .NET (.NET 7 at the
time of the writing of this book).

Run your program to make sure everything is set up correctly.

Change MainPage so that clicking on the button updates a label below the button with the number
of clicks (in addition to displaying it on the button itself).

Once the page is working as intended, create a new page and recreate your MainPage in C# rather
than in XAML. To test it, remember to set the ShellContent element in AppShell.xaml to
point to your new page like this:

<ShellContent

 Title="Home"

 ContentTemplate="{DataTemplate local:MainPageCS}"

 Route="MainPageCS" />

If you get stuck at any point, pull down the XAML and C# branch from the book’s repository and
compare that solution with yours.

4
MVVM and Controls

In Chapter 3, we examined the fundamentals of .NET MAUI, but our code was in the code-behind
files associated with XAML files. It is time, though, to turn our attention to the consensus architecture
for .NET MAUI.

Model-View-ViewModel (MVVM) is not a tool or a platform but an architecture. Simply put, it is a
way of organizing your code and thinking to optimize the creation of .NET MAUI applications and
to facilitate unit testing (see Chapter 9).

At its simplest, MVVM consists of three sets of files, that is three namespaces, which essentially means
three folders (with subfolders as needed). Taken in turn, Model is the set of classes that define the
shape of your data. This just means that the classes that represent data are held in the model.

View is, in simple words, the page that the user sees.

ViewModel is where all the action happens. It is the set of classes that manage the logic of your
program and that contain the properties that are presented in View. We’ll get into ViewModel (VM)
properties as we go.

In this chapter, we will explore the following topics:

• Setting up MVMM

• Data binding

• Views

• XAML versus C#

• Behaviors

• Popups and dialogs

• Brushes

MVVM and Controls40

Technical requirements
For this chapter, you will need the latest version of Visual Studio (any edition).

Each chapter in this book is saved as a branch. The code shown in this chapter and the next is in
the branch at https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-
Developers/tree/MVVMAndControls. If you check out the branch you’ll see where we
ended up, but if you want some of the intermediate steps, just examine the commits that contributed
to the branch. To follow along, however, check out the branch at https://github.com/
PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/Navigation/
tree/XAMLAndCSharp as the starting point.

Setting up for MVVM
MVVM is as much a way to organize your files and folders as it is an architectural approach. To get
started using MVVM we’ll do two things:

1. Create the folders.

2. Download the associated Community Toolkits.

Creating folders

We will be creating three folders. Before I tell you the names of these folders, I should say there is some
disagreement about what exactly to name them. Table 4.1 shows the folder names and their alternatives:

Name we’ll use Alternative 1 Alternative 2
Model Models

View Views Pages

ViewModel ViewModels

Table 4.1 – Naming the folders

As you can see, the key difference is whether or not the name of the folder should use the plural,
reflecting the fact that there will be more than one file in each folder, or the singular (as we will do),
reflecting the name Model-View-ViewModel. I can’t think of a less important controversy, and it
clearly doesn’t matter what you choose as long as you are consistent. Arbitrarily, we’ll use the first.

Thus, create three folders in your project: Model, View, and ViewModel, as shown in Figure 4.1:

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/MVVMAndControls
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/MVVMAndControls
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/Navigation/tree/XAMLAndCSharp
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/Navigation/tree/XAMLAndCSharp
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/Navigation/tree/XAMLAndCSharp

Setting up for MVVM 41

Figure 4.1 – MVVM Folders

MainPage is now in the wrong place. Drag MainPage.xaml to the View folder (it will bring its
code-behind with it). You need to fix the namespace in the XAML file:

x:Class="ForgetMeNotDemo.View.MainPage"

And in the code behind:

namespace ForgetMeNotDemo.View;

Microsoft provides libraries that are not part of .NET MAUI as they were created by the .NET
community, but which, nonetheless, Microsoft endorses and supports. Much of the functionality of
these community toolkits will probably migrate into .NET MAUI itself.

The MVVM Community Toolkit

Open Nuget Manager (right-click on the solution and choose Manage NuGet Packages For The
Solution, and click on Browse. In the search window enter CommunityToolkit-MVVM and
click on CommunityToolkit.MVVM. This wonderful toolkit will make programming with MVVM
infinitely easier than it otherwise would be. See Figure 4.2:

MVVM and Controls42

Figure 4.2 – Getting the NuGet package

We’ll come back to how to use this toolkit when we talk about source code generators. Next, let’s take
a look at some of the views.

Exploring views

.NET MAUI Controls is a generic term for pages, layouts, and views. In this chapter, we will look
at views, while pages and layouts will be reviewed in the next chapter. In Chapter 7, we’ll look at
navigating between pages.

Views versus pages
From the perspective of MVVM, a view is a page. From the perspective of .NET MAUI, View
is a control. So, just to keep you totally confused, a View consists of Views and layouts. To
avoid this absurdity, we’ll refer to the latter as controls. Some frameworks call these widgets.
From time to time I’ll forget and refer to these controls as Views, but the context will make
clear what I mean.

A .NET MAUI Control is an object that maps to native controls on each target platform. Thus, a .NET
MAUI Button maps to an iOS, Android, Macintosh, and Windows native Button.

The principal way to display text is with Label. The inheritance tree for Label is as follows:

Object > BindableObject > Element > NavigableElement >

 VisualElement > View > Label

An object is, of course, the base for every class in C#. We’ll skip over BindableObject for now,
and we’ll group Element, NavigableElement, and VisualElement together as things you
can see on your page. This brings us to View as described previously, and then Label itself.

Setting up for MVVM 43

The most common property to use on Label is Text. Text is what Label displays, thus you can
write the following:

<Label Text="Hello World" />

This creates a Label that displays the iconic greeting. But there is more you can do with Label, as
we saw in the previous chapter.

Forget Me Not labels

Let’s look at Labels in the context of Forget Me Not. We already have the application, but it is just what
we get out of the box. Let’s revise this first page to create the initial page for Forget Me Not.

Please click on the - sign next to VerticalStackLayout on MainPage.xaml That will collapse
VerticalStackLayout and allow you to delete it all at once, as shown in Figure 4.3:

Figure 4.3 – Collapsed VerticalStackLayout

Next, go to the code-behind file (MainPage.xaml.cs) and remove the counter and the
OnCounterClicked event handler.

Having cleaned all that out, we are ready to put in new code. We need a layout we can put labels into,
so let’s create an empty VerticalStackLayout, and add a Label Control to it that says Welcome
to Forget Me Not.

<VerticalStackLayout>

 <Label Text="Welcome to Forget Me Not"/>

</VerticalStackLayout>

We’re ready to build on that. Let’s add some of the more common properties for making Label
look good:

<VerticalStackLayout>

 <Label

 x:Name="HelloLabel"

 Margin="20"

 BackgroundColor="Red"

MVVM and Controls44

 FontAttributes="Bold"

 FontSize="Small"

 HorizontalOptions="Center"

 HorizontalTextAlignment="Center"

 Text="Welcome to Forget Me Not"

 TextColor="Yellow"

 VerticalTextAlignment="Center" />

</VerticalStackLayout>

We’ll examine each of these properties in turn, but first, Figure 4.4 shows what the page looks like
right now:

Figure 4.4 – Label

Note that the title (Home) is an artifact of the page. What we care about is the Label shown below it.

Let’s see if we can’t make that look a bit nicer before we examine the properties of Label by adding
just a bit of padding:

<VerticalStackLayout>

 <Label

 BackgroundColor="Red"

 FontAttributes="Bold"

 FontSize="Small"

 HorizontalOptions="Center"

 HorizontalTextAlignment="Center"

 LineBreakMode="WordWrap"

 Margin="20"

 MaxLines="5"

 Padding="10"

 Text="Welcome to Forget Me Not"

 TextColor="Yellow"

 VerticalTextAlignment="Center"

Setting up for MVVM 45

 x:Name="HelloLabel" />

</VerticalStackLayout>

That gives us the page, as shown in Figure 4.5.

XAML Styler
Notice that the properties are laid out nicely and in alphabetical order. This is due to a (free)
tool named XAML Styler which you can get from the Visual Studio Marketplace (https://
bit.ly/XAMLstyler).

Figure 4.5 – Label with Padding

Much better. Let’s examine the preceding code with the padding line by line.

Most of these properties are self-explanatory. The BackgroundColor property controls the entire
label. In our case, we’ve set the Padding property (as described in Chapter 3) to 10; thus, the red
shows with a padding of 10 all around the text.

As you can see, we set the text to Bold using the FontAttributes property. The possible attributes
are Bold, Italic, and None, with None being the default.

FontSize can be entered in device-independent units (for example, FontSize = "20") or in
one of the enumerated constants such as Micro, Small, Large, and so on.

HorizontalOptions and VerticalOptions place the label on the page relative to the edges
of the page. We touched on this in the previous chapter. In the case of HorizontalOptions, the
choices are Start (far left), Center (middle), or End (far right).

The next property is LineBreakMode, which goes with the MaxLines property. Together they
determine how many lines of text the label can support and where the lines will be wrapped. To see
this, modify the text to say “Welcome to Forget Me Not, so glad you are here, we couldn’t do this without
you and we appreciate your patience.” As you can see in Figure 4.6, the text is now centered on multiple
lines, and each line breaks at a word boundary.

https://bit.ly/XAMLstyler
https://bit.ly/XAMLstyler

MVVM and Controls46

Figure 4.6 – Multi-line Label

As noted earlier, Label has dozens of properties, and while we’ve covered the most important ones,
you can always look up the others on Microsoft Learn. In this case, the page you’ll need is https://
bit.ly/MicrosoftLabel.

The key to displaying data in the MVVM model is data binding, which allows us to associate a view
and a property and then allows .NET MAUI to keep the view up to date as the value of the property
changes. Let’s explore this next.

Data binding
One of the most powerful aspects of .NET MAUI is data binding and data binding works extremely
well with MVVM. The idea is to bind data (values) to controls. For example, we might have a class
with the text we want to display on this label held on a public property (you can only bind to public
properties). Rather than having to copy that text from the class to the label, we just tell the label the
name of the property.

The public property will be kept in a class in ViewModel. But we have to answer the question how
does View know where to look for the property? That is handled by setting BindingContext.

Let’s look at a simple example. In ViewModel, create a new file named MainViewModel.cs.

Naming ViewModel
The most common naming convention is to name the page with the word page, such as
MainPage or LoginPage but to drop the word page in the ViewModel name, such as
MainViewModel and LoginViewModel. So, that is what we’ll do in this book.

Note that other programmers will use the MainPageViewModel name. On the other hand,
some do not use the word page but rather view, as in MainView and LoginView. What is
most important is for you (and your team) to be consistent so that it is easy to guess and find
the associated pages and view models.

https://bit.ly/MicrosoftLabel
https://bit.ly/MicrosoftLabel

Data binding 47

Before going ahead, notice that Visual Studio has put your class into the ForgetMeNotDemo.
ViewModel namespace (if you named your project ForgetMeNot, the namespace will be
ForgetMeNot.ViewModel). This is based on the folder the .cs file is in.

Make sure the class is public and that it is marked partial. All binding in .NET MAUI is done with
partial classes, allowing the rest of the class to be handled internally and by generated partial classes.

Creating a public property

We now want to create a property named FullName.

The original way to do this looked something like this:

private string fullName;

public string FullName

{

 get => fullName;

 set

 {

 fullName = value;

 OnPropertyChanged();

 }

}

However, the absolute best approach is to take advantage of the code generators in the NuGet package
we just added. These work by using attributes. Add an attribute above the [ObservableObject]
class declaration like this:

using CommunityToolkit.Mvvm.ComponentModel;

namespace ForgetMeNotDemo.ViewModel;

[ObservableObject]

public partial class MainViewModel

{

}

MVVM and Controls48

That attribute will allow you to generate properties. Above each property, use the Observable-
Property attribute:

[ObservableProperty]

 private string fullName;

This will cause the NuGet package to (invisibly) generate the uppercase public property and its
OnPropertyChanged() method call as if you had entered them yourself.

Before we look at how to set the FullName value, we need to set up BindingContext.

Setting up BindingContext

BindingContext tells your View where to get its bound data. You can set this in a number of ways;
the most common is to set it in the code-behind file for the View class (in this case, MainPage.
xaml.cs). First, we declare an instance of ViewModel:

private MainViewModel vm = new MainViewModel();

Next, we assign the BindingContext to that instance in the

 constructor:

public MainPage()

{

 InitializeComponent();

 BindingContext = vm;

}

Here is the code behind the class:

public partial class MainPage : ContentPage

{

 private MainViewModel vm = new MainViewModel();

 public MainPage()

 {

 InitializeComponent();

 BindingContext = vm;

 }

}

Data binding 49

Next, we’ll see how to assign values to the ViewModel class properties.

Names
I don’t usually like abbreviations for names. There are rare exceptions, and using vm for
ViewModel is such a strong convention that I yield to peer-group pressure.

Assigning values to the View Model class properties

You can assign your string in ViewModel, in the ViewModel constructor, or in the override for
the OnAppearing method. OnAppearing is called before View is displayed and looks like this
(you put this in the code-behind file):

protected override void OnAppearing()

{

 base.OnAppearing();

 vm.FullName = "Jesse Liberty";

}

We will return to OnAppearing and its sibling OnDisappearing method, in Chapter 7.

InitializeComponent
InitializeComponent must be in the constructor of every code-behind file. It is the
responsibility of InitializeComponent to initialize all the controls on the page.

Implementing Binding

You are now ready to bind the FullName property to Label. In the XAML, change the Label
text property to this:

Text="{Binding FullName}"

Naming properties and fields
There is a general consensus that properties should be named using Pascal case (as shown in
the preceding snippet) and that member fields should be named using camel case (the first
letter is lowercase, as in myMemberField), though there is no agreement at all as to whether
member fields should be prepended with an underbar as in _myMemberField. We won’t use
the underbar in this book, but feel free to do so as long, again, as you are consistent.

MVVM and Controls50

Using the binding keyword tells Label to get its value from the FullName property found in the
ViewModel set by BindingContext.

You will want to pay attention to the syntax. It is always as shown here: open quotes, open braces, the
Binding keyword, property name, closing brace, and closing quotes. Okay, I lied. It is sometimes
more complex, but these elements are always there.

The result of this construct is that the value of FullName is placed inside the Text property of the
label, as shown in Figure 4.7:

Figure 4.7 – A label with data-bound text

One of the distinguishing characteristics of an MVVM program is that the logic is in ViewModel
rather than in the code-behind file, which we will explore next.

ViewModel versus code-behind

The more you can put into ViewModel (rather than the code-behind file) the easier it will be to
test your program (see Chapter 9 on unit testing). Some MVVM fans think nothing should be in
the code-behind file besides the required call to InitializeComponent. They argue that even
setting ViewModel should be done in the XAML to keep the code-behind file as empty as possible.

I take a more moderate view of this. I often set BindingContext in the code-behind file. I do
move all my event handling out of the code-behind file as you’ll see when we talk about commands:

LoginPage.xaml.cs:

public partial class LoginPage : ContentPage

{

 LoginViewModel vm = new LoginViewModel();

 public LoginPage()

 {

Views 51

 BindingContext = vm;

 InitializeComponent();

 }

}

Notice that BindingContext here is set before calling InitializeComponent. While either
can come first in most cases, setting up all your bindings before initializing the page is generally good
practice. Thus, we’ll stick with the approach shown here.

Renegade code-behind
There are times when it is just much easier to put a method in the code-behind file. Be careful
with this, however. 99% of the time, when it seems really important to put something in the
code-behind file, you actually can make it work in ViewModel, and that is much better (again,
for testing). But if you do have to put something in the code-behind file, do not feel bad, and
do not let other .NET MAUI programmers push you around.

The center of developing most apps, the part that people respond to, is the user interface (UI). In
.NET MAUI, the UI consists of views in layouts. Let’s turn our attention to the most important views.

Views
There are many controls for displaying and obtaining data from the user. The following sections will
cover the most common and useful ones, including those shown here:

• Images

• Labels

• Buttons

• ImageButtons

• Entering text

MVVM and Controls52

Images

You can write a .NET MAUI program without images, but it is likely to look pretty boring. Managing
images is much easier in .NET MAUI than it was in Xamarin.Forms. Now, instead of having to
have one image for each resolution in iOS and Android, you place one image in the resources folder,
and .NET MAUI takes care of the rest for all the platforms!

In this example, we’ll use an image named flower.png, which you can download from our
GitHub repository. If you prefer, though, you can use any image you like. We’ll place the image in the
Resources > Images folder.

When we are ready to display it, we’ll use an Image View. Here is a simple example:

<Image

 HeightRequest="200"

 HorizontalOptions="Center"

 Source="{Binding FavoriteFlower}" />

I’ve only set three properties, but they accomplish quite a bit. HeightRequest sets, as you might
guess, the height of the image on the page in device-independent units (in this case, 200). I’ve set it
to be centered. Most importantly, I’ve identified the source—that is the name of the image. But rather
than lock in the name of the image in View, I’ve bound it to a property in MainPageViewModel.

The result is that MainPage now looks like Figure 4.8:

Figure 4.8 – Binding the source to a property in ViewModel

Views 53

Of course, there are a number of additional properties you can set. A set of favorites for me are the
Rotation properties, which can rotate on the x, y, and z axes. If I add the RotationX property
like this:

<Image

 HeightRequest="200"

 HorizontalOptions="Center"

 RotationX="45"

 Source="flower.png" />

The image rotates, as shown in Figure 4.9:

Figure 4.9 – RotationX=”45”

Another useful trick is to make the image semi-transparent by setting Opacity to a value between
0 and 1. Figure 4.10 shows the same image with an opacity of .25. I removed StackLayout and
substituted a Grid. More about grids in the next chapter, but if you just declare one and put Label
and Image into it with no other Grid properties, they lay one on top of the other:

<Grid>

 <Label

 BackgroundColor="Red"

 FontAttributes="Bold"

MVVM and Controls54

 FontSize="Small"

 HeightRequest="50"

 HorizontalOptions="Center"

 HorizontalTextAlignment="Center"

 LineBreakMode="WordWrap"

 Margin="20"

 MaxLines="5"

 Padding="10"

 Text="{Binding FullName}"

 TextColor="Yellow"

 VerticalTextAlignment="Center"

 x:Name="HelloLabel" />

 <Image

 HeightRequest="200"

 HorizontalOptions="Center"

 IsVisible="True"

 Opacity=".25"

 RotationX="45"

 Source="{Binding FavoriteFlower}"

 x:Name="BigFlower" />

</Grid>

Figure 4.10 shows the result:

Figure 4.10 – Overlay and semi-transparent effect

There is endless room for creativity.

Views 55

Clicking on an image

One of the key things that many people want to do with an image is click on it. There are two solutions
to this problem. The easiest is to use a button.

Buttons can have text and a number of other properties, but the most important is the command. The
command tells ViewModel what to do when the button is clicked.

To show how this works, I’m going to put a new property on our image, IsVisible, and set it to
true. As long as that is true, the image is visible. But, as you can imagine, setting it false makes the
big flower invisible. Not only is it invisible, but it also takes up no space on the page, so the button
will be directly under the label.

Here is the code for Button:

<Button

 Text="Click me"

 Command="{Binding ToggleFlowerVisibilityCommand}"/>

This is the simplest button I can make (we’ll look at making it nicer in just a bit). The key here is the
Command parameter. You can tell by the Binding keyword that ToggleFlowerVisibility
will be in ViewModel. Sure enough, it is, but rather than declaring a command and pointing it at a
method, we can use the code generator to do the heavy lifting for us.

Here is the modified MainViewModel:

[ObservableObject]

public partial class MainViewModel

{

 [ObservableProperty] private bool flowerIsVisible = true;

 [1]

 [ObservableProperty] private string fullName;

 [ObservableProperty] private string favoriteFlower =

 "flower.png";

 [RelayCommand] [2]

 private void ToggleFlowerVisibility() [3]

 {

 FlowerIsVisible = !FlowerIsVisible;

MVVM and Controls56

 }

}

This is an example of convention over configuration – the Command property in Button is
ToggleFlowerVisibilityCommand, but when you implement it in RelayCommand [2],
you name it ToggleFlowerVisibility [3] leaving off Command.

Note that we created FlowerIsVisible [1] as an ObservableProperty, we simply toggle it
from true to false and back on each click.

Button properties

As it is now, the button will be displayed as it would appear natively on each platform. But these
buttons can be pretty ugly. We can make them much nicer by taking over more of their appearance.

Here is my XAML for Button, which while not beautiful, will illustrate some of the properties you
can use to take control of the button’s appearance:

<Button

 BackgroundColor="Red"

 BorderColor="Black"

 BorderWidth="2"

 Command="{Binding ToggleFlowerVisibilityCommand}"

 CornerRadius="20"

 FontSize="Small"

 HeightRequest="35"

 Padding="5"

 Text="Don't Click Me"

 TextColor="Yellow"

 WidthRequest="150" />

There are three new properties that we’ve not seen before. The first is BorderColor, which goes along
with BorderWidth. This provides a border around the button. Since we’ve set BackgroundColor
to Red, the border will stand out. The final new property is CornerRadius, which gives us a nice
rounding of the corners of the otherwise square button. Put that all together, and you get a button that
looks like Figure 4.11:

Figure 4.11 – A nicer-looking button

Views 57

Why is this button still ugly?
I am certainly not a UI person, and so my pages tend to be fairly ugly until fixed by someone
who knows what they are doing. The screen images in this book will reflect that inability.

ImageButton

At times, rather than having text, we’d rather have an image on the button. There is an ImageButton
control that combines many of the properties of the Image control and the Button control:

<ImageButton

 BorderColor="Black"

 BorderWidth="2"

 Command="{Binding ToggleFlowerVisibilityCommand}"

 MaximumHeightRequest="75"

 MaximumWidthRequest="75"

 Padding="5"

 Source="{Binding FavoriteFlower}" />

You can see how similar it is to the Button control. In fact, I’ve preserved the command binding and
the source binding, so we end up with a small image of the flower under the big image, but clicking
on the small one (ImageButton) causes the big one (Image) to become invisible and then visible,
and so on. I’ll show both visible in Figure 4.12 because it is hard to toggle an image on paper:

Figure 4.12 – ImageButton

MVVM and Controls58

TapGestureRecognizer

The second way to handle tapping on an image is to assign a gesture recognizer. The type of
GestureRecognizer we’re going to assign is TapGestureRecognizer, which will recognize
when the image itself has been tapped. To be safe, we’ll set it so that the image has to be double-tapped.
When that happens, the image will “poof!” disappear.

We’ll remove ImageButton, and just have Image (and Label). Here is our new XAML file:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 BackgroundColor="White"

 x:Class="ForgetMeNotDemo.View.MainPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <ScrollView>

 <VerticalStackLayout>

 <Label

 BackgroundColor="Red"

 FontAttributes="Bold"

 FontSize="Small"

 HeightRequest="50"

 HorizontalOptions="Center"

 HorizontalTextAlignment="Center"

 LineBreakMode="WordWrap"

 Margin="20"

 MaxLines="5"

 Padding="10"

 Text="{Binding FullName}"

 TextColor="Yellow"

 VerticalTextAlignment="Center"

 x:Name="HelloLabel" />

 <Image

 HeightRequest="200"

 HorizontalOptions="Center"

 IsVisible="{Binding FlowerIsVisible}" [1]

Views 59

 Source="{Binding FavoriteFlower}"

 x:Name="BigFlower">

 <Image.GestureRecognizers> [2]

 <TapGestureRecognizer [3]

 Command="{Binding

 ImageTappedCommand}" [4]

 NumberOfTapsRequired="2" /> [5]

 </Image.GestureRecognizers>

 </Image>

 </VerticalStackLayout>

 </ScrollView>

</ContentPage>

We see at [1] that the image starts as visible. Between the opening and closing brackets for Image we add
GestureRecognizer [2]. Within GestureRecognizer we add TapGestureRecognizer
[3], and we define ImageTappedCommand [4] just as we did with other commands. Finally, we
declare that for the command to fire, the user must tap twice [5].

Here is an example of RelayCommand from ViewModel:

[RelayCommand]

private void ImageTapped()

{

 FlowerIsVisible = !FlowerIsVisible;

}

As you can see, this handler is nearly identical to the previous one. However, this one won’t work as
intended. Before reading further, try to figure out what will happen when we double-click on the image
(to make it invisible) and then try to do so again (to make it visible). Take your time. I’ll wait here.

You can solve this by going back to Button, or perhaps putting a GestureRcognizer on the Label.

When you double-tap on the image, it does, in fact, disappear because IsVisible is set to false.
However, once it disappears, it is gone, and there is nothing there to tap on to bring it back:

<Label

 BackgroundColor="Red"

 FontAttributes="Bold"

 FontSize="Small"

 HeightRequest="50"

MVVM and Controls60

 HorizontalOptions="Center"

 HorizontalTextAlignment="Center"

 LineBreakMode="WordWrap"

 Margin="20"

 MaxLines="5"

 Padding="10"

 Text="{Binding FullName}"

 TextColor="Yellow"

 VerticalTextAlignment="Center"

 x:Name="HelloLabel">

 <Label.GestureRecognizers>

 <TapGestureRecognizer Command="{Binding

 ImageTappedCommand}" />

 </Label.GestureRecognizers>

</Label>

What’s interesting here is that the TapGestureRecognizer command points to the same
RelayCommand; it will be invoked either by double-tapping on the image or single-tapping on the label.

The following are two takeaway points from this section:

• TapGestureRecognizer allows you to make any control tappable, which can be
pretty powerful.

• Once View is invisible, it is no longer on the page. You can make it visible again from the code
behind, but only if you do so by way of a different control (as we did with ButtonImage).

After displaying text, the most important aspect of an app is the ability to obtain text from the user.
For that, the principal views are Entry and Editor. Let’s have a look at them next.

Entering text

We’ve looked at displaying text, let’s turn our attention to entering text. There are two controls that
are principally responsible for this:

1. Entry: Used for entering a line of text

2. Editor: Used for entering multiple lines of text

These two controls are obviously related, but they have different properties. Entry is designed to
take a single line of text and Editor handles multi-line entry.

To see these views at work, let’s create a login page for Forget Me Not.

Views 61

Forget Me Not login page

We’ve been playing with the MainPage, but in truth, the actual application has a very simple
MainPage: just the image. Things get more interesting with the login page. We will make a first
approximation of the login page as it will allow us to use the Entry and Editor controls, though
we will evolve this page as we go.

Creating the login page

The first task is to create the login page. To do so, right-click on the View folder, and choose Add Item.
In the dialog box click on .NET MAUI in the left pane, and on .NET MAUI ContentPage (XAML)
on the right. Name the page LoginPage.xaml, as shown in Figure 4.13:

Figure 4.13 – Add Item dialog box

XAML versus C#

If you wish to create the UI for the login page using C# rather than XAML, choose ContentPage (C#)
instead. We’ll look at both in this section, but let’s start with the XAML version.

Examine the XAML page out of the box. The class is set to ForgetMeNotDemo.View.LoginPage,
reflecting the namespace (when we created the file under View that became the namespace automatically).
The XAML also has VerticalStackLayout and inside that, Label.

Take a very quick look at the code-behind file. Note that namespace has been created for you and
that the page derives from ContentPage .

Go back to the XAML page and delete Label in VerticalScrollView. When the application
is complete, it should look like Figure 4.14:

MVVM and Controls62

Figure 4.14 – Login.XAML (top portion)

As you can see, we have two labels. To the right of each label is an entry, and the entry has placeholder
text. As soon as you start typing in the entry, the placeholder text will disappear.

There are also three buttons. To lay this out properly, we’d like to use Grid, but we’re not covering
grids until Chapter 6, Layouts. That’s not a problem, though, because it gives us the opportunity to
look at nesting StackLayouts and using HorizontalStackLayout.

To get started, we’ll just create the top line. We’d like flexibility for the text in the label, and we’d like
to capture the User name entry in a property of ViewModel that we haven’t created yet. Let’s do that
now. Right-click on the ViewModel folder and create a new LoginViewModel class.

In LoginViewModel add ObservableProperty for the user name:

namespace ForgetMeNotDemo.ViewModel

{

 [ObservableObject]

 internal partial class LoginViewModel

 {

 [ObservableProperty] private string name;

When the user types a name into the Entry control it will be saved in this property.

OneWay and TwoWay binding
Controls can be OneWay, in which case the control gets its value from the data source (in this
case, the property) but can’t send it back, or TwoWay, in which case the control gets its data
from the data source but can also write a value back. Entry defaults to TwoWay.

We’re ready to create the top line in LoginPage in XAML:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

Views 63

 Title="LoginPage"

 x:Class="ForgetMeNotDemo.View.LoginPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <VerticalStackLayout>

 <HorizontalStackLayout WidthRequest="300">

 <Label

 FontSize="Medium"

 HorizontalOptions="Start"

 Margin="10,20,10,0"

 Text="User Name"

 VerticalOptions="Center"

 VerticalTextAlignment="Center" />

 <Entry

 HorizontalOptions="End"

 Placeholder="User Name"

 Text="{Binding Name}"

 WidthRequest="150" />

 </HorizontalStackLayout>

 </VerticalStackLayout>

</ContentPage>

We’re using three properties on Entry:

1. HorizontalOptions: Here we are setting it to End so that Entry will be to the far right
of the line

2. PlaceHolder: This is the text that will be displayed until the user starts to enter text

3. Text: We have bound this to the Name property in ViewModel

There is one problem looking at this page: there is no way to get there (yet). For now, rather than
having the program open at MainPage, we’ll have it open to our new LoginPage. To do so, go to
AppShell.xaml and change ShellContent to look like this:

<ShellContent

 Title="Home"

 ContentTemplate="{DataTemplate view1:LoginPage}"

 Route="LoginPage" />

MVVM and Controls64

We’ll be discussing the Shell and routing in Chapter 7, but this will work for now.

Run the program. If you run it on an Android device or emulator, it should look more or less like
Figure 4.15:

Figure 4.15 – LoginPage, the first iteration

Even for me, it’s not very attractive, but it does demonstrate the controls and the layout. Try typing
in the User Name entry. Notice that the placeholder text disappears instantly.

We need a way to tell whether the value you entered is really binding to the Name property. To do
this, let’s add a label and bind it to the Name property. That way, when we enter text into the entry it
will be reflected in Label:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 Title="LoginPage"

 x:Class="ForgetMeNotDemo.View.LoginPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <VerticalStackLayout>

 <HorizontalStackLayout WidthRequest="300">

 <Label

 FontSize="Medium"

 HorizontalOptions="Start"

 Margin="10,20,10,0"

 Text="User Name"

 VerticalOptions="Center"

 VerticalTextAlignment="Center" />

 <Entry

 HorizontalOptions="End"

 Placeholder="User Name"

 Text="{Binding Name}"

 WidthRequest="150" />

Views 65

 </HorizontalStackLayout>

 <Label

 Margin="10,30,10,0"

 Text="{Binding Name}" />

 </VerticalStackLayout>

</ContentPage>

However, before we can make that work, we have to set up BindingContext, as we did on
MainPage. Open the code-behind file for the XAML page and set up LoginViewModel as the
binding context:

public partial class LoginPage : ContentPage

{

 LoginViewModel vm = new LoginViewModel();

public LoginPage()

 {

 BindingContext = vm;

 InitializeComponent();

 }

}

When we run this and type into the entry the text is saved in the Name property in ViewModel.
Since the label is bound to the same property, the text is immediately shown there as well, as seen in
Figure 4.16:

MVVM and Controls66

Figure 4.16 – Proving that the entry is binding to the Name property

Now that we know it is working, delete the label. Let’s do the same thing for the password that we
did for the name, except that we don’t want anyone to see the password we’re entering. No problem,
Entry has a boolean property, IsPassword, which we’ll set to True:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 Title="LoginPage"

 x:Class="ForgetMeNotDemo.View.LoginPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <VerticalStackLayout>

 <HorizontalStackLayout WidthRequest="300">

 <Label

 FontSize="Medium"

 HorizontalOptions="Start"

 Margin="10,20,10,0"

 Text="User Name"

 VerticalOptions="Center"

 VerticalTextAlignment="Center" />

 <Entry

 HorizontalOptions="End"

 Placeholder="User Name"

 Text="{Binding Name}"

 WidthRequest="150" />

 </HorizontalStackLayout>

 <HorizontalStackLayout WidthRequest="300">

 <Label

 FontSize="Medium"

Views 67

 HorizontalOptions="Start"

 Margin="10,10,10,0"

 Text="Password"

 VerticalOptions="Center"

 VerticalTextAlignment="Center" />

 <Entry

 HorizontalOptions="End"

 Placeholder="Password"

 IsPassword="True"

 Text="{Binding Password}"

 WidthRequest="150" />

 </HorizontalStackLayout>

 </VerticalStackLayout>

</ContentPage>

Before continuing, notice that we have VerticalStackLayout that contains two
HorizontalStackLayouts. This is a not uncommon layout, but again we’ll get more control
over the appearance when we move on to Grid.

The result of this XAML is shown in Figure 4.17:

Figure 4.17 – Using the password Boolean on Entry

Let’s complete this first iteration of the page by adding the three buttons. We’ll only give one (Submit)
a command for now:

<HorizontalStackLayout Margin="10,10,10,0">

 <Button

 BackgroundColor="Gray"

 Command="{Binding SubmitCommand}"

 Margin="5"

MVVM and Controls68

 Text="Submit" />

 <Button

 BackgroundColor="Gray"

 Margin="5"

 Text="Create Account" />

 <Button

 BackgroundColor="Gray"

 Margin="5"

 Text="Forgot Password" />

</HorizontalStackLayout>

The result is shown in Figure 4.18:

Figure 4.18 – Adding the buttons

When you run this, you may notice that it works fine, except that clicking on Submit doesn’t do
anything. That is because we named the command but never implemented it. We’re going to save
doing so for a while. Actually, for a long while. We’ll tackle the real implementation when we get to
Chapter 11, Working with the API.

The Title

You may have noticed that the page has a LoginPage title. The good news is that we got that for free
(.NET MAUI created it when we created the page). However, it would be nice to have a space between
Login and Page.

At the top of the XAML page is the declaration of ContentPage, and the first property set there
is Title.

<ContentPage

 Title="LoginPage"

Just insert the missing space, and all will be right with the world.

Views 69

Editor

The second primary way of entering text into your application is with the Editor control. The
principal difference from the Entry class is that Editor is designed for multi-line data entry. You
have a lot of control over the text, as you’ll see in the next example.

Let’s add an editor to the login page. We’ll set it so that it is only visible if the user clicks on Forgot
Password. The user will be encouraged to explain exactly where the password was the last time they
saw it and why they were so careless when we told them to keep the password secure.

Reopen LoginPage.xaml and add an Editor inside VerticalStackLayout, at the very bottom:

<Editor

 FontSize="Small"

 HeightRequest="300"

 IsTextPredictionEnabled="True" [1]

 Margin="10"

 MaxLength="500" [2]

 Placeholder="Explain yourself here (up to 500

 characters)"

 PlaceholderColor="Red" [3]

 Text="{Binding LostPasswordExcuse}"

 TextColor="Blue" [4]

 VerticalTextAlignment="Center" [5]

 x:Name="LoginEditor" />

I’ve used a number of properties on the editor, and a few of them are new.

[1] IsTextPredictionEnabled allows your editor to offer the user text to complete their sentence.
You’ve seen this, no doubt, when working with Gmail and other applications. This is actually True
by default; you might want to set it to False when asking for a user’s name or other conditions in
which the prediction might be annoying.

[2] MaxLength manages how many characters the user may enter into the editor.

[3] PlaceHolderColor allows you to set the color of the placeholder text.

[4] Similarly, TextColor sets the color of the text the user enters.

[5] VerticalTextAlignment sets where, within the editor, the text will lie.

MVVM and Controls70

Figure 4.19 shows what Login Page looks like before the user enters anything into the editor, and
Figure 4.20 shows what it looks like after the user has entered a few lines of text:

Figure 4.19 – Before the user enters text into the editor

You can enter as much text as you want into the editor, up to whatever maximum you’ve set in the
declaration of the control.

Views 71

Figure 4.20 – After the user enters text into the editor

Although the margin is only set to 10, there is a huge space between the buttons and the text. That
is because we set VerticalTextAlignment to Center. If we change it to Start, the text will
move to the top of the editor, as shown in Figure 4.21:

Figure 4.21 – Moving the text in the editor to the top (start) position

MVVM and Controls72

Buttons inherently rely on events, but events are handled in the code-behind file, and we’d like to
keep all our logic in ViewModel. The answer to that is the EventToCommand behavior, which
we will consider next.

Behaviors
The Editor control has a number of events. These can be handled by event handlers in the code-
behind file, but for the reasons already explained (and explained) we’d rather not do that. So, here
enters behaviors.

Behaviors let you add functionality to your controls without having to create subclasses. They tack
on the behavior. What we want to do now is tack on the ability to manage commands in a control
(Editor) that doesn’t have commands.

The .NET MAUI Community Toolkit comes with a plethora of behaviors, including
EventToCommandBehavior. This wonderful behavior allows you to transform an event (which
would be handled in the code-behind file) into a command, which can be handled in ViewModel.

The event we want to change in Editor is OnEditorCompleted, which is raised when the user
hits the Enter key (or, on Windows, the Tab key):

<Editor

 FontSize="Small"

 HeightRequest="300"

 IsTextPredictionEnabled="True"

 Margin="10"

 MaxLength="500"

 Placeholder="Explain yourself here (up to 500

 characters)"

 PlaceholderColor="Red"

 Text="{Binding LostPasswordExcuse}"

 TextColor="Blue"

 VerticalTextAlignment="Start"

 x:Name="LoginEditor">

 <Editor.Behaviors>

 <behaviors:EventToCommandBehavior

 EventName="Completed"

 Command="{Binding EditorCompletedCommand}" />

 </Editor.Behaviors>

</Editor>

Behaviors 73

The syntax is reminiscent of GestureRecognizers, and that is not a coincidence. The idea is to
enable a control to have various collections and to be able to declare those collections in the XAML.

You can, of course, declare the same thing in C#:

Var editor = new Editor();

var behavior = new EventToCommandBehavior

{

 EventName = nameof(Editor.Completed),

 Command= new EditorCompletedCommand()

};

As noted earlier, anything you can do in XAML, you can also do in C#.

You manage the command (however you create it) in ViewModel, just as you would any other
command. For fun, let’s add a label below the editor and bind it to LostPasswordExcuse, but
only show it until the user presses Enter.

Login.xaml now looks like this:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 Title="Login Page"

 x:Class="ForgetMeNotDemo.View.LoginPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:behaviors="http://schemas.microsoft.com/dotnet/

 2022/maui/toolkit"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <VerticalStackLayout>

 <HorizontalStackLayout WidthRequest="300">

 <Label

 FontSize="Medium"

 HorizontalOptions="Start"

 Margin="10,20,10,0"

 Text="User Name"

 VerticalOptions="Center"

 VerticalTextAlignment="Center" />

 <Entry

 HorizontalOptions="End"

MVVM and Controls74

 Placeholder="User Name"

 Text="{Binding Name}"

 WidthRequest="150" />

 </HorizontalStackLayout>

 <HorizontalStackLayout WidthRequest="300">

 <Label

 FontSize="Medium"

 HorizontalOptions="Start"

 Margin="10,10,10,0"

 Text="Password"

 VerticalOptions="Center"

 VerticalTextAlignment="Center" />

 <Entry

 HorizontalOptions="End"

 IsPassword="True"

 Placeholder="Password"

 Text="{Binding Password}"

 WidthRequest="150" />

 </HorizontalStackLayout>

 <HorizontalStackLayout Margin="10,10,10,0">

 <Button

 BackgroundColor="Gray"

 Command="{Binding SubmitCommand}"

 Margin="5"

 Text="Submit" />

 <Button

 BackgroundColor="Gray"

 Margin="5"

 Text="Create Account" />

 <Button

 BackgroundColor="Gray"

 Margin="5"

 Text="Forgot Password" />

 </HorizontalStackLayout>

 <Editor

 FontSize="Small"

Popups and dialogs 75

 HeightRequest="300"

 IsTextPredictionEnabled="True"

 Margin="10"

 MaxLength="5"

 Placeholder="Explain yourself here (up to 500

 characters)"

 PlaceholderColor="Red"

 Text="{Binding LostPasswordExcuse}"

 TextColor="Blue"

 VerticalTextAlignment="Start"

 x:Name="LoginEditor">

 <Editor.Behaviors>

 <behaviors:EventToCommandBehavior

 EventName="Completed"

 Command="{Binding EditorCompleted

 Command}" />

 </Editor.Behaviors>

 </Editor>

 <Label

 FontSize="Small"

 IsVisible="{Binding EditorContentVisible}"

 LineBreakMode="WordWrap"

 Margin="10"

 Text="{Binding LostPasswordExcuse}"

 x:Name="EditorContents" />

 </VerticalStackLayout>

</ContentPage>

The Community Toolkit provides us with a much easier way to handle commands in ViewModel.

Popups and dialogs
It is not uncommon to want to alert the user to a condition or change or to get back a bit of data from
the user with an alert, as shown in Figure 4.22:

MVVM and Controls76

Figure 4.22 – The Alert dialog

To keep things clean, remove the Editor and its associated Label from LoginPage.xaml and
remove the constructor and ICommand from ViewModel. We won’t need them in the final version.

The DisplayAlert object can only be called from a page. Later, you’ll see how to handle
SubmitCommand on the Button in ViewModel and send a message to the page to show the alert.
For now, let’s keep things simple, and change the Button’s SubmitCommand to an event:

<Button

 BackgroundColor="Gray"

 Clicked="OnSubmit"

 Margin="5"

 Text="Submit" />

The event handler is placed in the code-behind file. Notice the signature of the event handler:

private async void OnSubmit(object sender, EventArgs e)

 {

 await DisplayAlert(

Popups and dialogs 77

 "Submit",

 $"You entered {vm.Name} and {vm.Password}",

 "OK");

 }

The dialog in Figure 4.22 displayed data but did not interact with the user (except to say to press OK
to close the dialog). However, we can allow the user to make a choice and then record which button
they press.

Event handler signature
OnSubmit wants to be async because you want to call DisplayAlert with await. With
events (and only events) async is not an async Task but rather an async void. The parameters
are always an Object type and EventArgs or a type derived from EventArgs. The first
is typically named sender as this is the View that raised the event. EventArgs is empty
and serves as the base class for specific types of arguments that some events pass into the event
handler. Since we won’t be using event handlers in the final code, you don’t have to worry too
much about this.

Here we’ve considered only one of the three types of alerts. Let’s look at the other two next.

Presenting the user with a choice

While we’re at it, let’s look at the other two types of alerts. One asks the user to select one of two
choices. We’ll add that to the CreateAccount button just for now.

Let’s add a clicked event to the OnCreate button:

<Button

 BackgroundColor="Gray"

 Clicked="OnCreate"

 Margin="5"

 Text="Create Account" />

And, to have a place to show the result, let’s add a label after the closing HorizontalStackLayout tag:

<Label Text="Create account?" x:Name="CreateAccount" />

MVVM and Controls78

The code-behind file has the event handler, which will update our label:

private async void OnCreate(object sender, EventArgs e)

{

 CreateAccount.Text = (await DisplayAlert(

 "Create?",

 "Did you want to create an account?",

 "Yes",

 "No")).ToString();

}

DisplayAlert returns a Boolean, so we call ToString() to place it in the text field of the
CreateAccount label. The dialog is shown in Figure 4.23:

Figure 4.23 – Using dialog to prompt a choice

We can go further and offer the user a series of choices. This is often referred to as a wizard, as it can
be used to walk the user through a series of actions.

Popups and dialogs 79

ActionSheet

The third variant of dialog is ActionSheet. Here we can put forward a number of choices and
allow the user to select one. We’ll attach this to an event handler for the Forgot Password button:

<Button

 BackgroundColor="Gray"

 Clicked="OnForgotPassword"

 Margin="5"

 Text="Forgot Password" />

Here’s the event handler:

private async void OnForgotPassword(object sender,

 EventArgs e)

{

 CreateAccount.Text = (await DisplayActionSheet(

 "How can we solve this?", [1]

 "Cancel", [2]

 null, [3]

 "Get new password",

 "Show me my hint",

 "Delete account"));

}

[1] The first parameter is the title.

[2] The second parameter is the text for the Cancel button.

[3] The third parameter is the text for the OK button. Since we don’t need OK, we pass in null.

This is followed by a list of choices. Figure 4.24 shows what this looks like when it runs:

MVVM and Controls80

Figure 4.24 – ActionSheet

Finally, there are times when we want to allow the user to enter free-form data.

Displaying a prompt

The final variant of dialog provides a prompt to the user who can fill in a value. We’ll need to modify
the event handler for OnCreate to illustrate this:

private async void OnCreate(object sender, EventArgs e)

{

 CreateAccount.Text = await DisplayPromptAsync(

 title:"New Account",

 message:"How old are you?",

 placeholder:"Please enter your age",

 keyboard:Keyboard.Numeric,

 accept: "OK",

 cancel: "Cancel");

}

Popups and dialogs 81

In this variant, it is common to use named parameters, as there are many options. Figure 4.25 shows
what this looks like:

Figure 4.25 – Display prompt

Toast

A very popular alternative to dialog boxes is the Toast view. This is a popup that comes up from the
bottom of the page (much like toast coming up out of a toaster), which displays its message and
then disappears.

Let’s modify the handler for OnCreate again, this time to display a toast:

private async void OnCreate(object sender, EventArgs e)

{

 CancellationTokenSource = [1]

 new CancellationTokenSource();

 var message = "Your account was created";

MVVM and Controls82

 ToastDuration duration = ToastDuration.Short; [2]

 var fontSize = 14;

 var toast = Toast.Make(message, duration, fontSize);

 await toast.Show(cancellationTokenSource.Token); [3]

}

When creating a Toast, you’ll need cancellationToken. Fortunately, you can instantiate one
from the static Token object from the CancellationTokenSource object [1] and [3].

You set the duration of how long the toast will be shown with the ToastDuration enumeration
[2]. The choices are Long and Short.

Figure 4.26 shows the Toast:

Figure 4.26 – Toast popup

Popups and dialogs 83

Snackbar

If you need more control over the appearance of your Toast, you can use the closely related Snackbar.
Snackbar not only has a plethora of options, it but it also has two steps. First is the display of the
toast, and second is an (optional) action – that is, what do you want to do when the toast is dismissed?
In this example, we’ll display a dialog.

The cornucopia of options means that the event handler is a bit more extensive than usual:

private async void OnCreate(object sender, EventArgs e)

{

 CancellationTokenSource = [1]

 new CancellationTokenSource();

 var message = "Your account was created"; [2]

 var dismissalText = "Click Here to Close the SnackBar";

 [3]

 TimeSpan duration = TimeSpan.FromSeconds(10); [4]

 Action = async () => [5]

 await DisplayAlert(

 "Snackbar Dismissed!",

 "The user has dismissed the snackbar",

 "OK");

 var snackbarOptions = new SnackbarOptions [6]

 {

 BackgroundColor = Colors.Red,

 TextColor = Colors.Yellow,

 ActionButtonTextColor = Colors.Black, [7]

 CornerRadius = new CornerRadius(20),

 Font = Microsoft.Maui.Font.SystemFontOfSize(14),

 ActionButtonFont = Microsoft.Maui.Font

 .SystemFontOfSize(14)

 };

 var snackbar = Snackbar.Make(

 message,

 action,

MVVM and Controls84

 dismissalText,

 duration,

 snackbarOptions);

 await snackbar.Show(cancellationTokenSource.Token);

}

[1] We start by creating CancellationTokenSource as we did previously.

[2] Create a message to be displayed in the toast.

[3] Add a message that can be clicked on to dismiss the toast.

[4] Define how long you want the toast to be displayed. You can use any unit of time that TimeSpan
supports (you could have the toast display for days!).

[5] The action is what will happen when the toast is dismissed.

[6] Here is where we set the characteristics of the toast.

[7] You can set the text color for the toast and for the dismissal text independently of each other.

Figure 4.27 shows what Snackbar looks like before we click on it:

Figure 4.27 – Snackbar

Popups and dialogs 85

After the user clicks on the Click Here to Close the SnackBar text, SnackBar disappears, and the
action is fired; in this case, the dialog box appears, as shown in Figure 4.28:

Figure 4.28 – The action after the snackbar is dismissed

.NET MAUI does not have a horizontal line control, but we can put the BoxView control to work
as an excellent substitute.

BoxView

One of the simplest controls is BoxView, which simply draws a box on the page:

<BoxView

 Color="Red"

 CornerRadius="20"

 HeightRequest="125"

 WidthRequest="100" />

MVVM and Controls86

Figure 4.29 shows the BoxView control:

Figure 4.29 – A simple BoxView control

What good is this you ask? If you make the box height very small and the width very large, you get a
nice line to divide your page. If we put the following after the Password entry, but before the buttons,
we can neatly divide the page:

 <BoxView

 Color="Red"

 HeightRequest="2"

 Margin="0,20"

 WidthRequest="400" />

Figure 4.30 shows what this looks like:

Popups and dialogs 87

Figure 4.30 – Using the BoxView control to draw a line

Many UI experts like to frame controls with a border, potentially with a drop shadow. To do this you’ll
want to use a Frame control.

Frame

If you wish to create a border around another control, you’ll want to use a Frame control. Frame
lets you define the color of the border, CornerRadius, and whether or not the frame has a shadow.
Let’s create a frame around the Password entry field:

<Frame

 BorderColor="Blue"

 CornerRadius="5">

 <Entry

 HorizontalOptions="End"

 IsPassword="True"

 Placeholder="Password"

 Text="{Binding Password}"

 WidthRequest="150" />

 </Frame>

MVVM and Controls88

Figure 4.31 shows the result:

Figure 4.31 – Putting a frame around the Password entry

You control the color of the BoxView control and a number of other controls by painting the color
using Brushes.

Brushes
You can fill in the color of any number of controls using a brush. The easiest place to see this in action
is with a BoxView control, or with Frame.

There are three types of brushes, Solid, Linear Gradient, and Radial Gradient. Let’s explore them
in a bit more detail.

The Solid brush

The Solid Brush is used when you want to fill a control with a single color. Typically, the solid brush
is implicit in the BackgroundColor property of the control, as we saw above when drawing the
BoxView control.

Brushes 89

LinearGradientBrush

LinearGradientBrush paints an area with a blend of two or more colors along a line called the
gradient axis. You specify a start point and an endpoint, and then you specify stop points (where the
colors switch) along the way.

The start and endpoints are relative to the borders of the painted area, with 0,0 being the upper left
corner (and the default start) and 1,1 being the lower right (and the default stop).

To illustrate this, I’ll move the frame from around the password to a space of its own:

<Frame

 BorderColor="Blue"

 CornerRadius="10"

 HasShadow="True"

 HeightRequest="100"

 WidthRequest="100">

 <Frame.Background> [1]

 <LinearGradientBrush EndPoint="1,0"> [2]

 <GradientStop Color="Yellow" Offset="0.2" />

 [3]

 <GradientStop Color="Red" Offset="0.1" /> [4]

 </LinearGradientBrush>

 </Frame.Background>

</Frame>

[1] Here we create a Background property on Frame.

[2] Within that, create LinearGradientBrush.

Note that we specify EndPoint but not StartPoint, as we’re using the default StartPoint of
0,0. By going from 0,0 to 1,0, we create a horizontal gradient.

[3] We have set the first GradientStop at 0.2.

[4] We set the second GradientStop at 0.1, giving us about twice as much yellow as red.

MVVM and Controls90

Figure 4.32 shows the result:

Figure 4.32 – LinearGradientBrush

Gradient stops
Gradient stops indicate the position along the gradient vector, ranging from 0 to 1. In short,
the first gradient shown here is two-tenths of the way, and the second is one-tenth of the way
along the gradient vector.

Gradients come in two flavors: linear, as shown in the previous example, and radial, as explained next.

RadialGradientBrush

If we do the same thing with RadialGradientBrush, our coordinates start at the center, which
defaults to 0.5,0.5, and we supply the radius as a double. The default value is 0.5. Let’s reproduce
LinearGradient shown previously using RadialGradientBrush:

<Frame

 BorderColor="Blue"

 CornerRadius="10"

 HasShadow="True"

 HeightRequest="100"

 WidthRequest="100">

Brushes 91

 <Frame.Background>

 <RadialGradientBrush>

 <GradientStop Color="Yellow" Offset="0.2" />

 <GradientStop Color="Red" Offset="0.1" />

 </RadialGradientBrush>

 </Frame.Background>

</Frame>

Notice that we did not specify the center or the radius, so we are using the default values. Figure 4.33
illustrates the result:

Figure 4.33 – RadialGradientBrush

With this, we’ve come to the end of a very important chapter.

MVVM and Controls92

Summary
This has been a long chapter, and we’ve covered many things, but if you break it down, the real topics
were as follows:

• MVVM

• DataBinding

• Controls

Of course, controls are a pretty big topic, and we’re not done. In the next chapter, we’ll talk about
layouts, but we’ll also discuss how you style controls, animate controls, and more.

The 90% you use 90% of the time
I did not try to cover every control, nor did I cover all the properties of the controls we did see.
That would have turned this book into an encyclopedia, and my goal is to show you the 90%
of .NET MAUI that you use day in and day out. If you find you need a different property or a
different control, well, that’s what the (excellent) documentation is for. Just go to https://
bit.ly/Liberty-Maui, or ask Google or your local AI agent, and you’ll be able to find
every nook and cranny.

The main takeaways from this chapter are:

• MVVM is the essential architecture for .NET MAUI. In MVVM, Model is the data (we’ve not
seen this at work yet), View is the UI, and ViewModel is where all the logic is (or should
be). We broke MVVM for much of this chapter and put the logic in the code-behind file, but
that was only as a convenience and because we haven’t, yet, talked about getting data into and
out of pages.

• DataBinding is how you connect ViewModel to View. Rather than copying data from a
property in ViewModel to a field in View, you bind that control to the property, and when
the property’s value changes, the control is automagically updated.

• There is a boatload of controls available to you and each is displayed as a native control on
all of the supported platforms: iOS, Android, Windows, and macOS. The fact that they are
emitted as native controls is tremendously important. Not only will they look right, but they
will also be wicked fast.

• Anything you can declare in XAML you can declare in C#.

• You can take control over the appearance of each control so that they look the same on every
platform – anything from having the same color all the way to looking identical. That is entirely
up to you. It only depends on how many properties you set on each control.

https://bit.ly/Liberty-Maui
https://bit.ly/Liberty-Maui

Quiz 93

Quiz
1. What are the advantages of MVVM?

2. How do you create the connection between the View class and ViewModel so that data
binding will work?

3. What are two controls for entering data into a form?

4. What is the most common control for displaying data?

5. What is a SnackBar?

You try it
• Build a page that acts like a form

• Give it some prompts, entry fields, and buttons to accept the entry

• When the user fills in the field and clicks on the button, display a confirmation toast and show
their entry in a label

• Add in an image, and for extra credit, enable that image to be clicked on and, when clicked on,
display a congratulatory dialog box and/or toast (or if you are ambitious, use SnackBar!)

• Feel free to mix in additional controls

5
Advanced Controls

In the previous chapter, we looked at a number of controls and how to handle their events and
commands. In this chapter, we’ll look at moving the logic into ViewModel using commands and
messaging. We’ll then go on to cover Styles, which let you provide a uniform appearance to your
controls with little effort.

One key feature of a well-designed user experience is that when something is going to take more
than a second or so, you let the user know that the app is working on it so that it doesn’t look like
your app froze.

In this chapter, we will cover the following topics:

• Keeping the user informed of activity

• Moving event handling to ViewModel

• Sending and receiving messages

• Displaying collections

• Styles

Technical requirements
For this chapter, you will need Visual Studio. You can find the source code for this chapter here:
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/
tree/MVVMAndControls. If you want to follow along, continue with the project you were working
on in Chapter 4.

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/MVVMAndControls
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/MVVMAndControls

Advanced Controls96

Keeping the user informed of activity
There are two ways to let the user know that your application is working on something time-consuming:

• ActivityIndicator

• ProgressBar

ActivityIndicator essentially says, “I’m working on it, but I don’t know how long it will take,”
whereas ProgressBar says, “I’m working on it, and I’m about halfway done.” Let’s explore each of
these in a bit more detail.

ActivityIndicator

We’ll start by adding ActivityIndicator to the login page below the Buttons:

<ActivityIndicator

 Color="Blue"

 IsRunning="{Binding ActivityIndicatorIsRunning}" />

Notice that the IsRunning property is bound to the ActivityIndicatorIsRunning property.
That property is in LoginViewModel (you’ll remember that we set that file as the binding context):

[ObservableProperty] private bool activityIndicatorIsRunning
 = true;

I’ve set its default value to true, so the activity indicator will be running when the page comes up.
Let’s shut it off after creating the account:

private async void OnCreate(object sender, EventArgs e)

{

 CancellationTokenSource =

 new CancellationTokenSource();

 var message = "Your account was created";

 var dismissalText = "Click Here to Close the SnackBar";

 TimeSpan duration = TimeSpan.FromSeconds(10);

 Action = async () =>

 await DisplayAlert(

 "Snackbar Dismissed!",

Keeping the user informed of activity 97

 "The user has dismissed the snackbar",

 "OK");

 var snackbarOptions = new SnackbarOptions

 {

 BackgroundColor = Colors.Red,

 TextColor = Colors.Yellow,

 ActionButtonTextColor = Colors.Black,

 CornerRadius = new CornerRadius(20),

 Font = Microsoft.Maui.Font.SystemFontOfSize(14),

 ActionButtonFont = Microsoft.Maui.Font

 .SystemFontOfSize(14)

 };

 var snackbar = Snackbar.Make(

 message,

 action,

 dismissalText,

 duration,

 snackbarOptions);

 await snackbar.Show(cancellationTokenSource.Token);

 vm.ActivityIndicatorIsRunning = false;

}

Nothing has changed in the create page code except the addition of the final line. Here we reach into
ViewModel and set the ActivityIndicatorIsRunning property to false. That should stop
ActivityIndicator whose IsRunning property is bound to showActivityIndicator.

Advanced Controls98

The result looks like Figure 5.1:

Figure 5.1 – ActivityIndicator

Working or hung?
Note that under some circumstances, your program might hang, yet the activity indicator will
continue spinning. This can cause enormous confusion and frustration for your user. One way
to escape that problem is to set a timer, and if the task doesn’t complete in n seconds, you stop
the indicator and, for example, display an error dialog. Of course, if everything is hung, you
won’t be able to do that, but typically, the indicator will have frozen as well.

ActivityIndicator is great, but it only tells the user that something is happening, not how far
it has progressed in its task. That is what ProgressBar is for.

ProgressBar

ProgressBar divides a task into fractional parts (for example, percentages) and displays what part
(fraction, percentage, and so on) has been completed. We’ve all seen progress bars: ideally, they move
smoothly across the screen; in fact, they often move in fits and starts as the task they are tracking completes.

Keeping the user informed of activity 99

We’re going to create a progress bar, but we are going to fake an action. That is, we’ll progress the bar
based on time rather than actual progress in a task. Nonetheless, the workings of ProgressBar
will become evident.

To get started, let’s comment out ActivityIndicator in LoginPage.xaml, and replace it
with ProgressBar:

<!--<ActivityIndicator

 Color="Blue"

 IsRunning="{Binding ActivityIndicatorIsRunning}" />-->

<ProgressBar

 ProgressColor="Blue"

 x:Name="LoginProgressBar" />

Here we have declared ProgressBar with only two properties: its color and its name. The name
allows us to refer to the bar in the code-behind. We would, of course, normally update ProgressBar
based on data in the ViewModel, but for now, as we have done before, we’ll do that work in the
code-behind (LoginPage.xaml.cs).

Here is the code that will start and advance the progress bar based on the user clicking the Submit button:

private async void OnSubmit(object sender, EventArgs e)

{

 for (double i = 0.0; i < 1.0; i += 0.1) [1]

 {

 await LoginProgressBar.ProgressTo(i, 500,

 Easing.Linear); [2]

 }

 await DisplayAlert([3]

 "Submit",

 $"You entered {vm.Name} and {vm.Password}",

 "OK");

}

Advanced Controls100

[1] We will set the value of ProgressBar based on the value of the counter variable (i) in the
for loop. The ProgressBar values range from 0 to 1, with the percentage or fraction of progress
measured as values between those two numbers. Here, we initialize the counter variable to 0.0, and
until it reaches the 1.0 value, we increment by one-tenth.

[2] Within the for loop, we call ProgressTo on ProgressBar. That method takes three values:

1. The value we want to progress to

2. The amount of time to get there, in milliseconds

3. The easing (see the following section)

[3] The action we’ll take when the progress bar completes.

Another related feature is Easing, which refers to how quickly an action goes from start to full speed.
Let’s take a look at that in a bit more depth.

Easing

Easing refers to the pattern of how an item moves. For example, a train does not go from standing
still in the station to racing along at 75 miles per hour all at once; it eases into the final speed. If you
drew a graph of the acceleration, it would look like a sine wave, and two of the enumerated values of
easing are, in fact, SineIn (for the pattern of starting up) and SineOut (for the pattern of coming
back into the station).

In our case, however, we want the progress bar to move smoothly and at a constant speed, which is
what easing.Linear does.

The net effect is that the progress bar will be animated across its entire course. We know that we are
moving from 0 to 1 in tenths, and we know that we are taking half a second (500 milliseconds) to go
each one-tenth of the way; thus, we know that the entire trip from 0.0 (nothing showing on the bar)
to 1.0 (the bar fully filled with color) will take five seconds.

At the conclusion of our for loop, the dialog will pop up, giving a nice simulation of the completion
of the task that the progress bar was tracking. A snapshot of that progress is shown in Figure 5.2:

Moving event handling to ViewModel 101

Figure 5.2 – The progress bar is about 75% of the way toward completion

For convenience and to keep things simple, we’ve been using the code-behind for event handling.
Of course, as noted in Chapter 3, there are good reasons to use commands rather than events and to
handle them in ViewModel. Let’s look at that next.

Moving event handling to ViewModel
Suppose that when a Button is pressed, we want to handle that fact in the ViewModel, as is preferred
by the Model-View-ViewModel (MVVM) pattern. However, one of the things we want to do, in
response to that Button press, is to show a ProgressBar.

Advanced Controls102

Handling things in ViewModel gets tricky when we want to interact with the user interface (UI).
However, it can be done in a number of ways. Let’s modify the Submit button, remove its Clicked
event and add a command:

<Button

 BackgroundColor="Gray"

 Command="{Binding SubmitCommand}"

 Margin="5"

 Text="Submit" />

We’ll create RelayCommand in ViewModel to handle the Submit Command:

[RelayCommand]

private async void Submit()

{

 for (var i = 0.0; i < 1.0; i += 0.1)

 {

 await LoginPage.LoginProgressBar.ProgressTo(i, 500,

 Easing.Linear); [1]

 }

 await Application.Current.MainPage.DisplayAlert(

 [2]

 "Submit",

 $"You entered {Name} and {Password}",

 "OK");

}

[1] Access LoginProgressBar on LoginPage (more later on how to do that) and call ProgressTo
as we saw earlier.

[2] Access MainPage through the Application object and call DisplayAlert.

So, how are we going to access the LoginProgressBar in the UI? We need a static member of
LoginPage to accomplish this. We’ll pull the declaration of LoginProgressBar out of the
Extensible Application Markup Language (XAML) and move it into the code-behind:

public static ProgressBar LoginProgressBar;

Moving event handling to ViewModel 103

We need to be sure to initialize this in the constructor of LoginPage:

public LoginPage()

{

 LoginProgressBar = new ProgressBar();

We’re going to need to refer to StackLayout if we want to add that to ProgressBar, so let’s
name it as follows:

<VerticalStackLayout x:Name="LoginStackLayout">

Now we’re ready to add ProgressBar to the children of StackLayout. Here’s the complete constructor:

public LoginPage()

{

 LoginProgressBar = new ProgressBar();

 InitializeComponent(); [1]

 LoginStackLayout.Children.Add(LoginProgressBar); [2]

 BindingContext = vm;

}

[1] Notice that InitializeComponent comes before adding ProgressBar to the children of
StackLayout. Until this is called, LoginStackLayout will be null.

[2] By calling Add here, LoginProgressBar is added to LoginStackLayout below the
controls created in the XAML.

Huh? Let’s take it step by step.

Breaking it down

Here is the order of what happens when you run this, enter your username and password, and
click Submit:

1. ProgressBar is added to the page in the page constructor.

2. When you click on Submit, SubmitCommand is sent to ViewModel.

3. ViewModel handles that in Submit, RelayCommand.

4. In RelayCommand, it updates the (static) LoginProgressBar.

5. It then calls DialogBox through MainPage, which it has access to through the
Application object.

Advanced Controls104

This works beautifully but is a bit labored. The use of Application.Current.MainPage is
not unusual, but the hoops we jumped through to access ProgressBar are. The solution to that is
to use Messaging, which is covered next.

Visibility
It is generally considered best practice for ViewModel not to see aspects of the view (as it
does here). In the next example, we will isolate the VM from the view.

Sending and receiving messages
Rather than reaching into View, we can have ViewModel signal View when it is time to display
the dialog or other View-dependent element.

For example, suppose we want to show Snackbar when the user clicks on the Create button. Rather
than using an event handler, we can use Command (which is preferred because it puts the logic into
ViewModel). ViewModel might then massage data or otherwise do whatever it needs to do, and
then signal View to display Snackbar by sending out a message to that effect.

The idea is that ViewModel publishes a message such as “anyone who has subscribed to this message,
show a Snackbar” and the page subscribes to that message and so shows Snackbar when the
message is received.

In some circumstances, there may be more than one Subscriber. For that matter, in some circumstances,
more than one Publisher can send the same message, as shown in Figure 5.3:

Figure 5.3 – Publish and Subscribe

Messaging center
.NET MAUI has a built-in messaging system, but it has been deprecated in favor of
WeakReferenceMessenger provided in the .NET Community Toolkit MVVM, which
we will cover next.

Sending and receiving messages 105

Getting started with WeakReferenceMessenger

To set this up, first create a class that will serve as the message. You can create this class anywhere that
both View and ViewModel can see it. For convenience, I’ll put it above the LoginPage class:

public partial class ConstructMessage {}

Next, in the LoginPage constructor, we need to register to receive such a message. Once you receive
the message you might call a method, or alternatively, you’ll use a Lambda expression to do the work.

To register to receive the message, use the WeakReferenceMessenger's Register method.
Here is the code to do so:

 WeakReferenceMessenger.Default.Register

 <ConstructMessage> (this, async (m,e) =>

 {

 // …

 });

What goes between the opening and closing braces is whatever you want to do when you receive that
message. I’ve moved the code we were using in the event handler to here:

 WeakReferenceMessenger.Default.Register

 <ConstructMessage> (this, async (m,e) =>

 {

 CancellationTokenSource =

 new CancellationTokenSource();

 var message = "Your account was created";

 var dismissalText = "Click Here to Close the

 SnackBar";

 TimeSpan duration = TimeSpan.FromSeconds(10);

 Action = async () =>

 await DisplayAlert(

 "Snackbar Dismissed!",

 message,

 "OK");

 var snackbarOptions = new SnackbarOptions

 {

Advanced Controls106

 BackgroundColor = Colors.Red,

 TextColor = Colors.Yellow,

 ActionButtonTextColor = Colors.Black,

 CornerRadius = new CornerRadius(20),

 Font = Microsoft.Maui.Font.SystemFontOfSize(14),

 ActionButtonFont = Microsoft.Maui.Font

 .SystemFontOfSize(14)

 };

 var snackbar = Snackbar.Make(

 message,

 action,

 dismissalText,

 duration,

 snackbarOptions);

 await snackbar.Show(cancellationTokenSource.Token);

 vm.ActivityIndicatorIsRunning = false;

 });

Now, all we need to do is revise LoginPage.xaml so that the Create Account button calls a
command in ViewModel, rather than an event handler in the code-behind:

<Button

 BackgroundColor="Gray"

 Command="{Binding CreateCommand}"

 Margin="5"

 Text="Create Account" />

This will invoke the Create relay method in the ViewModel

[RelayCommand]

private void Create()

{

 WeakReferenceMessenger.Default.Send(new CreateMessage());

}

Creating the page in C# 107

ViewModel calls the Send method, sending in an instance of ConstructMessage as a signal to
any registered listeners to take some action. The Create method might, before sending that message,
do other work that is best done in ViewModel rather than code-behind.

This is a much cleaner way of decoupling ViewModel and View when we need to have logic in
ViewModel take an action that can only be taken by View.

WeakReferenceMessenger can also be used to communicate from one ViewModel to another.

Finally, it is called WeakReferenceMessenger in distinction from stet StrongReference-
Messenger. The advantage of WeakReferenceMessenger, and the reason it is generally what
is chosen, is that it manages its own memory and cleanup, so you don’t have to.

Creating the page in C#
Before moving on, and to reinforce the fact that anything you can do in XAML you can do in C#, here
is the version of LoginPage that we will be using in Forget Me Not (ForgetMeNotDemo) written
in C# (in the repo, this page is called LoginCS):

using CommunityToolkit.Maui.Markup;

using static CommunityToolkit.Maui.Markup.GridRowsColumns;

namespace ForgetMeNot.View

{

 class LoginCS : ContentPage

 {

 public LoginCS(LoginViewModel viewModel) [1]

 {

 BindingContext = viewModel;

 var activity = new ActivityIndicator() [2]

 {

 HeightRequest = 50,

 Color = Color.FromRgb(0, 0, 0xF),

 };

 activity.IsEnabled = viewModel

 .ShowActivityIndicator; [3]

Advanced Controls108

 Content = new VerticalStackLayout()

 {

 Children = [4]

 {

 activity,

 new Grid() [5]

 {

 RowDefinitions = GridRowsColumns

 .Rows.Define(

 (Row.Username,Auto),

 (Row.Password,Auto),

 (Row.Buttons, Auto)

),

 ColumnDefinitions = GridRowsColumns

 .Columns.Define(

 (Column.Submit,Star),

 (Column.Create, Star),

 (Column.Forgot, Star)

),

 Children =

 {

 new Label()

 .Text("User name")

 .Row(Row.Username)

 .Column(0), [6]

 new Entry()

 .Placeholder("User name")

 .Bind(Entry.TextProperty,

 nameof(LoginViewModel

 .LoginName))

 .Row(Row.Username)

 .Column(1)

 .ColumnSpan(2),

Creating the page in C# 109

 new Label()

 .Text("Password")

 .Row(Row.Password)

 .Column(0),

 new Entry {IsPassword = true}

 .Placeholder("Password")

 .Bind(Entry.TextProperty,

 nameof(LoginViewModel

 .Password))

 .Row(Row.Password)

 .Column(1)

 .ColumnSpan(2),

 new Button()

 .Text("Submit")

 .Row(Row.Buttons)

 .Column(Column.Submit)

 .BindCommand(nameof

 (LoginViewModel

 .DoLoginCommand)),

 new Button()

 .Text("Create Account")

 .Row(Row.Buttons)

 .Column(Column.Create)

 .BindCommand(nameof

 (LoginViewModel

 .DoCreateAccountCommand)),

 new Button()

 .Text("Forgot Password")

 .Row(Row.Buttons)

 .Column(Column.Forgot)

 .BindCommand(nameof

 (LoginViewModel

 .ForgotPasswordCommand))

Advanced Controls110

 }

 }

 }

 };

 }

 }

 enum Row

 {

 Username,

 Password,

 Buttons

 }

 enum Column

 {

 Submit,

 Create,

 Forgot

 }

}

[1] We start by declaring the class and giving it LoginViewModel. This is done by dependency
injection, a topic covered in detail in Chapter 9.

[2] ActivityIndicator is instantiated; it will be added to the page later.

[3] The IsEnabled property of ActivityIndicator is bound to a property in ViewModel.

[4] We add to StackLayout by adding to its Children collection.

[5] We haven’t covered Grid yet, but you can see that it is a layout that has rows and columns. We’ll
look at it in greater depth in the next chapter.

[6] In Grid, each individual row and column can be given a name from enumeration or can be
referred to by its zero-based index.

Displaying collections 111

The key takeaway from this section is that you can certainly create all the controls and their commands
and properties in C# as well as in XAML. I will continue to dip into C#, but I’m afraid it will drive
you crazy to show each type in both, so again, for layout and controls, we’ll focus predominantly on
XAML – the standard approach for .NET MAUI.

Displaying collections
It is common to have a collection of data and to want to display it in a list, allowing the user to select
one or more items and then do some work with those items. There are a couple of ways to do this in
.NET MAUI, but the most common (and best) is to use CollectionView.

To see this at work, examine Preferences.xaml along with its code-behind Preferences.
xaml.cs and ViewModel, PreferencesViewModel.cs. We will use this page extensively
as we build Forget Me Not, but let’s start slowly.

Our goal is to create a list of the user’s preferences (shirt size, music genre, and so on). For that, we’ll
use CollectionView, and we’ll, of course, need a collection to view. The page, when completed,
will look much like this:

Figure 5.4 – The Preferences page

Advanced Controls112

Rather than each line being a unique object, we’ll create one type that we can show repeatedly. In the
Model folder, create a Preference class:

namespace ForgetMeNotDemo.Model;

[ObservableObject]

public partial class Preference

{

 [ObservableProperty] private string preferencePrompt;

 [ObservableProperty] private string preferenceValue;

}

Partial classes
In .NET MAUI virtually all classes are partial to support the Community Toolkit code.

Preference has only two properties, both strings. The PreferencePrompt string will hold
the text on the left of the page, and the PreferenceValue string will hold the user’s preference
on the right side.

The first thing we need is a collection of these Preference objects. To get that, we’re going to build a
Service, whose job, eventually, will be to interact with the API and get us our list of Preference
objects. Perform the following steps:

1. Create a new folder named Services.

2. In Services, create a PreferenceService class.

3. Inside that file add a GetPreferences method.

Here’s the code:

public class PreferenceService

{

 public async Task<List<Preference>> GetPreferences()

 {

 return await GetPreferencesMock();

 }

 private async Task<List<Preference>> GetPreferencesMock(

 {

Displaying collections 113

 return null;

 }

}

ViewModel will call GetPreferences on the service and get back a list of the Preference
objects. We’ll turn to how PreferenceService gets those objects in just a bit.

Back in PreferencesViewModel, do the following:

[ObservableObject]

public partial class PreferencesViewModel

{

 [ObservableProperty] private List<Preference>

 preferences;

 private readonly PreferenceService service; [1]

 public PreferencesViewModel()

 {

 service = new(); [2]

 }

 public async Task Init()

 {

 Preferences = await service.GetPreferences(); [3]

 }

}

[1] Declare an instance of PreferenceService

[2] Initialize it in the constructor

[3] In the Init method, fill the Preferences collection with what you get back from the service

Dependency injection
In Chapter 9, we will review dependency injection. At that point, we’ll pass in a
PreferenceService interface and let the InversionOfControl container supply the
service for us. If that didn’t make sense to you, no problem; it will all become clear in Chapter 9.

Advanced Controls114

So, who instantiates ViewModel and calls Init? For that, we turn to the code-behind of the
PreferencesPage class:

public partial class PreferencesPage : ContentPage

{

 private PreferencesViewModel vm;

 public Preferences()

 {

 vm = new PreferencesViewModel();

 BindingContext = vm;

 InitializeComponent();

 }

 protected override async void OnAppearing()

 {

 base.OnAppearing();

 await vm.Init();

 }

Naming the ViewModel vm
I’m not big on using acronyms in code, and would normally have named the local instance of
ViewModel. But using vm is such a convention in .NET MAUI (going back to Xamarin.
Forms) that I indulge myself.

In .NET MAUI, the two life cycle events you will often want control over are when the page is first
being shown (OnAppearing) and when it is being shut down (OnDisappearing). Let’s explore
this next.

Overriding OnAppearing

Every time a page appears, its OnAppearing method is called. We override that method so that we can
call vm.Init(). We do this because Init is asynchronous, and while we can make OnAppearing
asynchronous using the async keyword, we can’t do that with the constructor.

OnInit(), in turn, calls GetPreferences on the service and gets back a collection of the
Preference objects.

Displaying collections 115

Understanding how the service works

In time, our PreferenceService's GetPreferences method will call into our API to
get the list of preferences from our database, which will be stored in the cloud. For now, it will call
GetPreferencesMock, which will handcraft the list and return it to us.

Here’s an excerpt from the file:

public class PreferenceService

{

 public async Task<List<Preference>> GetPreferences()

 {

 return await GetPreferencesMock();

 }

 private async Task<List<Preference>> GetPreferencesMock()

 {

 List<Preference> preferences = new()

 {

 new Preference()

 {

 PreferencePrompt = "Shirt Size",

 PreferenceValue = ""

 },

 new Preference()

 {

 PreferencePrompt = "Favorite Music Genre",

 PreferenceValue = ""

 },

 new Preference()

 {

 PreferencePrompt = "Favorite Color",

 PreferenceValue = ""

 },

 new Preference()

 {

 PreferencePrompt = "Favorite Food",

 PreferenceValue = ""

Advanced Controls116

 },

 new Preference()

 {

 PreferencePrompt = "Favorite Movie",

 PreferenceValue = ""

 },

//…

 };

 return preferences;

 }

}

The result is a collection of Preference objects. Let’s look at how to display that collection.

Displaying the collection of Preference objects

Now that we have a collection of Preference objects in ViewModel, we can create our page:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/

 dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/

 winfx/2009/xaml"

 x:Class="ForgetMeNotDemo.View.PreferencesPage"

 Title="Preferences">

 <ScrollView>

 <VerticalStackLayout>

 <Label

 Margin="5"

 Padding="5"

 HorizontalOptions="Center"

 LineBreakMode="WordWrap" [1]

 Text="Please fill in as many preferences as

 you care to.

The fields are

 'free form,' fill in anything you like.

 Remember, the more information you provide

 to your buddies the better they will be

 able to match to what you like. Each of the

Displaying collections 117

 categories can be edited for your

 needs.

 Save as frequently as you

 like, and to edit, just change the value

 you entered and press save." />

 <Button

 Margin="30,20,0,0"

 Clicked="SavePreferences" [2]

 Command="{Binding SavePreferencesCommand}"

 [3]

 Text="Save" />

 <CollectionView

 Margin="20,20,10,10"

 ItemsSource="{Binding Preferences}" [4]

 SelectionMode="None"> [5]

 <CollectionView.ItemTemplate> [6]

 <DataTemplate>

 <Grid ColumnDefinitions="*,2*">

 <Entry [7]

 Grid.Column="0"

 FontSize="10"

 HorizontalOptions="Start"

 HorizontalTextAlignment=

 "Start"

 Text="{Binding

 PreferencePrompt,

 Mode=TwoWay}" [8]

 TextColor="{OnPlatform

 Black, [9]

 iOS=White}" />

 <Entry

 Grid.Column="1"

 FontSize="10"

 HeightRequest="32"

 HorizontalOptions="Start"

 HorizontalTextAlignment=

 "Start"

Advanced Controls118

 Text="{Binding

 PreferenceValue,

 Mode=TwoWay}"

 TextColor="{OnPlatform

 Black,

 iOS=White}"

 WidthRequest="350" />

 </Grid>

 </DataTemplate>

 </CollectionView.ItemTemplate>

 </CollectionView>

 <Button

 Margin="30,20,0,0"

 Clicked="SavePreferences"

 Command="{Binding SavePreferencesCommand}"

 Text="Save" />

 </VerticalStackLayout>

 </ScrollView>

</ContentPage>

There is much to see in this listing. Let’s take things one by one:

[1] Label has multiple lines; we’ve seen this before. We set LineBreakMode to WordWrap so
that we break the lines between words. Notice the use of
, which forces a line break.

[2] The Save button is very unusual as it has a click event handler as well as a command! The click
event handler will handle showing the toast.

[3] The command will be handled in ViewModel and will call the Save method in the service
(which we will not implement just yet).

[4] The ItemsSource property points to the collection that CollectionView will display. In
our case, that is the Preferences collection in ViewModel.

[5] SelectionMode is set to None, as we won’t be selecting items in this display. We will be editing
items and then pressing Save to save the changes.

[6] An item template says, “here is how I want you to display each item in the collection, one by one.”

Displaying collections 119

[7] Interestingly, we are using Entry for the prompt. This allows the user to change the prompt,
which is what we want. We can’t anticipate every category, so we create a number of them, but we let
the user tweak the list as needed.

[8] Not only will we be displaying the value of the prompt from the database, but we’ll want to write
back whatever the user enters as well. Thus, we mark the text as two-way (that is, data > View and
View > data)

[9] We’ve not seen onPlatform before. This says, “always use this value except, on this platform, use
this other value.” Here we are saying that the text color is Black, except on Ios, where it is White.

The code-behind

You’ll remember that we are not only handling the command in ViewModel but we’re also handling
the Clicked event in the code-behind. Here is the rest of PreferencesPage.xaml.cs:

 public void SavePreferences(object sender, EventArgs e)

 {

 ShowToast();

 }

 private async Task ShowToast()

 {

 var cancellationTokenSource = new

 CancellationTokenSource();

 var message = "Your preferences were saved";

 ToastDuration duration = ToastDuration.Short;

 var fontSize = 14;

 var toast = Toast.Make(message, duration,

 fontSize);

 await toast.Show(cancellationTokenSource.Token);

 }

The event handler just calls the ShowToast method, which then does its thing, as described earlier.

This way, when the list of preferences is saved, the toast notifies the user that all went well.

Advanced Controls120

Did it all go well?
In the code shown, we just assume that it all went well. To do this properly, we’d want ViewModel
to wait for confirmation from the API that the operation was completed successfully, and then
it would send a message to the code-behind, which would then, and only then, display the toast.

Before we go any further, open AppShell.xaml and change the startup as follows:

 <ShellContent

 Title="Home"

 ContentTemplate="{DataTemplate

 view1:PreferencesPage}"

 Route="PreferencesPage" />

Once we get to Chapter 7, we can stop this silliness and just navigate to the page we want.

The effect of all of this is shown in Figure 5.5:

Figure 5.5 – The Preferences page

Styles 121

A few quick things to note in Figure 5.5. The fields on the left have been underlined, indicating that
they are entry objects, not labels, and thus can be modified. The top arrow points to the fact that the
fields are free-form, and the user can enter whatever they want, and the lower arrow points to the toast.

So far, we’ve been setting numerous properties on our UI controls. Often, we’ve had to repeat the
same properties on various instances of the same type of control. There is a better way: styles, which
we’ll cover next.

Styles
Styles allow you to provide a uniform look to your controls by putting all the details in one place.

You create a style for a control type (for example, Button), and that style is applied to all controls of
that type (refer to the Explicit versus implicit styles section). You can also base a style on an existing
style, extending or modifying the original.

Styles can be stored on the page that uses the control, or they can be stored at the application level.
In either case, they are created inside ResourceDictionary, typically declared at the top of the
file. To make them available at the application level, just put them in App.xaml.

Where to put your styles
If you are only going to use the styles on objects on a single page, it makes sense to put the styles
in the resources of that page. If you want to be able to reuse these styles on multiple pages, then
you will want them in App.xaml.

As an example, let’s return to the Login page and create ResourceDictionary and our first styles.
Place this code at the very top of the file, just below the ContentPage element:

 <ContentPage.Resources>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Medium"/>

 <Setter Property="HorizontalOptions"

 Value="Start"/>

 <Setter Property="Margin" Value="10"/>

 <Setter Property="VerticalOptions"

 Value="Center"/>

 <Setter Property="VerticalTextAlignment"

 Value="Center"/>

 </Style>

 </ContentPage.Resources>

Advanced Controls122

You can see that we have created a style for the labels on the page. In that style, we have set a number
of properties with their values. This will be applied to every Label because this is an implicit style,
as described next.

The key to the use of styles is that they greatly simplify the controls they are applied to. For example,
the labels now look like this:

<Label

 Text="User Name" />

They are no longer cluttered with all the style information that has been centralized in
ResourceDictionary. This not only makes for cleaner XAML, but if you later decide to change
one of these values, you do so in one place rather than throughout the page. Thus, the same clean
code guideline that applies to C# (don’t repeat yourself) applies to styles.

There are two types of styles: implicit and explicit. Implicit styles are applied to every control of
TargetType, as we saw earlier. Explicit styles can be applied to controls individually. Let us explore
this in more detail next.

Explicit versus implicit styles

To make a style explicit, you give it a key, as shown here:

<Style TargetType="Label" x:Key="LargeLabel">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalOptions" Value="Start" />

 <Setter Property="Margin" Value="10" />

 <Setter Property="VerticalOptions" Value="Center" />

 <Setter Property="VerticalTextAlignment" Value="Center"

 />

</Style>

<Style TargetType="Label" x:Key="SmallLabel">

 <Setter Property="FontSize" Value="Small" />

 <Setter Property="HorizontalOptions" Value="Start" />

 <Setter Property="Margin" Value="10" />

 <Setter Property="VerticalOptions" Value="Center" />

 <Setter Property="VerticalTextAlignment" Value="Center"

 />

</Style>

Styles 123

You can now pick which of these styles you want to apply to Label based on that key:

<Label

 Text="User Name"

 Style="{StaticResource LargeLabel}"/>

<Label

 Text="Password"

 Style="{StaticResource SmallLabel}"/>

The result is shown in Figure 5.6:

Figure 5.6 – Explicit styles applied

Overriding the style in the control
If you have a style that you want to use on all of your (for example) labels, but you have one
Label that needs one or two properties to be different, one way to handle that is just to make
the change in that Label. Properties assigned directly to the control override those of the
style. On the other hand, if you have sets of controls that need nearly the same properties but
differ in some ways, then you want to use style inheritance, which is covered next.

Style inheritance or BasedOn

The construct for LargeLabel and SmallLabel has a lot of duplication. You can refactor this to
use a base style and then just add the changes in your explicit styles. Here's an example:

<Style TargetType="Label"> [1]

 <Setter Property="FontSize" Value="Medium" />

 <Setter Property="HorizontalOptions" Value="Start" />

 <Setter Property="Margin" Value="10" />

 <Setter Property="VerticalOptions" Value="Center" />

 <Setter Property="VerticalTextAlignment"

 Value="Center" />

Advanced Controls124

</Style>

<Style TargetType="Label" x:Key="BaseExplicitLabel"> [2]

 <Setter Property="FontSize" Value="Medium" />

 <Setter Property="HorizontalOptions" Value="Start" />

 <Setter Property="Margin" Value="10" />

 <Setter Property="VerticalOptions" Value="Center" />

 <Setter Property="VerticalTextAlignment"

 Value="Center" />

</Style>

<Style

 TargetType="Label"

 x:Key="LargeLabel"

 BasedOn="{StaticResource BaseExplicitLabel}"> [3]

 <Setter Property="FontSize" Value="Large" />

</Style>

<Style

 TargetType="Label"

 x:Key="SmallLabel"

 BasedOn="{StaticResource BaseExplicitLabel}">

 <Setter Property="FontSize" Value="Small" />

</Style>

 <Label

 Style="{StaticResource LargeLabel}" [4]

 Text="User Name" />

[1] An implicit label style

[2] A style created to be the base style for other styles

[3] A derived style that uses properties from the base style

[4] Using the derived style

Derived styles
Note that derived styles can add new properties (as was done here), they can override values
in the base style, or both. Notice also that we refactored the styles, but did not have to refactor
Label that uses it.

Summary 125

Summary
In this chapter, we dove deeper into some of the more advanced aspects of .NET MAUI controls. We
looked at the Activity element as well as ProgressBar. We went on to look at moving command
handling into ViewModel and using messages to communicate between ViewModel and View.

We ended the chapter by looking at styles and how they can be used to provide a uniform appearance to
the UI and how we can refactor duplication out of similar styles by using style inheritance (BasedOn).

In the next chapter, we’ll look at how we lay out controls on the page, moving beyond the simple
StackLayouts we’ve been using so far.

Quiz
1. What is the difference between ActivityIndicator and ProgressBar?

2. What is the difference between an event and a command?

3. What is WeakReferenceManager?

4. Why would you use a style?

5. How do you refactor common properties in styles?

You try it
Create a small form that pretends to gather information on the user to create a profile (name, age,
address, and so on). Add an image you can tap on and two buttons: one to accept the entered info
and one to cancel it.

If the user taps on the image, put up a dialog box with a message, but handle the tap itself in ViewModel.

Handle the button clicks in ViewModel. On clicking Cancel, put up a toast acknowledging the
cancellation. On clicking OK, use Snackbar to show what info they have saved, nicely formatted.

6
Layout

In the previous two chapters, we looked at controls – the widgets that ask for and display data – but
widgets need to be positioned on the page, with a process called the layout. Layout is the difference
between an ugly app and a professional-looking one.

There are several layout controls available to you, which we will cover in this chapter:

• Vertical and horizontal stack layouts

• Grid

• Scrolling

• Flex layout

I am not a designer
For a page to look professional, a designer must work with the developer, specifying not only
where to put the controls but also the font size, font, margins, and so on. I am not a designer,
and the pages we’ll create are for illustration purposes only; they will not be pretty.

Technical requirements
The source code for this chapter can be found in the GitHub repository under this branch: https://
github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/
Layouts

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/Layouts
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/Layouts
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/Layouts

Layout128

Stack layouts
Stack layouts allow you to stack one control on top of another or next to one another. They come in
three flavors:

• StackLayout

• VerticalStackLayout

• HorizontalStackLayout

The first of these is for backward compatibility with Xamarin.Forms and is effectively deprecated;
the other two are far more performant.

We’ve seen VerticalStackLayout and HorizontalStackLayout at work already.
As the name indicates, VerticalStackLayout places one control on top of another, while
HorizontalStackLayout places them side by side. Using margins (the space between objects)
and padding (the space around an object), you can tweak a nice enough layout with just these controls:

<VerticalStackLayout x:Name="LoginStackLayout">

 <HorizontalStackLayout WidthRequest="300">

 <Label

 Style="{StaticResource LargeLabel}"

 Text="User Name" />

 <Entry

 HorizontalOptions="End"

 Placeholder="User Name"

 Text="{Binding Name}"

 WidthRequest="150" />

 </HorizontalStackLayout>

 <HorizontalStackLayout WidthRequest="300">

 <Label

 Style="{StaticResource SmallLabel}"

 Text="Password" />

 <Entry

 HorizontalOptions="End"

 IsPassword="True"

 Placeholder="Password"

 Text="{Binding Password}"

 WidthRequest="150" />

 </HorizontalStackLayout>

Grid 129

 <BoxView

 Color="Red"

 HeightRequest="2"

 Margin="0,20"

 WidthRequest="400" />

Here, on the LoginPage page, we start with a VerticalStackLayout object, which will contain
everything below it until the closing </VerticalStackLayout> tag. Immediately, we declare a
HorizontalStackLayout object, which contains a Label (acting as a prompt) and an Entry
(gathering the name from the user).

Below HorizontalStackLayout is a second HorizontalStackLayout and below that
is a BoxView. In short, VerticalStackLayout continues to stack views on top of each other.

While this is fine for a very simple layout, it has its limitations. Working with VerticalStackLayout
and HorizontalStackLayout on complicated layouts becomes difficult after a short while.

Enter the most powerful layout of them all: Grid.

Grid
Nothing comes close to Grid for flexibility, although its basic use is dead simple. A grid consists of
rows and columns. You define the size of each and then fill in the resulting boxes.

By default, all the columns are the same width, and all the rows are the same height. Rows and columns
are identified (by default) by their offset starting at column 0, row 0. You can leave out the 0 (it is the
default value) but I advise against doing so for readability. (This is the same reason I mark private
methods and classes with the private keyword.)

We can recreate the LoginPage page using Grid. Let’s look at the first approximation in full (I’ve
left out the resources section, as it is unchanged):

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 Title="Login Page"

 x:Class="ForgetMeNotDemo.View.LoginPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:behaviors="http://schemas.microsoft.com/dotnet

 /2022/maui/toolkit"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <VerticalStackLayout x:Name="LoginStackLayout"> [1]

 <Grid [2]

Layout130

 ColumnDefinitions="*,*,*" [3]

 RowDefinitions="*,*,*,*,*" [4]

 x:Name="LoginGrid">

 <Label

 Grid.Column="0" [5]

 Grid.Row="0" [6]

 HorizontalOptions="End" [7]

 Margin="5,20,0,10"

 Text="User Name"

 VerticalOptions="Center" [8] />

 <Entry

 Grid.Column="1"

 Grid.ColumnSpan="2" [9]

 Grid.Row="0"

 HorizontalOptions="Center"

 Margin="5,20,0,10"

 Placeholder="User Name"

 Text="{Binding Name}"

 VerticalOptions="End"

 WidthRequest="150" />

 <Label [10]

 Grid.Column="0"

 Grid.Row="1"

 HorizontalOptions="End"

 Margin="5,10"

 Text="Password"

 VerticalOptions="Center" />

 <Entry

 Grid.Column="1"

 Grid.ColumnSpan="2"

 Grid.Row="1"

 HorizontalOptions="Center"

 IsPassword="True"

 Placeholder="Password"

 Text="{Binding Password}"

 VerticalOptions="Start"

Grid 131

 WidthRequest="150" />

 <BoxView

 Color="Red"

 Grid.Column="0"

 Grid.ColumnSpan="3" [11]

 Grid.Row="2"

 HeightRequest="2"

 Margin="0,10"

 WidthRequest="400" />

The next thing to add is the frames:

 <Frame

 BorderColor="Blue"

 CornerRadius="10"

 Grid.Column="0"

 Grid.Row="3"

 HasShadow="True"

 HeightRequest="50"

 WidthRequest="50">

 <Frame.Background>

 <LinearGradientBrush EndPoint="1,0">

 <GradientStop Color="Yellow"
Offset="0.2" />

 <GradientStop Color="Red"

 Offset="0.1" />

 </LinearGradientBrush>

 </Frame.Background>

 </Frame>

 <Frame

 BorderColor="Blue"

 CornerRadius="10"

 Grid.Column="1"

 Grid.ColumnSpan="2"

Layout132

 Grid.Row="3"

 HasShadow="True"

 HeightRequest="50"

 WidthRequest="100">

 <Frame.Background>

 <RadialGradientBrush>

 <GradientStop Color="Yellow"

 Offset="0.2" />

 <GradientStop Color="Red"

 Offset="0.1" />

 </RadialGradientBrush>

 </Frame.Background>

 </Frame>

With that in place, we can add the three buttons and then close Grid and VerticalStackLayout:

 <Button

 BackgroundColor="Gray"

 Command="{Binding SubmitCommand}"

 Grid.Column="0"

 Grid.Row="4"

 Margin="5"

 Text="Submit" />

 <Button

 BackgroundColor="Gray"

 Command="{Binding CreateCommand}"

 Grid.Column="1"

 Grid.Row="4"

 Margin="5"

 Text="Create Account" />

 <Button

 BackgroundColor="Gray"

 Clicked="OnForgotPassword"

 Grid.Column="2"

 Grid.Row="4"

 Margin="5"

 Text="Forgot Password" />

Grid 133

 <Label

 Grid.Column="0"

 Grid.ColumnSpan="3"

 Grid.Row="5"

 Text="

 x:Name="CreateAccount" />

 </Grid>

 </VerticalStackLayout>

</ContentPage>

[1] We’ll put Grid inside a VerticalStackLayout so that we can add the ProgressBar
below the grid (adding it to VerticalStackLayout’s Children collection, which will have
only two members: Grid and ProgressBar).

[2] We declare Grid with the keyword.

[3] We declare three columns of equal size (*,*,*).

“Some have stars upon thars” – Dr. Seuss
Stars don’t make much difference when they are all the same size, but if, for example, we wanted
the first to be twice as big as the others, we would write the following:

ColumnDefinitions="2*,*,*"

In that case, the column would be divided into four equal parts and the first column would
get two of them and the other columns one each. The result is that the first column would be
twice as wide as the others.

[4] Similarly, we declare five rows of equal size.

[5] We place the Label inside column 0.

[6] We place the Label inside row 0.

[7] The horizontal option is with respect to the column the control is in.

[8] The vertical option is with respect to the row the control is in.

[9] A control can span across more than one column. In this case, the entry begins at column 1 and
runs for a column span of 2 (that is, it occupies both column 1 and 2).

[10] Notice that we don’t need a HorizontalStackLayout because the position of the prompt
with respect to the entry is determined by what columns they are in and their horizontal options (for
example, start, center, or end).

Layout134

[11] BoxView wants to stretch across the entire grid and so starts at column 0 and has a column
span of 3.

Notice that nothing else needs to change. I manipulated the margins and vertical options to get the
pixel-perfect alignment I was looking for, but other than that, the XAML remains the same.

One other thing to note is that we have an opportunity to factor out the vertical and horizontal options
and the margins into the styles.

The result of converting the StackLayout into this grid is shown in Figure 6.1.

Figure 6.1 – First grid layout

Notice that the ProgressBar is still shown. It is added to VerticalStackLayout in the code-
behind as it was previously.

Sizing rows and columns

RowHeight and ColumnWidth can be defined in one of three ways:

1. absolute: A value in DIUs

2. auto: Auto-sized based on the cell contents

3. Stars: As shown earlier, with proportional allocation

Grid 135

Currently, the top of the Grid looks like this:

 <Grid [2]

 ColumnDefinitions="*,*,*"

 RowDefinitions="*,*,*,*,*"

We could have used auto to say that each control will take up the amount of room it needs on each row:

 <Grid [2]

 ColumnDefinitions="*,*,*"

 RowDefinitions="auto,auto,auto,auto,auto"

Let’s also set the height of the frames to 150. auto allocates enough room for the newly enlarged
frames, as illustrated in Figure 6.2.

Figure 6.2 – Using auto-sizing

Best practice – minimize use of auto
Microsoft recommends minimizing the use of auto as it is less performant (the layout engine
has to perform additional calculations). That being said, at times, it is very useful, especially
when the size of the object will be determined at runtime.

Layout136

We could rewrite the rows shown before as follows:

<Grid

 ColumnDefinitions="*,*,*"

 RowDefinitions="*,*,auto,auto,50,auto"

The calculation now would be to find the actual size of the three auto rows and add 50
Device-Independent Units, for the fifth row. Then, we take what is left in the grid size, and divide it
equally between the first and second rows. The result is shown in the following figure:

Figure 6.3 – Combining stars, absolute, and auto

As you can see, by mixing and matching, you can create an awful-looking UI. On the other hand,
given to a designer, these three options (absolute, stars, and auto) can be used to create beautiful
UIs with precise control over sizing.

Grid 137

Named rows and columns

In the preceding code, we referred to each row and column by its zero-based offset. Thus, the frames
were in Grid.row[3] in Grid.column[0] and Grid.column[1]. With large grids, this can
become confusing and difficult to manage.

In C#, .NET MAUI offers you the option of naming your rows and columns using an enumeration.
To see this, let’s create an alternative login page, entirely in C#, and then take a look at it.

We’ll simplify the page slightly, taking out BoxView and Frame, to keep our focus on the manipulation
of the rows and columns.

First, we are going to define enumerations, which will serve as the names of our rows and
columns, respectively:

enum Row

{

 Username,

 Password,

 Buttons

}

enum Column

{

 Submit,

 Create,

 Forgot

}

What you use for these names is entirely up to you; typically, you’ll use something that describes what
goes into those rows and columns. Thus, here, my first row will hold Username, my second row will
hold Password, and my third row will hold our three Buttons.

Notice that the columns are named after the type of buttons. That makes it difficult (or confusing)
to use those columns with these rows. We’ll solve that by falling back to using offsets on those rows.

Here is the complete class, which I named LoginCS.cs:

class LoginCS : ContentPage

{

 public LoginCS() [1]

 {

Layout138

 BindingContext = new LoginViewModel();

 Content = new VerticalStackLayout() [2]

 {

 Children =

 {

 new Grid() [3]

 {

 RowDefinitions = GridRowsColumns

 .Rows.Define(

 (Row.Username,Auto), [4]

 (Row.Password,Auto),

 (Row.Buttons, Auto)

),

 ColumnDefinitions = GridRowsColumns

 .Columns.Define(

 (Column.Submit,Star), [5]

 (Column.Create, Star),

 (Column.Forgot, Star)

),

 Children =

 {

 new Label()

 .Text("User name")

 .Row(Row.Username)

 .Column(0), [6]

 new Entry()

 .Placeholder("User name")

 .Bind(Entry.TextProperty,

 nameof(LoginViewModel

 .Name))

 .Row(Row.Username)

 .Column(1)

 .ColumnSpan(2),

Grid 139

 new Label()

 .Text("Password")

 .Row(Row.Password)

 .Column(0),

 new Entry {IsPassword = true}

 .Placeholder("Password")

 .Bind(Entry.TextProperty,

 nameof(LoginViewModel

 .Password))

 .Row(Row.Password)

 .Column(1)

 .ColumnSpan(2),

 new Button()

 .Text("Submit")

 .Row(Row.Buttons).Column

 (Column.Submit) [7]

 .Margin(5)

 .BindCommand(nameof

 (LoginViewModel

 .SubmitCommand)),

 new Button()

 .Text("Create Account")

 .Margin(5)

 .Row(Row.Buttons).Column

 (Column.Create)

 .BindCommand(nameof

 (LoginViewModel

 .CreateCommand)),

 new Button()

 .Margin(5)

 .Text("Forgot Password")

 .Row(Row.Buttons)

 .Column(Column.Forgot)

Layout140

 }

 }

 }

 };

 }

}

[1] The work is done in the constructor

[2] As in the XAML, we start with VerticalStackLayout

[3] Grid is a child of VerticalStackLayout

[4] We define the first row to use the enumerated name and the sizing of auto

[5] We define the first column to use the enumerated column name and the sizing of a star (equivalent
to 1 *)

[6] Notice that while the row name is meaningful and I therefore use it, the column name would not
be meaningful and so I just use the offset

[7] Here, both the row name and the column name are meaningful, and it is much easier to figure out
what is going on by using these names rather than the offsets

There is no doubt that .Row(Row.Buttons).Column(Column.Create) is much easier to
understand than Row[4].Column[1].

If you want to use this page, don’t forget to point to your new page, LoginCS.cs, in AppShell.xaml.

Oops
The Submit button will crash the program as the Submit command in LoginViewModel
is looking for LoginPage.LoginProgressBar. We could fix this, but the goal here was
to show that you can re-write LoginPage in C#.

We’ll stay with the original LoginPage.xaml for the rest of this book, as that is more complete.

ScrollView
Often, you will have more data to show than can fit on the page. This is especially frequent when
working with lists, but can also be true for a form. The ScrollView control wraps around your
other controls and allows them to be scrolled.

FlexLayout 141

We saw the use of ScrollView in PreferencesPage, where we wrapped VerticalStackLayout
in a ScrollView control:

<ScrollView>

 <VerticalStackLayout>

The number of preferences was just more than would show on a phone screen all at once. You can see
the scroll effect a bit more if you add some more preferences to PreferenceService.

FlexLayout
FlexLayout is similar to VerticalStackLayout and HorizontalStackLayout with
one crucial distinction: if you are using one of the stack layouts and the items extend past the end of
the page (and you don’t use ScrollView), anything that doesn’t fit won’t be rendered.

FlexLayout – seem familiar?
FlexLayout might be familiar if you’ve worked with CSS. FlexLayout is very similar to
the Flexible Box Layout and, in fact, was based on the CSS module.

You can see the effect of FlexLayout by removing ScrollView from PreferencesPage. All
of the remaining preferences are inaccessible.

With FlexLayout, the items are wrapped to the next row or column. You define which by setting
the direction in FlexLayout. The possible directions are as follows:

• Row: Stacks children horizontally

• Row-reverse: Stacks horizontally in reverse order

• Column: Stacks children vertically

• Column-reverse: Stacks vertically in reverse order

Remove VerticalStackLayout and replace it with FlexLayout. Set the direction to Row:

<FlexLayout

 Direction="Row">

Figure 6.4 shows the result. It is ugly but it conveys what is happening. The excess items are
wrapped horizontally.

Layout142

Figure 6.4 – Mangling your screen with FlexLayout

Let’s see whether we can come up with a better, less ugly example.

Wrap
One of the properties of FlexLayout is Wrap, which defaults to no-wrap. Most of the time,
however, you will want it to wrap, and you will end up with this wonderful syntax:

Wrap = "Wrap"

FlexLayout 143

We’ll return to the Login page and, just before the end, we’ll add a HorizontalStackLayout
containing four buttons that won’t quite fit, as shown in Figure 6.5.

Figure 6.5 – The buttons don’t fit in the row

Now, we’ll replace HorizontalStackLayout with FlexLayout with Wrap set to Wrap:

<FlexLayout

 Direction="Row"

 Wrap="Wrap">

FlexLayout sees that the fourth button won’t fit and wraps it to the next row, as shown in the
following figure:

Layout144

Figure 6.6 – FlexLayout wraps the buttons

.NET MAUI has added a BindableLayout object, which, frankly, I don’t find terribly useful.

Summary
In this chapter, we looked at the principal layouts used in designing .NET MAUI apps. The most powerful
and flexible of these is Grid, although HorizontalStackLayout and VerticalStackLayout
are often used for somewhat simpler layouts.

In the next chapter, we will examine how to move from page to page and how to send data as we move.
We will look at the Shell and at routing, the essential aspects of page navigation.

Quiz 145

Quiz
1. What are the three ways you can define the width of a column in a grid?

2. If a grid’s column definition looks like this – (2*, auto, *, 100) – how will the space
be divided?

3. If a Button object is defined like this:

new Button()

 .Margin(5)

 .Text("Forgot Password")

 .Row(Row.Buttons).Column(Column.Forgot)

What do we know about its position?

4. What is the advantage of Grid over using VerticalStackLayout and
HorizontalStackLayout?

5. Why is BindableLayout less useful than, for example, CollectionView?

You try it
Create a page that looks like a standard four-function calculator. Use the layout shown in Figure 6.7.
Extra credit: implement the functionality and display the result in a Label.

Figure 6.7 – Four-function calculator

Part 2 –
Intermediate Topics

With the basics under our belt, we’ll go on to look at a number of intermediate topics, including how
you navigate from one page to the next and how you store data, both for a user’s preferences and in a
relational database. We’ll end with the most important topic – creating unit tests.

This part has the following chapters:

• Chapter 7, Understanding Navigation

• Chapter 8, Storing and Retrieving Data

• Chapter 9, Unit Testing

7
Understanding Navigation

Until now, we’ve been working with one page at a time, with no way to get to a page except by setting
it in AppShell.xaml. Of course, this will not do for a real application, so in this chapter, we’ll look
at various options for navigating from page to page. As you’ll see, .NET MAUI uses shell navigation,
a process we’ll look at in some depth.

This chapter includes the following topics:

• Exploring the TabBar

• Creating the About and Buddies pages

• Shell navigation

• Routing

• Passing values from page to page

Technical requirements
To get the most out of this chapter, you’ll need a copy of Visual Studio. The source code for the completed
code shown in this chapter can be found here: https://github.com/PacktPublishing/.
NET-MAUI-for-C-Sharp-Developers/tree/Navigation. If you want to follow along,
start with the code from the completion of Chapter 6.

Exploring the TabBar
ForgetMeNot’s principal form of navigation will be the TabBar control. A Tab Bar is a way to jump
to a specific page without going through other pages. It consists of icons, and sometimes descriptive
text, across the bottom of every page, as shown in the following screenshot:

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/Navigation
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/Navigation

Understanding Navigation150

Figure 7.1 – Tab Bar in the completed project

The four tabs at the bottom, as shown in Figure 7.1, will take the user directly to the respective page.

The Home page
Here you see the tabs we created on MainPage, which we created in Chapter 4, one of which
we’ve titled Home.

Creating the About and Buddies pages 151

You create TabBar in AppShell.xaml. Within the TabBar tags, you provide one ShellContent
element for each page. ShellContent has a Title property (the text displayed), an Icon property
(the image displayed), and ContentTemplate, which specifies the content for this tab:

<TabBar >

 <ShellContent

 Title="Home"

 ContentTemplate="{DataTemplate view:MainPage}"

 Icon="icon_home" />

 <ShellContent

 Title="About"

 ContentTemplate="{DataTemplate view:About}"

 Icon="icon_about" />

 <ShellContent

 Title="Preferences"

 ContentTemplate="{DataTemplate view:Preferences}"

 Icon="icon_prefs" />

 <ShellContent

 Title="Buddies"

 ContentTemplate="{DataTemplate view:BuddyList}"

 Icon="icon_buddies" />

</TabBar>

Next, we need to create the pages that each ContentTemplate points to so that we can see TabBar
at work.

Creating the About and Buddies pages
To see this navigation work, you’ll need to add the missing pages: About and Buddies. Creating the
About page is very straightforward. Right-click on the View folder and choose Add New Item. If
needed, expand the AddNewItem dialog.

From the left panel, choose .NET MAUI and on the right, choose .NET MAUI ContentPage (XAML).
At the bottom of the dialog, put in the name for the new page: AboutPage.xaml, as shown in
Figure 7.2:

Understanding Navigation152

Figure 7.2 – Creating AboutPage

The About page is very simple and does not require any new types of controls.

Assembling the About page

Let’s assemble the About page quickly, as there is nothing new here. We’ll need the XAML to display
the current version, and so on, and we’ll need the code-behind file to establish BindingContext.
Finally, we’ll need ViewModel. Eventually, the About page will ask the service for its version number,
but for now, we’ll hardcode that:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/

 2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ForgetMeNotDemo.View.AboutPage"

 Title="About">

 <VerticalStackLayout Margin="10" Spacing="10">

 <HorizontalStackLayout Spacing="10">

 <Label

 FontAttributes="Bold"

 FontSize="22"

 Text="About this app"

 VerticalOptions="End" />

 <Label

 FontSize="22"

 Text="v0.1"

Creating the About and Buddies pages 153

 VerticalOptions="End" />

 </HorizontalStackLayout>

 <HorizontalStackLayout Spacing="10">

 <Label

 FontAttributes="Bold"

 FontSize="22"

 Text="Api Version"

 VerticalOptions="End" />

 <Label

 FontSize="22"

 Text="{Binding ApiVersion}"

 VerticalOptions="End" />

 </HorizontalStackLayout>

 <Label

 HeightRequest="60"

 Text="This app is written in XAML and C# with

 .NET MAUI by Jesse Liberty and Rodrigo Juarez."

 VerticalTextAlignment="Center" />

 <Label

 HeightRequest="60"

 Text="Concept and original design by Robin

 Liberty"

 VerticalTextAlignment="Center" />

 <Label FontSize="Small" Text="Icons from IconScout:

 https://iconscout.com" />

 </VerticalStackLayout>

</ContentPage>

The code-behind file looks like this (for now):

 public AboutPage()

 {

 BindingContext = new AboutViewModel();

 InitializeComponent();

 }

Understanding Navigation154

And, finally, ViewModel looks like this (for now):

namespace ForgetMeNotDemo.ViewModel;

[ObservableObject]

public partial class AboutViewModel

{

 [ObservableProperty] private string apiVersion;

 public AboutViewModel()

 {

 apiVersion = "1.0";

 }

}

The About page currently looks like this:

Figure 7.3 – The About page

That will give us something to work with.

Creating the About and Buddies pages 155

Next, we need a BuddiesPage, that is, a page that lists all the user’s friends and relatives. Each Buddy
will have a list of preferences that we can use when it is time to buy them a present.

For now, we’ll just use the out-of-the-box page that we get when we right-click on View and add a
new .NET MAUI XAML page, as shown in Figure 7.4:

Figure 7.4 – Creating the Buddies page

Next, open BuddiesPage.xaml and make one small change. Where the Text field of the Label
control says, Welcome to .NET MAUI! change it to Buddies Page so that we’ll know where
we are when we navigate there. If you want, add a space between the words in the title as well:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/

 2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ForgetMeNotDemo.View.BuddiesPage"

 Title="Buddies Page">

 <VerticalStackLayout>

 <Label

 Text="Buddies Page"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 </VerticalStackLayout>

</ContentPage>

Next, create BuddiesViewModel by right-clicking on the ViewModel folder and choosing Add
| Class.

Understanding Navigation156

Finally, we need to tell the app where to start. We’ll do that in App.xaml.cs where we will set
MainPage to be the new AppShell (which is how we’ll kick off the program and set ourselves up
for shell navigation as described):

namespace ForgetMeNotDemo;

public partial class App : Application

{

public App()

{

InitializeComponent();

MainPage = new AppShell();

}

}

Here is what AppShell.xaml should look like now:

<?xml version="1.0" encoding="UTF-8" ?>

<Shell

 Shell.FlyoutBehavior="Disabled"

 x:Class="ForgetMeNotDemo.AppShell"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:local="clr-namespace:ForgetMeNotDemo"

 xmlns:view="clr-namespace:ForgetMeNotDemo.View"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <TabBar>

 <ShellContent

 Title="Home"

 ContentTemplate="{DataTemplate view:MainPage}"

Creating the About and Buddies pages 157

 Icon="icon_home" />

 <ShellContent

 Title="About"

 ContentTemplate="{DataTemplate view:AboutPage}"

 Icon="icon_about" />

 <ShellContent

 Title="Preferences"

 ContentTemplate="{DataTemplate

 view:PreferencesPage}"

 Icon="icon_prefs" />

 <ShellContent

 Title="Buddies"

 ContentTemplate="{DataTemplate

 view:BuddiesPage}"

 Icon="icon_buddies" />

 </TabBar>

</Shell>

One more thing. Notice that each tab has an icon. To make that work and look as intended, you’ll
either need to find icons online or get them by checking out the source code for this chapter in the
Navigation branch.

In either case, simply copy the images to the resources\image folder of your project, replacing
the three dots with the full path on your computer.

Image support
Those of you who have worked with Xamarin.Forms will be delighted to know that the
days of creating different size images and distributing them to the various folders for both iOS
and Android are now over. Put the .svg file into the images folder and .NET MAUI will
do all the rest for you! (You can use a .png file, but it won’t scale as nicely. To make the point,
I made our flower image a .png file.)

Understanding Navigation158

Run the application and click on the various tabs. You should see it navigating to the various pages
we’ve created. Notice in Figure 7.5 that the current tab lights up – you get the effect for free and you
do not have to create two icons, one for each of the currently selected and not selected icons.

Figure 7.5 – The Home tab “lit up”

Now that our tabs and pages are in place, it is time to look at how you move from one page to another
when there aren’t tabs for the pages you want to navigate to.

Shell navigation 159

Shell navigation
That would be all you need to know about navigation if your app was just going to have the four pages
that we’re accessing by the TabBar. Of course, you’ll almost certainly have more pages than that, and
you’ll want a way to navigate from one page to another.

To see navigation from one page to another without using TabBar, we’ll need another page to navigate
to. Let’s create the BuddyDetailsPage, which we’ll navigate to from the Buddies page.

Once again, take the out-of-the-box page, but change Label to say Buddy Details Page:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/

 2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ForgetMeNotDemo.View.BuddyDetailsPage"

 Title="Buddy Details Page">

 <VerticalStackLayout>

 <Label

 Text="Buddy Details Page"

 VerticalOptions="Center"

 HorizontalOptions="Center" />

 </VerticalStackLayout>

</ContentPage>

Next, return to the Buddies page, add a Button that says Go to details and give it the
GoToDetailsCommand command:

 <Button Text="Go to details"

 Command="{Binding GoToDetailsCommand}" />

In the BuddiesViewModel page, we’ll need to handle the GoToDetails command. The goal of our
handler will be to navigate to BuddyDetails. We do that with shell navigation. Here’s the code to do so:

[RelayCommand]

private async Task GoToDetails()

{

 await Shell.Current.GoToAsync("buddydetailspage");

}

Understanding Navigation160

BindingContext
Remember that for the GoToDetails command to work, you must bind the XAML to
ViewModel by setting BindingContext in the code-behind file.

In this common construct, you pass in the page name to the GoToAsync static method on
Shell.Current. The key question is, how does it know what buddydetailspage is, given that
buddydetailspage is a string? The answer to that lies in routing, which we’ll cover next.

Routing
In .NET MAUI, you register your routes in AppShell.xaml.cs. For example, to connect the
buddydetailspage string to the actual BuddyDetailsPage, you would add this:

Routing.RegisterRoute("buddydetailspage",

 typeof(BuddyDetailsPage));

We’ll create a routing entry for all of the pages, including the ones we can access through tabs. This
will give us the greatest flexibility:

public partial class AppShell : Shell

{

 public AppShell()

 {

 InitializeComponent();

 Routing.RegisterRoute("buddiespage",

 typeof(BuddiesPage));

 Routing.RegisterRoute("buddydetailspage",

 typeof(BuddyDetailsPage));

 Routing.RegisterRoute("aboutpage", typeof(AboutPage));

 Routing.RegisterRoute("preferencespage",

 typeof(PreferencesPage));

 Routing.RegisterRoute("loginpage", typeof(LoginPage));

 Routing.RegisterRoute("mainpage", typeof(MainPage));

 }

}

Passing values from page to page 161

Now the routing works as if by magic. You tell it where you want to go, passing in the route, and .NET
MAUI handles the navigation. Start up the program if it isn’t already running and tap on the Buddies
tab. On the Buddies page, tap on the Details button, and hey presto! You should be on the Buddy
Details page. Easy peasy.

It’s great to be able to move from one page to another, but often the first page has data that the second
page needs. So, let’s look at how you send that data to the second page.

Passing values from page to page
When navigating from one page to another, you’ll often want to pass in a value. There are a few ways
to do this; here are the two most common:

1. Using the url (?) syntax as you might with a URL to navigate to a page on the web

2. Using navigation parameters with a dictionary

Passing values with the url (?) syntax

Let’s return to the Buddies page. Right now, the Button has a GoToDetailsCommand command.
But the Details page needs to know which Buddy to show details about.

We’ll modify RelayCommand in ViewModel to pass in BuddyId. To make this work, we need
a Buddy object (which will have the Id). However, Buddy is just one of the types of users of this
program, so let’s start by defining the User type:

[ObservableObject]

public partial class User

{

 [ObservableProperty]

 private string name;

 [ObservableProperty] [1]

 private string id;

 [ObservableProperty]

 private List<Buddy> buddies; [2]

 [ObservableProperty]

 // private List<Invitation> invitations; [3]

 [ObservableProperty]

Understanding Navigation162

 private List<Preference> preferences; [4]

}

[1] Here is the Id property we’ll need.

[2] A user may have a collection of buddies (we’ll come back to this).

[3] A user may have a collection of invitations, which are sent out to potential buddies (we’ll
come back to this too).

[4] The user has a list of preference objects, as we’ve seen earlier.

The Buddy class derives from the User class. Here it is in full, though we won’t be using most of
these properties for now:

public partial class Buddy : User

{

 [ObservableProperty] private string emailAddress;

 [ObservableProperty] private string? phoneNumber;

 [ObservableProperty] private string?

 mailingAddressLine1;

 [ObservableProperty] private string?

 mailingAddressLine2;

 [ObservableProperty] private string? website;

 [ObservableProperty] private string? twitter;

 [ObservableProperty] private string? facebook;

 [ObservableProperty] private string? instagram;

 [ObservableProperty] private string? linkedIn;

 [ObservableProperty] private string? venmoName;

 [ObservableProperty] private DateTime buddySince;

}

Inheriting ObservableObject
Notice that Buddy is not marked with the ObservableObject attribute. That is because
it inherits from User, which is marked as ObservableObject.

Passing values from page to page 163

We will want to give the new page the Id of the Buddy object we’re passing in. We can do that using
either of the methods for passing data (for example, the URL approach or the dictionary).

Passing the Buddy Id

Returning to the Buddies page, there are two ways to get Id to the BuddiesDetail page. The first is
just to pass Id using the ? syntax:

private async Task GoToDetails()

{

 await Shell.Current.GoToAsync

 ($"buddydetailspage?id={Id}");

}

If you want to pass two properties, for example, Id and Name, you concatenate them with &&. This
should all be familiar to you from URLs you might use in a browser:

private async Task GoToDetails()

{

 await Shell.Current.GoToAsync

 ($"buddydetailspage?id={Id}&&name={"BuddyName"});

}

This won’t work if we don’t have Id and Name in BuddiesViewModel, so let’s add that here:

public partial class BuddiesViewModel

{

 [ObservableProperty] private string id = "001";

 [ObservableProperty] private string name = "jesse";

The call to GoToAsync will change pages to BuddyDetailsPage and send the parameters to the
associated ViewModel (BuddyDetailsViewModel).

QueryProperty

We mark up the receiving ViewModel with the QueryProperty attribute along with the name
of the property to associate it with ViewModel and the string used in the GoToAsync method.

Understanding Navigation164

To make that clearer, let’s create BuddyDetailsViewModel, and mark it as ObservableObject.
We’ll give it two properties: Id and Name:

[ObservableObject]

public partial class BuddyDetailsViewModel

{

 [ObservableProperty] private string id;

 [ObservableProperty] private string name;

}

We want the first parameter we passed in (id) to be assigned to the Id property, and we want the second
parameter we passed in to be assigned to the Name property. For that, we use the QueryProperty
attribute (placed above the class):

using CommunityToolkit.Mvvm.ComponentModel;

namespace ForgetMeNotDemo.ViewModel;

[ObservableObject]

[QueryProperty(nameof(Id), "id")]

[QueryProperty(nameof(Name), "buddyname")]

public partial class BuddyDetailsViewModel

{

 [ObservableProperty] private string id;

 [ObservableProperty] private string name;

}

Now that you are comfortable with the two ways to pass data, let’s take a look at how we can integrate
that into the flow of the program.

Putting it together

On the Buddies page, the user clicks on GoToDetails.

This fires the GoToDetails relay command in BuddiesViewModel.

Passing values from page to page 165

That method calls the following:

await Shell.Current.GoToAsync

 ($"buddydetailspage?id={{Id}}&&buddyname={{Name}}");

This call to GoToAsync transfers us to BuddyDetailsPage, but passes in the two parameters
(Id and Name) to BuddyDetailsViewModel!

BuddyDetailsViewModel parses the QueryProperty attributes and distributes the values
to the associated properties.

The net effect is that you are now on BuddyDetailsPage with the Id and Name properties in the
associated ViewModel populated with values.

To see this at work, go to the BuddyDetailsPage.xaml file and add two Label controls, one
bound to Id and the other to Name.

Here’s the XAML page:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 Title="Buddy Details Page"

 x:Class="ForgetMeNotDemo.View.BuddyDetailsPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <VerticalStackLayout>

 <Label

 HorizontalOptions="Center"

 Text="Buddy Details Page"

 VerticalOptions="Center" />

 <Label Text="{Binding Id}"/>

 <Label Text="{Binding Name}"/>

 </VerticalStackLayout>

</ContentPage>

Remember to set BindingContext in the code-behind page.

Run the program and click on the Buddies tab. On the Buddies page, click on GoToDetails You will
be transferred to the BuddiesDetails page, and the two values will be displayed.

Understanding Navigation166

Stop right there
Make sure you understand how all this hangs together before going ahead. If necessary, re-read
starting with the Passing values from page to page section.

Passing values with a dictionary

At times, you will want to pass an entire object (or more) to the receiving ViewModel. You do this
by instantiating a dictionary where the key is a string, and the value is an object.

Let’s revise GoToDetails to take an entire Buddy object. First, we need to create a Buddy object
and put it into BuddyViewModel:

[ObservableProperty] private Buddy rodrigo = new Buddy

{

 Id = "002",

 Name = "Rodrigo Juarez",

 Website = "https://jesseliberty.com"

};

Next, we need to create our dictionary. We can pick any arbitrary string as the key, and pass in the
Buddy object (rodrigo) that we just created:

[RelayCommand]

private async Task GoToDetails()

{

 var navigationParameter = new Dictionary<string, object>

 {

 {"TheBuddy", Rodrigo}

 };

 await Shell.Current.GoToAsync($"buddydetailspage",

 navigationParameter);

}

Passing values from page to page 167

Once again, we are redirected to the BuddyDetails Page (based on the routing) but this time, the
Buddy object itself is passed in. At the top of the BuddyDetailsPage, we indicate which Buddy object
field to assign the incoming Buddy to, and we use the key from the dictionary:

[ObservableObject]

[QueryProperty(nameof(MyBuddy), "TheBuddy")]

public partial class BuddyDetailsViewModel

{

We’ll add three properties for the page to bind to:

[ObservableProperty] private string id;

[ObservableProperty] private string name;

[ObservableProperty] private string? website;

Notice that website is a nullable string. This is because it is marked as nullable in the Buddy
definition. To make this work, you’ll want to enable nullable, at least on this page if not for the project.

The easiest way to manage the incoming Buddy object is as follows:

private Buddy myBuddy;

public Buddy MyBuddy

{

 get => myBuddy;

 set

 {

 Id = value.Id;

 Name = value.Name;

 Website = value.Website;

 }

}

If you go to BuddyDetailsPage.xaml and add a label whose text binds to website, the result
will be as shown in Figure 7.5:

Understanding Navigation168

Figure 7.6 – The Buddy Details page after passing in the Buddy object

Putting it together

This can, at first, be confusing enough that it is worth going through the flow step by step.

In BuddiesPage, the user clicks on GoToDetails This fires GoToDetailsCommand, which is
handled in BuddiesViewModel.

In ViewModel, we have a Buddy property (as defined in the Models folder). The identifier for
that Buddy object is rodrigo, and three of its fields are initialized.

We then assemble a dictionary to use as the parameter to the GoToAsync method. We pass in
the name of the page we want to navigate to (as recorded in the AppShell.xaml.cs file in the
Routing.RegisterRoute method).

We also pass in the dictionary we just created.

.NET MAUI navigates to the page, and our dictionary is routed to the associated ViewModel
(BuddyDetailsViewModel). There, the QueryProperty attribute associates the MyBuddy
property with queryid, which we used in BuddiesPage.

The property it matches is a Buddy type, so we can set the local properties with the properties from
the Buddy object passed in (value).

Since BuddyDetailsPage has Labels that bind to these properties in ViewModel, the right
things are displayed.

Summary 169

Summary
In this chapter, we have focused on how you can move from one page to another without using
TabBar, by using shell navigation and routesinstead.. We also looked at how you can pass data from
the first page to the second using either URL syntax or by passing a dictionary containing the object
or values you want to send.

In the next chapter, we will examine storing and retrieving data.

Quiz
1. Where do you define TabBar?

2. What are the three properties of TabBar ShellContent?

3. Where are routes registered?

4. What is the method for navigating to another page?

5. What are the ways we’ve seen to pass data to a page?

You try it
Modify RelayCommand Submit in LoginViewModel to display the progress bar and then
navigate to the Buddies page. Pass in the username and password, first as strings, then as a dictionary.
Temporarily modify the Buddies page to display the values passed in.

8
Storing and Retrieving Data

You now have all the fundamentals to create and navigate pages, layouts, and the controls used to
populate pages. Congratulations! You are now a .NET MAUI programmer.

This chapter begins the intermediate section of the book, in which you will see how to store and
retrieve data and then create unit tests – both critical aspects of writing real-world and, especially,
enterprise apps.

Programs interact with data, and most need to store that data after an app closes and restore it as
needed when the app resumes. In this chapter, we will consider two variations on this – long-term
persistence of user preferences and long-term database storage.

We will cover the following topics in this chapter:

• Storing user preferences
• Storing to a database on your device

Technical requirements
To follow along with this chapter, you will need Visual Studio. You will also install another NuGet
package, as shown later in this chapter.

The source code for the finished code in this chapter can be found here: https://github.com/
PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/persistence.
To follow along, you will need to use the code from the previous chapter.

Storing user preferences
Most apps allow a user to set preferences that can be stored on a phone and retrieved, typically when
the app starts. .NET MAUI provides a service for this, easily storing key/value pairs, such as theme
preferences, the last date used, the login name, and so on.

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/persistence
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/persistence

Storing and Retrieving Data172

.NET MAUI provides the IPreferences interface to help store these preferences. With this, and
the associated Preferences class (both in the Microsoft.Maui.Storage namespace), you
can store string keys and values of any of the following types:

• Boolean

• Double

• Int (int32, single, and int64)

• String

• DateTime

Persisting DateTime
DateTime values are stored as 64-bit integers and use the ToBinary and FromBinary
methods to encode and decode respectively.

Let’s create a UserPreferences page with a short form to gather a user’s preferences. We’ll also add
Button, which will display all the saved preferences and allow the user to delete one or all of them.

Name collisions
We have a preferences page, which may cause a problem because we want to use the built-
in Preferences object. To solve this, go to PreferencesViewModel and rename
List<Preference> preferenceList. There should be no other conflicts. The safest
way to rename is to use the Visual Studio rename functionality, which you can get to by putting
your cursor on the name and entering Control-R R. After you rename, you may have to
manually rename ObservableProperties, depending on the latest update to Visual Studio.

The new UserPreferences page will gather three preferences from the user, which are as follows:

• The user’s display name

• The preferred theme

• Whether the app can be used on cellular or Wi-Fi only

Light and dark themes
It has become common in apps to offer a user light and dark themes. In .NET MAUI, you can
offer the user the choice, or if you are ambitious, you can create your own themes.

We will gather but not implement a user’s preferences relating to light and dark themes.

Storing user preferences 173

Here is the UserPreferences page:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 Title="User Preferences"

 x:Class="ForgetMeNotDemo.View.UserPreferencesPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <VerticalStackLayout>

 <Grid

 ColumnDefinitions="*,*"

 RowDefinitions="*,*,*,*">

 <Label

 Grid.Column="0"

 Grid.Row="0"

 Text="Display Name" />

 <Entry

 Grid.Column="1"

 Grid.Row="0"

 Placeholder="Your name as you want it

 displayed"

 Text="{Binding DisplayName}" />

Having gathered the user’s display name, we can go on to ask them which of the two mutually exclusive
themes they’d like. To do so, we will use RadioButtonGroup and two RadioButtons, initializing
Light to be selected:

 <Label

 Grid.Column="0"

 Grid.Row="1"

 Text="Theme" />

 <HorizontalStackLayout

 Grid.Column="1"

 Grid.Row="1"

 RadioButtonGroup.GroupName="{Binding

 ThemeGroupName}" [1]

 RadioButtonGroup.SelectedValue="{Binding

 ThemeSelection}"> [2]

Storing and Retrieving Data174

 <RadioButton Content="Dark" />

 <RadioButton

 Content="Light"

 IsChecked="True" /> [3]

 </HorizontalStackLayout>

We now want to ask the user whether the app should only be used when connected to Wi-Fi. We can
do this with a switch control, where on indicates WiFi only is true:

 <Label

 Grid.Column="0"

 Grid.Row="2"

 Text="Wifi Only?" />

 <Switch [4]

 Grid.Column="1"

 Grid.Row="2"

 HorizontalOptions="Start"

 IsToggled="{Binding WifiOnly}"

 OnColor="Green"

 ThumbColor="Blue" />

 <Button

 Command="{Binding SavePreferencesCommand}"

 Grid.Column="0"

 Grid.ColumnSpan="2"

 Grid.Row="3"

 HorizontalOptions="Center"

 Text="Save" />

 </Grid>

 </VerticalStackLayout>

</ContentPage>

[1] Here, we introduce a new control, RadioButton. Radio buttons are in either implicit or explicit
groups. Implicit groups are created by putting all the RadioButtons into the same container (for
example, VerticalStackLayout). Explicit groups are given GroupName, as we see here.

[2] The user’s choice is recorded by the SelectedValue property.

[3] When defining RadioButtons, you can (and should) set exactly one to IsChecked=true.

[4] The switch control toggles off and on (false and true).

Storing user preferences 175

Now that we know how to gather the information the user wants to save, let’s take a look at the
lightweight mechanism provided by .NET MAUI to do so.

UserPreferencesViewModel

As you might expect, the first thing we’ll do is create properties for the bound controls:

[ObservableObject]

public partial class UserPreferencesViewModel

{

 [ObservableProperty] private string displayName;

 [ObservableProperty] private string themeSelection;

 [ObservableProperty] private bool wifiOnly;

 public string ThemeGroupName => "Theme";

Next, we need to handle the SavePreferences command. We do this using the .NET MAUI
Preferences object, calling the static Set method:

[RelayCommand]

public async Task SavePreferences()

{

 Preferences.Default.Set("DisplayName", displayName);

 Preferences.Default.Set("ThemeSelection",

 themeSelection);

 Preferences.Default.Set("WifiOnly", wifiOnly);

}

.NET MAUI will handle the persistence for us.

Now that we’ve created the page, let’s set up navigation to get to it.

Navigating to UserPreferences

We need a way to get to our new page. A typical place to put this would be an About page. Let’s add
Button as the last item in VerticalStackLayout:

<Button

 Command="{Binding OpenPreferencesCommand}"

 Text="Preferences"

 WidthRequest="150"

 Margin="10,50,10,0"/>

Storing and Retrieving Data176

The OnPreferences command simply navigates to our new page:

[RelayCommand]

public async Task OpenPreferences()

{

 await Shell.Current.GoToAsync("userpreferences");

}

Make sure you register the userpreferences page in AppShell before invoking this method.

The page isn’t pretty, but it is ready to gather a user’s preferences, as shown in the following figure:

Figure 8.1 – The preferences page

A user is now able to set their preferences. The next time they start up the app, we’ll want to retrieve
those preferences and set the app accordingly.

Retrieving the preferences

When a user closes the app, the preferences are preserved. The next time we return to the preferences page,
we should see the preferences restored. We accomplish this using the Get method on Preferences.
Default.

The Get method takes two parameters, the key and a default value. We’ll put this in the ViewModel
constructor so that the preferences page is populated when it is displayed:

public UserPreferencesViewModel()

{

 displayName = Preferences.Default.Get("DisplayName",

 "Unknown");

Storing user preferences 177

 themeSelection = Preferences.Default.Get

 ("ThemeSelection", "Light");

 wifiOnly = Preferences.Default.Get("WifiOnly", false);

}

Note that the first argument to Get is the key, as defined in the Set method in the SavePreferences
method. The second argument is the default value that will be provided if the key is not present.

Checking for a key
While you don’t have to check that a key exists before trying to retrieve it, there are times
when you’ll want to differentiate between the value you get back being the default value or the
value that is actually stored (for example, is WiFiOnly false because it really is false, or
because that key doesn’t exist and you received the default value?).

To manage this, you can use the ContainsKey method on Preferences.Default:

bool knowsWifi = Preferences.DefaultContainsKey("WifiOnly");

The user can now store their preferences, and in theory, they can be restored. Let’s make sure that
this is working.

Testing the persistence

To see that this works, navigate to the UserPreferences page by way of the About page, and fill in the
three preferences. Then, stop the program and restart it. When you return to the UserPreferences
page, you should see that your entered values have been restored.

Clear
If you want to clear a specific UserPreference, use the Remove method:

Preferences.Default.Remove("DisplayName");

To remove them all, use the Clear method:

Preferences.Default.Clear()

The Preferences interface is designed to hold simple data in key/value pairs. Microsoft warns
against storing long strings, as it may negatively affect performance. If you need to store more
complex or larger data, you’ll want to use a database, and the database of choice for many .NET MAUI
developers is SQLite.

The lightweight persistence mechanism is great for storing relatively short strings and other primitives,
but if you are going to store substantial data, you’ll need a real database.

Storing and Retrieving Data178

Storing to a database on your device
There are a couple of contenders for storing data on your device. The most popular is SQLite, which
is an open source, small, fast, and highly reliable database. It is the most used database in the world
and is built into all mobile phones and most computers.

Installing SQLite

To get started, install the latest version of the sqlite-net-pcl NuGet package, as shown in Figure 8.2.

Figure 8.2 – Installing sqlite-net-pcl

Installing the correct package
There are a number of SQLite packages available on NuGet. The one you want is sqlite-net-pcl
and has the author SQLite-net, as shown in Figure 8.3.

Figure 8.3 – The author should be SQLite-net

Storing to a database on your device 179

Once sqlite-net-pcl is installed, also search for sqlitepclraw.bundle_green and if it is not
automatically installed, manually install SQLitePCLRaw.bundle_green, as shown in Figure 8.4.

Figure 8.4 – Installing SQLitePCLRaw.bundle_green

With the packages installed, you are ready to set up your program to create and use an SQLite database.

Getting started with SQLite

To create your database, you’ll need to store the database filename and its path among other constant
values. To do so, right-click on your project and create a Constants.cs file. For convenience, I’ll
create a Database folder and place it there:

namespace ForgetMeNotDemo.Database;

public static class Constants

{

 public const string DatabaseFilename =

 "ForgetMeNotDemo.db3"; [1]

 public const SQLite.SQLiteOpenFlags Flags = [2]

 SQLite.SQLiteOpenFlags.ReadWrite |

 SQLite.SQLiteOpenFlags.Create |

 SQLite.SQLiteOpenFlags.SharedCache;

 public static string DatabasePath =>

 Path.Combine(FileSystem.AppDataDirectory,

 DatabaseFilename); [3]

}

Storing and Retrieving Data180

[1] Set the name for your database. Feel free to use the name as shown or rename it to whatever
you like.

[2] Set the flags for how the file should be managed. Here, we’ve set it to read/write mode, to create
the database if it doesn’t exist, and finally, to enable multithreaded database access.

[3] Append the database filename we created earlier to the directory name for the app.

With these constants established, we’re ready to create the database. We’ll encapsulate that work in a class.

The Database class

It is a common pattern to wrap a database access layer in a class, abstracting it away and decoupling
it from the rest of the app. We’ll put all the query logic into this class. This centralization of database
concerns will help make our app scalable over time.

The class will need an Init() method to create the database and our first table. To get us started,
let’s create a table to hold all our preferences:

using ForgetMeNotDemo.Database;

using ForgetMeNotDemo.Model;

using SQLite;

namespace ForetMeNotDemoDatabase;

public class ForgetMeNotDemoDatabase

{

 private SQLiteAsyncConnection Database; [1]

 private async Task Init()

 {

 if (Database is not null) [2]

 return;

 Database = new SQLiteAsyncConnection([3]

 Constants.DatabasePath,

 Constants.Flags);

 await Database.CreateTableAsync<Preference>(); [4]

 }

}

[1] Declare an object of type SQLiteAsyncConnection and name it Database.

[2] If it already exists, then return (that is, treat it as a singleton).

Storing to a database on your device 181

[3] Create SQliteAsyncConnection, passing in the path and flags from the constant class.

[4] Create our first table, declaring the type of object we’ll store in the table (the Preference objects).

We are ready to start using the database, to add and manipulate our table.

CRUD

As is true for virtually all databases, we’ll want to support Create, Read, Update, and Delete (CRUD).
For now, let’s just implement the methods to create and read records. The method to create is typically
combined with the update method.

Create/update

We’re going to want to know whether a Preference is already in the table so that we know, when
given a Preference record, whether to add it or update it. It will need a unique ID. Fortunately,
SQLite is very good at providing IDs.

Start by opening Preference.cs in the Model folder and adding an id property:

[ObservableObject]

public partial class Preference

{

 [ObservableProperty] private int id;

 [ObservableProperty] private string preferencePrompt;

 [ObservableProperty] private string preferenceValue;

}

Next, return to ForgetMeNotDemoDatabase.cs and add the SavePreference method:

public async Task<int> SavePreference(Preference

 preference) [1]

{

 await Init(); [2]

 if (preference.Id != 0) [3]

 {

 return await Database.UpdateAsync(preference);

 }

 else

 {

 return await Database.InsertAsync(preference);

Storing and Retrieving Data182

 }

}

[1] Our SavePreference method takes the type (Preference) as an argument and returns
the number of rows updated (in this case, zero or one).

[2] Call Init on the database each time you take an action.

[3] Check to see whether the Preference object has Id. Since Id is an int type, it defaults to
zero, so if it is not zero, we need to do an update; otherwise, we need to do an insert.

Now that we can create (or update) a record, let’s write code to read that data out of the database.

Read

We’ll want to be able to get all our preferences back from the database. For that, we’ll create a
GetPreferences method that returns a list of Preference objects:

public async Task<List<Preference>> GetPreferences()

{

 await Init();

 return await Database.Table<Preference>();

}

Soft deletion
When we write our Delete method, we probably will want to do a soft deletion – that is,
mark it as deleted rather than actually removing it. For this to work, you’ll need to add another
property to Preference, Deleted, and also int. Our read statement will then take a
where clause, checking that the Deleted property is equal to zero.

Once you have a database design, you need to decide whether you are going to keep the database
locally on a device or in the cloud, accessed through your API.

Local or remote?
A design question for this app is whether we want to store our preferences, buddies, invitations, and
so forth in tables on a device, or instead use a web service and database in the cloud.

To facilitate a secure interaction when sending and receiving invitations and lists of preferences, we’ve
decided to move all the database operations to the cloud. However, everything in this chapter is not
only relevant to ForgetMeNotDemo; it will be of use to you if you decide to store data locally on
a phone or computer.

Summary 183

Summary
In this chapter, we reviewed two ways of storing data. The simplest and most lightweight is to use
the preferences facilities of .NET MAUI. This is great if all you need is to store primitives and short
strings that are targeted at persisting a user’s preferences for a program.

If you need to persist more substantial data, you’ll need a database, and by far the most popular type
for on-device storage is SQLite. We examined the CRUD functionality of SQLite and then pointed
out the alternative of not storing everything on a device but, rather, storing in the cloud and gaining
access through a program’s API.

Quiz
1. What is the class that handles simple storage of user data in key/value pairs?

2. What two values do we pass to the Get method to retrieve the stored value?

3. Which NuGet packages do we need to work with SQLite in .NET MAUI?

4. What type of object do we use to create a table?

You try it
Add the remaining CRUD operations to the Preference table (for example, delete and get by ID).

9
Unit Testing

Until now, we’ve been focusing on creating the app, but there is danger in going too far without
introducing unit testing. In this chapter, we will focus on writing comprehensive and meaningful
unit tests using best practices.

Test-driven development (TDD)
Some developers believe that unit tests should come before the code (TDD), but that is beyond
the scope of this book.

Unit testing is crucial to creating robust applications and knowing that your app works before you
ship it. It is also a critical aspect of debugging, telling you right away if something you just changed
or added broke some aspect of your app.

To facilitate unit tests, you’ll want to use dependency injection so that you can mock up time-consuming
services, such as APIs, databases, and so on. We’ll spend time with mocks, injected into our test classes,
to ensure that we are processing data as intended.

The specific topics in this chapter are as follows:

• Why create unit tests?

• Getting started creating unit tests

• Mocks

• Dependency injection

• NSubstitute

Unit Testing186

Technical requirements
To follow along with this chapter, you will need Visual Studio. You will also install two NuGet packages,
as shown in the chapter itself. If you are going to enter the code as you go, you’ll want to start with the
source from the previous chapter: https://github.com/PacktPublishing/.NET-MAUI-
for-C-Sharp-Developers/tree/persistence.

The source code for this chapter can be found here: https://github.com/PacktPublishing/.
NET-MAUI-for-C-Sharp-Developers/tree/UnitTests.

Why create unit tests?
There are many types of tests you will want to run on a production app. These include unit tests (testing
one small part of an app – typically, a method), integration tests (how well the parts of the program
run together), UI tests (making sure that interacting with the UI acts as expected), and end-to-end
tests (making sure the entire program works as expected).

Unit tests are a critical part of this process and are created for every method and every unit of logic.
In fact, multiple tests are typically created for each unit, so that you can test the happy path, the sad
path, and corner conditions.

The happy path is when the data is as expected. The sad path is when the data is predictably wrong
(for example, the user does not enter a required field).

Corner conditions (also called edge cases) are those situations that are unlikely to happen but might
(for example, the user enters 123 as the username).

A key benefit of unit tests is that they make your code less brittle. Without unit tests, it is easy to
get into a situation where a change over here breaks code over there, and you don’t know about the
breakage until either you run the entire program or, worse, your customer finds it.

Key to all of this is that research has shown that it is easier and less expensive to fix a bug found during
a unit test than it is to find bugs found later. For example, in the 1990s, Capers Jones analyzed data
about bugs from more than 400 software projects and found that the cost of fixing a bug increased by
a factor of 6 to 7 for every phase of development.

Furthermore, unit tests act as excellent documentation for your app, describing precisely what you
expect to happen under a wide variety of situations. Unlike comments, which rust – that is, become
out of sync with the code – unit tests can never depart from the code because they will break when
your code changes in ways that make the expected outcome change.

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/persistence
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/persistence
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/UnitTests
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/UnitTests

Creating unit tests 187

Vote early and vote often

It is important to run all of your unit tests after every change you make to the code. You want to catch
inadvertent and unwanted side effects as quickly as possible. However, for this to work, your unit tests
must be fast. A suite of unit tests that take an appreciable amount of time to run will be used less often.
The longer they take to run, the less frequently the programmer will run them.

Good unit tests are not only fast but also isolated from one another. That means that one unit test
does not depend on the outcome or state of another – it should not matter what order they are run in.

You want to be able to look at the outcome of unit tests and immediately identify what went wrong so
that you can fix it quickly. To accomplish this, your unit tests should do the following:

• Test exactly one thing at a time

• Be well named

If you test more than one thing in a unit test and that test fails, you won’t know which of the things
was the culprit. Well-named unit tests make it clear at a glance what they are testing and thus what
went wrong.

This is an example of a bad unit test name: DoesGetBuddiesWork.

This is a good unit test name: GettingBuddiesListDoesNotThrowAnException.

If the test fails, a glance at the name of the good unit test name tells you exactly what went wrong.

Unit test names
Some programmers use very rigid naming schemes for unit tests. For example, some will
create the name by the name of the method followed by the condition followed by the
expected outcome. So, you might have a name like this: GetBuddiesList_WhenEmpty_
ShouldNotThrowAnException.

These can be useful, as glancing at the name of the test gives you a lot of information.

Remember, as the program grows, so too will your set of unit tests. When you have hundreds (or even
thousands), you’ll want to be able to zip through your tests so quickly that you don’t mind running
them after each meaningful change, and when one or more fail, you want to know what was tested
without having to open up the test and look.

Creating unit tests
To get started, right-click on the solution and choose Add New Project. In the dialog box, use the
dropdown to pick UnitTest. There are a number of unit test frameworks. The two most popular are
the older NUnit and the newer xUnit. We’ll choose xUnit Test Project, as shown in Figure 9.1:

Unit Testing188

Figure 9.1 – Selecting the unit test type

1. Click Next and fill in the name and location of your new project. Typically, the name will be
the name of the solution followed by .Tests, as shown in the following figure:

Figure 9.2 – Naming the test project

2. Click Next and select the .NET platform (this book will use .NET 7).

Visual Studio will create your project as well as the first unit test class and method. Since this is generic,
delete that class and create one called PreferencesTests.

Creating unit tests 189

Setting the project reference

Before doing anything else, we need to make ForgetMeNotDemo.Tests aware of the
ForgetMeNotDemo project. To do so, right-click on the test project and select Add | ProjectReference,
and check the box next to ForgetMeNotDemo, as shown in Figure 9.3:

Figure 9.3 – Referencing ForgetMeNotDemo from the unit test project

With all that set up, we are ready to write our first unit test, designed only to ensure that the testing
structure is in place and working.

Note
This will not build. Please refer to the Tweaking the project file section that appears later in
the chapter.

Creating the first unit test

To make sure all is right with the world, open UnitTest1 and add a test method that must pass:

namespace ForgetMeNotDemo.Tests

{

 public class UnitTest1

 {

 [Fact]

 public void MustBeTrue()

 {

 Assert.True(true);

 }

 }

}

Unit Testing190

xUnit tests come in two flavors:

• Facts: These are invariants – they always take the same data and should always pass

• Theories: These are a suite of tests that execute the same code but are given different input arguments

Let’s explore the theories. The first test we created, MustBeTrue, simply asserts that the value true
is true. This makes a good first test, as it will test that your unit testing is set up correctly.

To run this test, click on the Test | Run All Tests menu item – but be warned, it won’t work!

In order to make this work, there is a bit of tweaking we have to do to the project file.

Tweaking the project file

The problem is that your .NET MAUI .csproj project file lists the following TargetFrameworks:

<TargetFrameworks>net7.0-android;net7.0-ios;net7.0-

 maccatalyst</TargetFrameworks>

However, the unit test project file looks like this:

<TargetFramework>7.0</TargetFramework>

To fix this discrepancy, exit Visual Studio and open your .NET MAUI project .csproj file using
your favorite text editor (not Word or other programs that add special characters – I like to use Visual
Studio Code, but whatever floats your boat). Modify <TargetFramework> to include .net7.0:

<TargetFrameworks>net7.0;net7.0-android;net7.0-ios;net7.0-

 maccatalyst</TargetFrameworks>

You’re halfway there. The next issue is that we need to output the test as a DLL, but the output for the
project is an EXE. The best way to fix this is to add a condition – only do the output as an EXE when
the target framework is not 7.0:

<OutputType Condition="'$(TargetFramework)' !=

 'net7.0'">Exe</OutputType>

Reopen Visual Studio and open the solution. Your test should work now.

Running the test

First, rename UnitTest1 to PreferencesTests. Next, go to the menu and select Test | Test
Explorer. This will open (surprise!) Test Explorer. Click the green Play button, as shown in Figure 9.4:

ForgetMeNotDemo unit tests 191

Figure 9.4 – The Play button

Your project will build and Test Explorer will run your test, showing you results as shown in Figure 9.5:

Figure 9.5 – Test results

Reading down from the top, it shows that ForgetMeNotDemo.Tests has one test, and the green
check indicates that all the tests in ForgetMeNotDemo.Tests have passed.

Inside ForgetMeNotDemo.Tests will be a list of all the test classes – in this case, just the one,
PreferencesTests, and this too shows that there is one test and that it passed.

Finally, inside PreferencesTests will be a list of each individual test, and again, the green check
indicates the test passed.

Congratulations, you’ve created your first test, run it, and seen it pass!

Now, let’s settle down to writing some tests for ForgetMeNotDemo.

ForgetMeNotDemo unit tests
To get started, we examine one ViewModel at a time, paying attention to the methods. We do this
because what we want to test is the business logic, and if you’ve done it right, most of your business
logic will be in a ViewModel class.

For example, turning our attention to PreferencesViewModel, we see the Init() method.
The job of Init is to populate the PreferenceList collection. For now, we’ll ignore how it does
this and just write a test to ensure that it does.

Implementing the triple-A pattern

Before we start, create an interface for PreferenceService, as described earlier in the book (open
PreferenceService, right-click on the class name, and choose Extract Interface).

Unit Testing192

A classic design pattern for unit tests is the Arrange, Act, Assert (AAA) pattern. That is, you set up
your test (Arrange), then you call a method or two (Act), and then check to make sure you have the
expected results (Assert). Let’s see this in action (note, this test has two flaws that will be discussed):

 [Fact]

 public async void AfterCallingInitPreferencesIsNotEmpty()

 {

 // Arrange

 IPreferenceService service = new PreferenceService();

 preferencesViewModel = new PreferencesViewModel();

 // Act

 await preferencesViewModel.Init();

 // Assert

 Assert.NotEmpty(preferencesViewModel.PreferenceList);

 }

Here, we set up IPreferenceService, which we’ll need to create PreferencesViewModel,
and then we create an instance of that ViewModel.

With that in place, we can call the Init() method.

Now, we will test the results using Assert. Assert has many methods that you can use to test the success
of your test. These include, but are not limited to, the following:

 � Assert.True

 � Assert.False

 � Assert.Equal<T>(T expected, T actual)

 � Assert.InRange<T>(T actual, T low, T high)

 � Assert.Null

 � Assert.NotNull

 � Assert.IsType<T>(object obj)

 � Assert.Empty(IenumerableCollection)

 � Assert.Contains<T>(T expected, Ienumerable<t> collection)

There are many more too. The definitive list can be found at the xUnit repository: https://
github.com/xunit/assert.xunit/blob/main/Assert.cs. The various Asserts are
arranged as classes, each of which has a variety of Assert methods. A partial list is shown in Figure 9.6:

https://github.com/xunit/assert.xunit/blob/main/Assert.cs
https://github.com/xunit/assert.xunit/blob/main/Assert.cs

ForgetMeNotDemo unit tests 193

Figure 9.6 – A partial list of Assert classes

In our case, we are asserting that, after running Init, PreferenceList is not empty. Open Test
Explorer and click on the Run All Tests In View button, as shown here:

Figure 9.7 – Run All Tests In View button

The tests run, and Test Explorer gives us the results, as shown in the following figure:

Figure 9.8 – Test Explorer results

Unit Testing194

Let us see what each numbered option in the figure means:

[1] The number of tests

[2] The number of tests that passed

[3] The number of tests that failed

[4] A summary and statement on how long the test took

[5] Each passed test in the context of where the text is located. A green check means that it passed,
and a red x indicates that it failed. Notice that the time for each test is listed. Also note that the tests
took at most 6 milliseconds, but the entire test suite took 408 ms. The difference is the overhead of
beginning the test procedure. This will soon be swamped by the time for all the tests.

What’s wrong with this test?

I mentioned previously that this test has two significant flaws. The first is that the call to Init may
not populate PreferenceList because the service may return zero records. We’ll need to adjust
for that by asserting instead that PreferenceList is not null.

The second, more important, problem is that the test depends on running PreferenceService.
If we examine the code for PreferenceService, we see that the call to GetPreferences has
a significant problem:

public async Task<List<Preference>> GetPreferences()

{

 return await GetPreferencesMock();

}

Right now, while developing the app, we are calling to GetPreferencesMock, which is just a method
in PreferenceService. But that is not how we’ll finish the app. In Chapter 11, we’ll convert this to
make an API call. API calls can take an unpredictably long time, and potentially, can grind our test to a halt.

To solve this, we need a mock PreferenceService that both returns quickly and returns a
predictable collection (or an empty collection if we want to test that eventuality).

Mocks
Often, when testing, you need to interact with a method that takes an indeterminate amount of time,
such as retrieving data from a database or, worse, retrieving data from an API (that is, over the internet
rather than locally from your device).

Calling this kind of method can bring your unit test to a screeching halt, making it almost unusable.
To avoid this, we create fake representations of the database or the API using an object called a mock.

Dependency injection 195

Mocks offer two advantages: they respond instantly and, perhaps as importantly, they respond
predictably. Once written, they give the same input and mock will always provide the same output.

In order to use mocks, we’ll need to implement dependency injection for some of our classes, so let’s
start there.

Dependency injection
Until now, anytime we needed an object inside a class, we passed in the object or we created it in the body
of the class. This creates a dependency (the receiving method is dependent on the object passed in or
created.) This approach creates tight coupling – which just means that both classes are coupled together
and changing one risks having to change the other. For example, in PreferencesViewModel, we need
a PreferenceService object. The approach we’ve taken so far is to new one up in the constructor:

private readonly PreferenceService service;

public PreferencesViewModel()

{

 service = new();

}

Dependency injection decouples the classes and allows for more powerful unit testing, as we’ll see
when we continue the discussion of mocks. Rather than newing-up a PreferenceService, we
want to pass in an interface and have .NET MAUI create it for us (that is, no calling function will add
the interface to the constructor call – it will be done automatically).

Not just for testing
Dependency injection can be used throughout your project, not only for unit tests. In fact,
when combined with an Inversion of Control (IoC) container, dependency injection creates
a powerful pattern for decoupling objects throughout the app. More on IoC containers later.

Creating an interface

To do this, we first need to create an IPreferenceService interface.

Resharper
Everything I’m about to show uses Resharper, an essential tool for serious .NET MAUI
programmers, but it is not free. You can certainly do all this by hand; it is just that Resharper
makes it much easier. Since I highly recommend buying Resharper, I’ll show you how to do the
following with that tool. (Please note, as a Microsoft MVP, I get my copy of Resharper for free.)

Unit Testing196

First, go to Solution Explorer, open PreferenceService, and follow these steps:

1. Right-click on the class name and choose Refactor This. A context menu will appear, as shown
in the following figure:

Figure 9.9 – Refactor context menu

2. Select Extract Interface, and a dialog box will appear as shown here:

Figure 9.10 – Extracting the interface

Dependency injection 197

3. Be sure to check all the public methods and choose the Its own file radio button for where to
move the interface.

Hey, presto! You’ll have an interface file in the same directory (Services), as shown in
Figure 9.11:

Figure 9.11 – New interface file in the Services folder

Open your new file and you’ll see a typical C# interface:

public interface IPreferenceService

{

 public Task<List<Preference>> GetPreferences();

 public Task<List<Preference>> GetPreferencesMock();

}

Now, check the original PreferenceService. Resharper was nice enough to designate that
PreferenceService implements IPreferenceService:

public class PreferenceService : IPreferenceService

Please make PreferenceService.GetPreferencesMock public.

With an interface, we can use constructor injection – that is, we can define that we’re going to pass an
instance of the interface into the constructor, and then pass in anything that implements that interface.

Modifying the class constructor

Let’s go back to PreferencesViewModel. Since we know we’re going to use dependency
injection to send PreferenceService into ViewModel, we can modify the declaration of
PreferenceService and the constructor:

Private readonly IPreferenceService service; [1]

public PreferencesViewModel(IPreferenceService service) [2]

{

 this.service = service; [3]

}

Unit Testing198

[1] We change the local service member to an interface.

[2] We pass IPreferenceService into the constructor.

[3] We assign the member to the passed-in parameter.

But who calls PreferencesViewModel with the IPreference service, and where does that
method get it?

The answer is that the IoC container is responsible for all of this.

The .NET MAUI IoC container

.NET MAUI has a built-in IoC container that we use by registering the interfaces we want to be
managed. You do this in the CreateMauiApp method in MauiProgram.cs:

public static MauiApp CreateMauiApp()

{

 var builder = MauiApp.CreateBuilder(); [1]

 builder

 .UseMauiApp<App>()

 .UseMauiCommunityToolkit()

 .UseMauiCommunityToolkitMarkup()

 .ConfigureFonts(fonts =>

 {

 fonts.AddFont("OpenSans-Regular.ttf",

 "OpenSansRegular");

 fonts.AddFont("OpenSans-Semibold.ttf",

 "OpenSansSemibold");

 })

 .UseMauiMaps();

if DEBUG

 builder.Logging.AddDebug();

endif

 return builder.Build();

}

As seen in [1], the first thing we do is instantiate a MauiAppBuilder object. We then tack a
number of other configuration requirements onto the Builder.

Dependency injection 199

We’ll use that to register all the interfaces to all our services. In fact, we’ll also register our views and
ViewModels so that we can pass them into methods using dependency injection.

Registering your interfaces, services, and ViewModels

.NET MAUI provides an IoC container. By registering our interfaces, services, and so on, .NET MAUI
will supply what we need when we need it, without our having to new-up instances. Beyond that, the
IoC container will also fix up all the dependencies.

To register the IPreferences interface, we add a call to Builder.Services.AddTransient,
passing in the interface and the class that implements that interface:

builder.Services.AddTransient<IPreferenceService,

 PreferenceService>();

Builder.Services offers two ways to register your interface:

• AddTransient

• AddSingleton

You’ll use AddTransient when you may or may not instantiate the object (we may never look at
the user’s preferences, and thus may never need the service). You use AddSingleton when you
know you’ll want the object and there is no point in creating more than one.

While we’re here, let’s register all the ViewModels. We don’t need interfaces for them, as we won’t be
passing them anywhere via dependency injection:

builder.Services.AddTransient<AboutViewModel>();

builder.Services.AddTransient<BuddiesViewModel>();

builder.Services.AddTransient<BuddyDetailsViewModel>();

builder.Services.AddTransient<PreferencesViewModel>();

builder.Services.AddTransient<LoginViewModel>();

Putting it together, this is what CreateMauiApp looks like now:

public static MauiApp CreateMauiApp()

{

 var builder = MauiApp.CreateBuilder();

 builder

 .UseMauiApp<App>()

 .UseMauiCommunityToolkit()

 .UseMauiCommunityToolkitMarkup()

Unit Testing200

 .ConfigureFonts(fonts =>

 {

 fonts.AddFont("OpenSans-Regular.ttf",

 "OpenSansRegular");

 fonts.AddFont("OpenSans-Semibold.ttf",

 "OpenSansSemibold");

 })

 .UseMauiMaps();

if DEBUG

 builder.Logging.AddDebug();

endif

 builder.Services.AddTransient<IPreferenceService,

 PreferenceService>();

 builder.Services.AddTransient<AboutViewModel>();

 builder.Services.AddTransient<BuddyDetailsViewModel>();

 builder.Services.AddTransient<PreferencesViewModel>();

 builder.Services.AddTransient<LoginViewModel>();

 return builder.Build();

}

Notice that all the registration happens before we return the result of calling Build on the
Builder object.

We will be using dependency injection to inject mock objects where objects that would otherwise
take an unpredictable amount of time would normally be used. That is, rather than waiting for a
database or API call, we can inject a mock database or a mock service and get back a response instantly
and predictably.

Our first decision is which mocking library to use.

Using the NSubstitute package
There are a number of different mocking libraries available to you, some free and some commercial.
For this book, we’ll use NSubstitute, an open source and free option available as a NuGet package.

Using the NSubstitute package 201

To get started, follow these steps:

1. Right-click on your solution and choose ManageNugetPackagesForSolution.

2. Go to the Browse tab and enter NSubstitute.

The first package you want is NSubstitute by Anthony Egerton et al., as shown here:

Figure 9.12 – NSubstitute NuGet package

3. On the right, click on the project you want this added to (ForgetMeNotDemo.Tests) and
click on Install, as shown in Figure 9.13:

Figure 9.13 – Installing NSubstitute

4. Once that installs, install NSubstitute.Analyzers.CSharp, as shown in the following figure:

Figure 9.14 – Selecting NSubstitute.Analyzers.CSharp

Unit Testing202

While not strictly required, this second library will detect potential mistakes in your use of NSubstitute.
Install it into the test project as you did previously.

Adding NSubstitute to your test fixture

To add NSubstitute to your test fixture, add using NSubstitute; to the top of the C# file.

We can now create a substitute for PreferenceService.

Mocks depend on constructor dependency injection
Turn to the constructor in PreferencesViewModel and notice that the service is injected
as an interface:

public PreferencesViewModel(IPreferenceService service)

 {

 this.service = service;

 }

This is critical. Mocks only work with constructor injection.

Back in our unit test, let’s declare a mock for the service:

[Fact]

public async void AfterCallingInitPreferencesIsNotEmpty()

{

 // Arrange

 var service = Substitute.For<IPreferenceService>(); [1]

 var = new PreferencesViewModel(service); [2]

 // Act

 await preferencesViewModel.Init();

 // Assert

 Assert.NotEmpty(preferencesViewModel.PreferenceList);

}

[1] Declare the mock for IpreferenceService.

[2] Pass that mock into the constructor for PreferencesViewModel.

Run the test. It fails with the error that the collection cannot be null. Why?

Using the NSubstitute package 203

The original service was returning a list of Preference objects, but our new mock is not. We need
to teach the mock to return a predictable set of Preference objects.

Here is the top of the Arrange method, in which we create a couple of Preference objects and
then add them to a list:

public async void AfterCallingInitPreferencesIsNotEmpty()

{

 // Arrange

 Preference pref1 = new()

 {

 Id = 1,

 PreferencePrompt = "Shirt Size",

 PreferenceValue = "Large"

 };

 Preference pref2 = new()

 {

 PreferencePrompt = "Favorite Music Genre",

 PreferenceValue = "Jazz"

 };

 List<Preference> prefs = new()

 {

 pref1,

 pref2

 };

We can now create our substitute:

var serviceMock = Substitute.For<IPreferenceService>(); [1]

 serviceMock.GetPreferences() [2]

 .Returns(prefs); [3]

[1] Create the mock.

[2] Tell the mock which method it will be mocking.

[3] Tell the mock what to return when that method is invoked.

Unit Testing204

We use the mock in calling the PreferencesViewModel constructor, which you will remember
takes IpreferenceService:

preferencesViewModel = new PreferencesViewModel

 (serviceMock);

In the Act portion of the test, we’ll call Init on that PreferencesViewModel object and then
assert that the list is not empty. This will work this time because the service it relies on can now be
predicted to return a list of two preferences.

Testing corner cases

What happens if PreferenceService returns no records? Will that cause ViewModel to blow
up? We can test that:

 [Fact]

 public async void AfterCallingInitPreferencesIsEmptyButNo

 Exception()

 {

 // Arrange

 List<Preference> preferences = new(); [1]

 var serviceMock = Substitute.For<IPreferenceService>();

 serviceMock.GetPreferences()

 .Returns(preferences); [2]

 preferencesViewModel = new PreferencesViewModel

 (serviceMock);

 // Act

 var exception = await Record.ExceptionAsync (async ()

 => await preferencesViewModel.Init()); [3]

 // Assert

 Assert.Null(exception); [4]

 }

Summary 205

[1] Set up List<Preference> to be empty.

[2] Have the service return the empty preferences list.

[3] Use Record.ExceptionAsync and pass in the call to Init. This will return the exception
or null if none was thrown.

[4] Assert that there was no exception thrown.

A complete description of all the uses of NSubstitute is available at https://nsubstitute.
github.io/help.html.

Summary
In this chapter, we reviewed the critical importance of writing unit tests and comprehensively testing
your program. In a nutshell, unit tests allow you to code with confidence, knowing that if you make
a change and it breaks something seemingly unrelated, you’ll find out about it immediately.

We saw that, at times, your unit test must interact with slower external systems (APIs, databases, and
more) and that you can keep your subsecond response time by using mocks; the mocking library we
chose is NSubstitute, though there are other free mocking systems as well (a very popular one
is Moq).

In order to facilitate using mocks, we looked at dependency injection and briefly reviewed the role of
IoC containers. In the next chapter, Consuming a Rest Service, we will look at getting our data from a
cloud-based (Azure) service, rather than mocking the data.

Quiz
1. Why is it important to write unit tests?

2. Where is most of the code you will test?

3. Why do you use mocks?

4. Why is dependency injection important for mocks?

You try it
Identify a method in the ViewModel or service that interacts with the API or database, and write a
unit test that uses a mock.

https://nsubstitute.github.io/help.html
https://nsubstitute.github.io/help.html

Part 3 –
Advanced Topics

In this final part, we will dive into ninja-level topics, including how to interact with a REST-based
service (in our case, Azure) and how to modify the appearance of our app based on the runtime data.

This part has the following chapters:

• Chapter 10, Consuming REST Services

• Chapter 11, Exploring Advanced Topics

10
Consuming REST Services

Up until now, when we needed data, we faked it by using hardcoded objects. In a real-world program,
however, you will get most of your data from local databases (as discussed in Chapter 8), or you will
interact with a service in the cloud through an API. You can interact using one of several architectures,
of which the most popular for .NET MAUI is, arguably, Representational State Transfer (REST).

REST is a pattern that describes how classes interact across the internet. The key to REST is that it is
stateless – that is, a sustained connection between the client and the API is not needed.

The Forget Me Not architecture is designed to use a REST service and database, which will manage
membership, authentication, and persistence of user data. In this chapter, we will look at the following:

• Using REST services

• The Forget Me Not API architecture

• API domain objects

• Data Transfer Objects (DTOs)

• The API Client class

• Using the API

Technical requirements
To follow along with this chapter, you will need Visual Studio. If you are going to enter the code as
you follow along, you’ll want the branch for the previous chapter.

The source code for the finished project for this chapter can be found at https://github.com/
PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/REST.

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/REST
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/REST

Consuming REST Services210

Using REST Services
Until now, all the work we’ve been doing has been local to a device (a phone, Windows, or Mac).
The design of Forget Me Not entails the use of a service in the cloud that will manage all our data –
invitations to a program, registration, authentication, data persistence, and so on.

A client interacts with a server through a REST API (also called a RESTful API).

An Application Program Interface (API) is a set of definitions and protocols to interact with an
application. In our case, the API we care about is the cloud-based ForgetMeNot.API.

Knowing more about REST
For our purposes, that is really all you need to know about REST, but if you are curious, you
can find out more at https://en.wikipedia.org/wiki/Representational_
state_transfer.

The Forget Me Not API architecture
When we looked at getting a user’s preferences in Chapter 8, we used the Preference Service. That service,
until now, used a method to return hardcoded values. That, of course, was a temporary expedient so
that we could focus on one thing at a time. We are ready now to interact with the online API.

Where’s the service?
I have created an online web service on Azure at https://forgetmenota-
pi20230113114628.azurewebsites.net/.

It is my goal to keep this up and running so that you can implement the client and get meaningful
results, but given that there may be maintenance costs, by the time you read this, the service
may no longer be in place. If that is true, you can still get 95% of what you need by reading the
API code and using hardcoded data, as we’ve been doing up until now.

Also, note that just going to the URL won’t get you anywhere. It is when we combine that base
URL with the specific task-based additions that the magic happens. You can test whether the
API is still available by creating an account or signing into one. If that works, then the rest of
the API should work as well.

To facilitate our REST interactions with the API, we will use the extremely popular open source
RestSharp library (https://restsharp.dev/). It will do all the heavy lifting for us. (We’ll
be using the class library template.)

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://forgetmenotapi20230113114628.azurewebsites.net/
https://forgetmenotapi20230113114628.azurewebsites.net/
https://restsharp.dev/

The Forget Me Not API architecture 211

Creating the projects

To get started, we’ll need three new projects. Right-click on Solution and choose Add New Project.
The three projects are named:

• ForgetMeNot.API.Domain (API domain objects)

• ForgetMeNot.API.Dto (DTOs)

• ForgetMeNot.ApiClient (a wrapper for the API)

Api.Doman and API.Dto are both class libraries. APIClient is a webapi.

We’ll look at each of these in turn, filling in all the details.

Because we’ll be using the API database, we can remove the local SQLite database. To do so, comment
out or remove the Constants file and the entire ForgetMeNotDemoDatabase.cs file.

Fleshing out the models

Before we create classes that correspond to the items in our model classes, we need to flesh them out.

Let’s start with the Preference class in the Model directory. We had added an Id property for
SQLite; we won’t need that anymore, so we can remove it. Remove it from PreferencesTests.
AfterCallingInitPreferencesIsNotEmpty() as well.

The design spec says that a user can invite a friend to be a buddy. We’ll need to add a model to describe
the invitation:

using CommunityToolkit.Mvvm.ComponentModel;

namespace ForgetMeNotDemo.Model;

[ObservableObject]

public partial class Invitation

{

 [ObservableProperty] private string buddyCode;

 [ObservableProperty] private int buddyId;

}

Consuming REST Services212

Similarly, we need to keep track of occasions, such as birthdays and anniversaries, so that we remember
to use Forget Me Not to buy a present:

[ObservableObject]

public partial class Occasion

{

 [ObservableProperty] private string name;

 [ObservableProperty] private DateTime date;

 [ObservableProperty] private int numDaysToNotify;

}

We’ll need a couple more Model classes, such as User and its derived class, Buddy. The owner of
the app is a user, as are all their buddies. Here is the User Model class:

[ObservableObject]

public partial class User

{

 [ObservableProperty] private string name;

 [ObservableProperty] private string id; [1]

 [ObservableProperty] private List<Buddy> buddies; [2]

 [ObservableProperty] private List<Invitation>

 invitations; [3]

 [ObservableProperty] private List<Preference>

 preferences; [4]

[1] We’ve migrated the ID up here to the base class. We won’t need it for the (now non-existent)
local database, but we will need the ID on the server. It is a string because the server will create a
Globally Unique ID (GUID).

[2] Each user can have any number of Buddies.

[3] Each user can send out any number of invitations.

[4] Each user will have a list of Preference objects.

The Forget Me Not API architecture 213

Commented-out code
Note that the invitations property is commented out in the code present in the GitHub
repository. Please uncomment it.

The Buddy class builds on this:

public partial class Buddy : User

{

 [ObservableProperty] private string emailAddress;

 [ObservableProperty] private string? phoneNumber;

 [ObservableProperty] private string? mailingAddressLine1;

 [ObservableProperty] private string? mailingAddressLine2;

 [ObservableProperty] private string? website;

 [ObservableProperty] private string? twitter;

 [ObservableProperty] private string? facebook;

 [ObservableProperty] private string? instagram;

 [ObservableProperty] private string? linkedIn;

 [ObservableProperty] private string? venmoName;

 [ObservableProperty] private InvitationStatus status;

 [ObservableProperty] private List<OccasionModel>

 occasions;

 [ObservableProperty] private DateTime buddySince;

}

Commented-out code
For now, do not uncomment InvitationStatus or OccasionModel.

We store a lot of information about each buddy, including how long they’ve been our buddy, shared
occasions, and the status of the invitation we sent to the Buddy class.

Consuming REST Services214

Examining the API domain objects
The API domain objects are a superset of the client model classes. This is because there is data
that the API will need that will not be visible on the client side. Right-click on ForgetMeNot.API.
Domain and create the following classes:

• InvitationStatus

• Invite

• Occasion

• Related

• Roles

• User

• UserPreference

Let’s walk through them, starting with User (note that this uses UserPreference, defined in the
following code, so do not build until you have both classes):

public class User

{

 public Guid Id { get; set; }

 public string FullName { get; set; }

 public string Email { get; set; }

 public string HashedPassword { get; set; }

 public bool IsEmailConfirmed { get; set; }

 public string Role { get; set; }

 public List<UserPreference> Preferences { get; set; }

}

As you can see, on the server, each User instance has a unique ID. Most of the other properties are the
same as on the client, although they may not have the same identifier (for example, FullName rather
than Name). This is not a problem, as we’ll do the mapping when we get the objects from the server.

There are a few new fields, however – for example, IsEmailConfirmed, HashedPassword,
and Role. These are used by the server for authentication.

Let’s create the Roles file. It is a static class with the two roles we’ll support:

public static class Roles

{

 public static string Admin = "admin";

Examining the API domain objects 215

 public static string User = "user";

}

Next, we’ll turn our attention to the UserPreference class. This corresponds to the Preference
class in our client’s Model folder:

public class UserPreference

{

 public string PreferencePrompt { get; set; }

 public string PreferenceValue { get; set; }

}

Note that the API is, in some ways, independent of the client. We’re calling the class by a different
name, and we’re not using the code generators.

Next, we need classes to represent Invitation and Occasion. Let’s start with Invitation:

public class Invite

{

 public Invite()

 {

 Id = Guid.NewGuid();

 }

 public Guid Id { get; set; }

 public User CreatedByUser { get; set; }

 public User? AcceptedByUser { get; set; }

 public InvitationStatus Status { get; set; }

 public DateTime CreationDate { get; set; }

 public DateTime? EndDate { get; set; }

 public string InvitedUserName { get; set; }

 public string InvitedUserCustomMessage { get; set; }

}

This class has a property of the InvitationStatus type. Create a file for that as well. This is just
an enumeration:

public enum InvitationStatus

 {

 Waiting,

Consuming REST Services216

 Expired,

 Accepted,

 Rejected

 }

Here’s the Occasion class:

public class Occasion

{

 public Occasion()

 {

 Id = Guid.NewGuid();

 }

 public Guid Id { get; set; }

 public User? ForUser { get; set; }

 public string? OccasionName { get; set; }

 public DateTime Date { get; set; }

 public int NumDaysToNotify { get; set; }

}

The purpose of NumDaysToNotify is to allow a user to designate how many days in advance of an
occasion they want to be notified (that functionality is left as an exercise for you!).

Finally, we add a class whose job is to tie a user to all their Occasions and buddies. Note that we
use User for Buddy, as the base class has all the information we need:

public class Related

{

 public Related()

 {

 Occasions = new List<Occasion>();

 Users = new List<User>();

 }

 public Guid Id { get; set; }

 public string RelatedDescription { get; set; }

 public List<User> Users { get; set; }

 public List<Occasion> Occasions { get; set; }

Reviewing DTOs 217

 public DateTime Since { get; set; }

}

That’s it for that project. There are no methods; it really is just a set of server-based model objects.

Once we have the models, we need to determine how to transfer this data to and from the server. For
that, we need DTOs.

Reviewing DTOs
The ForgetMeNot.Api.Dto project will, as you might have guessed, hold DTOs. These will
correspond to the model objects but are designed to be passed back and forth between the server
and the client.

Project reference
You will need to add a project reference from ForgetMeNot.Api.Dto to ForgetMeNot.
Api.Domain.

Let’s start with BuddyDto.cs:

using ForgetMeNot.Api.Domain;

namespace ForgetMeNot.Api.Dto

{

 public class BuddyDto

 {

 public BuddyDto()

 {

 }

 public BuddyDto(User user)

 {

 UserId = user.Id;

 FullName = user.FullName;

 Email = user.Email;

 Preferences = new List<UserPreference>();

 if (user.Preferences?.Any(p =>

 p.PreferenceValue != null) ?? false)

Consuming REST Services218

 {

 Preferences = user.Preferences.Where(p =>

 p.PreferenceValue != null).ToList();

 }

 Occasions = new List<OccasionDto>();

 }

 public Guid UserId { get; set; }

 public string FullName { get; set; }

 public string Email { get; set; }

 public List<UserPreference> Preferences { get; set; }

 public List<OccasionDto> Occasions { get; set; }

 }

}

Note that the constructor for Buddy takes User. As noted earlier, the Buddy class derives from
User, and by passing User into the constructor, we can set Buddy’s User properties.

Note that we are also using a list of OccasionDto objects. These are in the ForgetMeNot.Api.
Dto project.

Other DTO files

The other key files in ForgetMeNot.Api.Dto are not tied to model classes but, rather,
are data that is exchanged between client and server to facilitate managing the account – for
example, AccountCreateRequest:

public class AccountCreateRequest

{

 public string FullName { get; set; }

 public string Email { get; set; }

 public string PlainPassword { get; set; }

}

Reviewing DTOs 219

This is all that needs to be sent to the server when creating an account. There is a DTO to request
an update to a user record that just contains Id, FullName, and Email. One important DTO is
UserResponse, which contains information that corresponds to the User Domain object:

public class UserResponse

{

 public Guid Id { get; set; }

 public string FullName { get; set; }

 public string Email { get; set; }

 public bool IsEmailConfirmed { get; set; }

 public string Role { get; set; }

 public List<UserPreference> Preferences { get; set; }

 public UserResponse()

 {

 }

 public UserResponse(User user)

 {

 Id = user.Id;

 FullName = user.FullName;

 Email = user.Email;

 Role = user.Role;

 IsEmailConfirmed = user.IsEmailConfirmed;

 Preferences = user.Preferences;

 }

}

You pass in a User object and UserResponse turns it into a DTO.

Similarly, you can pass a User object into ProfileResponse and get back a ProfileResponse DTO:

public class ProfileResponse

{

 public Guid Id { get; set; }

 public string FullName { get; set; }

Consuming REST Services220

 public string Email { get; set; }

 public bool IsEmailConfirmed { get; set; }

 public string Role { get; set; }

 public List<UserPreference> Preferences { get; set; }

 public ProfileResponse(User user)

 {

 Id = user.Id;

 FullName = user.FullName;

 Email = user.Email;

 Role = user.Role;

 IsEmailConfirmed = user.IsEmailConfirmed;

 Preferences = user.Preferences;

 }

}

The final piece in the puzzle is to wrap the API in a client-side class to facilitate interactions with
data in the cloud.

Understanding ForgetMeNot.APIClient
The third API project, ForgetMeNot.APIClient, has only one class in it – Client.cs. This
is the wrapper of the REST service that the client (ForgetMeNotDemo) will interact with.

We start with four member variables:

public class Client

{

 RestClient client; [1]

 string baseUrl; [2]

 string username; [3]

 string password;

[1] As noted earlier, RestClient is the library we are using to manage the REST interactions
(obtained through NuGet, as discussed earlier).

[2] baseURL is the prefix for all the API calls and was created when we moved the API to
Azure. As noted earlier, it is available at https://forgetmenotapi20230113114628.
azurewebsites.net/.

https://forgetmenotapi20230113114628.azurewebsites.net/
https://forgetmenotapi20230113114628.azurewebsites.net/

Understanding ForgetMeNot.APIClient 221

[3] username and password are used by the client to access the user’s record.

The constructor to Client takes baseUrl, assigns it to the field, and then calls SetClient():

public Client(string baseUrl)

{

 this.baseUrl = baseUrl;

 SetClient();

}

void SetClient()

{

 var options = new RestClientOptions(baseUrl) [1]

 {

 ThrowOnAnyError = false,

 MaxTimeout = 10000

 };

 client = new RestClient(options); [2]

}

[1] The options we want for this REST client create a robust interface; we won’t throw an exception
on any error and we won’t time out for 10 seconds.

[2] With the options set, we can create a new RestClient, which is defined in RestSharp.

The rest of the file is divided into sections for important behavior by the client, beginning with the
code needed to authenticate the user.

Authentication

We set a IsAuthenticated property, which is set to whether or not client.Authenticator
is null.

We then have a Login method that takes a LoginRequest object, sets username and password,
and calls Authenticate:

public async Task Login(LoginRequest request)

{

 username = request.Username;

Consuming REST Services222

 password = request.Password;

 await Authenticate();

}

Project reference
You will need a reference to the DTO project.

LoginRequest is defined in the DTO project and simply has two string properties, Username
and Password (refer to the following code block).

The Authenticate method uses RestSharp’s OAuth authentication – that is, again, the heavy
lifting is done by RestSharp:

async Task Authenticate()

{

 var request = new RestRequest("auth/gettoken");

 request.AddBody(new { username, password });

 var accessToken = await client.PostAsync<string>

 (request);

 client.Authenticator = new OAuth2Authorization

 RequestHeaderAuthenticator(accessToken, "Bearer");

}

Fortunately, you don’t need to understand how to make this work; you just pass in the username and
password and RestSharp takes care of the rest of it for you.

Client versus client
Remember that even though you are in the Client class, the client field is the
RestSharp object.

We have a helper method to get the current API version:

public Task<string?> Version()

{

Understanding ForgetMeNot.APIClient 223

 var request = new RestRequest("util/version");

 return client.GetAsync<string?>(request);

}

And that takes us to the profile section of the file, where we can get and update the profile object.

Profile

There are two methods needed for the profile. The first gets the profile:

public Task<ProfileResponse?> GetProfile()

{

 var request = new RestRequest("profile/me");

 return client.GetAsync<ProfileResponse?>(request);

}

This uses the ProfileResponse DTO we examined earlier. The second method in this section is
used to update the profile:

public Task UpdateProfile(ProfileUpdateRequest

 profileUpdateRequest)

{

 var request = new RestRequest("profile/me");

 request.AddBody(profileUpdateRequest);

 return client.PutAsync(request);

}

This code uses the ProfileUpdateRequest object defined in ForgetMeNot.Api.Dto.

Again, all the interesting work here is being done by RestSharp. As you can see, the client is really
just a wrapper around the RestSharp methods.

Let’s reinforce this by looking at a couple more methods that are used to manage the Buddy object.

Consuming REST Services224

The Buddy region

This region consists of the methods we need to interact with buddies, GetBuddy and
CreateInvitation. GetBuddy returns a list of BuddyDto objects:

public Task<List<BuddyDto>?> GetBuddy()

{

 var request = new RestRequest("buddy");

 return client.GetAsync<List<BuddyDto>?>(request);

}

CreateInvitation returns Guid, which is the Id attribute of the resulting Invitation object:

public Task<Guid?> CreateInvitation(InviteCreateRequest

 inviteCreateRequest)

{

 var request = new RestRequest("buddy/invite");

 request.AddBody(inviteCreateRequest);

 return client.PostAsync<Guid?>(request);

}

This code uses InviteCreateRequest, which is defined in ForgetMeNot.Api.Dto.

Finally, we have a method to get all the users – that is, all this user’s buddies:

public Task<List<UserResponse>?> GetUserList()

{

 var request = new RestRequest("user");

 return client.GetAsync<List<UserResponse>?>(request);

}

What we get back is a list of UserResponse DTO objects that we saw earlier.

Now that we’ve examined all the projects provided by the server, we are ready to have ForgetMeNotDemo
interact with the API to get, store, and retrieve data.

Using the API
With the Client class and its supporting DTO and API domain classes in place, we’re ready to interact
with the API to create accounts and log in, as well as store and retrieve our preferences.

Using the API 225

Creating the account

The first thing a new user will do is create an account. To make this work, we need to bring the user
to the Login page when the app starts. Here, the user can log in, or if they don’t have an account, they
can click on Create Account, which will take them to CreateAccount.xaml, where they can fill
in their name, email, and password. To implement this, we have to make some substantial changes to
the Login and Create Account pages.

Let’s begin by pointing the application to start with login. Modify the App.xaml.cs App method
to look like this:

public App(LoginViewModel loginViewModel) [1]

{

 InitializeComponent();

 MainPage = new LoginPage(loginViewModel); [2]

}

[1] Have the IoC container pass in an instance of LoginViewModel.

[2] Set MainPage (the entry point to the program) to LoginPage.

The job of the Login page will now be to either allow the user to log in or take them to the Create
Account page.

Be sure to add routing for CreateAccount in AppShell.xaml.cs:

Routing.RegisterRoute("createaccount",

 typeof(CreateAccountPage));

Next, let’s modify the Login page.

Modifying the Login page

Now that we’re going to turn management of authentication over to the server, we need a different
Login page. Completely empty out LoginPage.xaml.cs and replace it with this simple version:

using CommunityToolkit.Maui.Core.Views;

using ForgetMeNotDemo.ViewModel;

namespace ForgetMeNotDemo.View;

public partial class LoginPage : ContentPage

{

Consuming REST Services226

 public LoginPage(LoginViewModel viewModel)

 {

 BindingContext = viewModel;

 InitializeComponent();

 }

}

LoginViewModel is passed in from App, as shown in the preceding code.

Now, let’s modify LoginPage to focus on either logging a user in or redirecting them to create a
new account.

Updating LoginPage

We’re going to make some significant changes to LoginPage. To avoid confusion, delete all you
have there and replace it with this:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 x:Class="ForgetMeNot.View.LoginPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:iOsSpecific="clr-namespace:Microsoft.Maui

 .Controls.PlatformConfiguration.iOSSpecific;

 assembly=Microsoft.Maui.Controls"

 Title="Login"

 iOsSpecific:Page.UseSafeArea="True"

 Shell.NavBarIsVisible="False"

 Shell.PresentationMode="ModalAnimated">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="Prompt" TargetType="Label"> [1]

 <Setter Property="TextColor" Value="Black" />

 <Setter Property="FontSize" Value="Medium" />

 <Setter Property="FontAttributes"

 Value="Bold" />

 <Setter Property="HorizontalTextAlignment"

 Value="Center" />

 <Setter Property="VerticalTextAlignment"

Using the API 227

 Value="Center" />

 <Setter Property="VerticalOptions"

 Value="Center" />

 <Setter Property="HorizontalOptions"

 Value="End" />

 </Style>

 <Style x:Key="LoginButton" TargetType="Button">

 <Setter Property="BackgroundColor"

 Value="LightGray" />

 <Setter Property="Margin" Value="0,20,0,0" />

 <Setter Property="TextColor" Value="Black" />

 <Setter Property="WidthRequest" Value="125" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

With the styles in place, we’re ready to create the Labels and Entry controls to get a user’s name
and password:

<VerticalStackLayout>

 <Grid

 ColumnDefinitions="*,*,*"

 RowDefinitions="Auto,Auto,Auto,Auto"

 RowSpacing="10">

 <Label

 Grid.Row="0"

 Grid.Column="0"

 Style="{StaticResource Prompt}"

 Text="User name" />

 <Entry

 Grid.Row="0"

 Grid.Column="1"

 Grid.ColumnSpan="2"

 Placeholder="User name"

 Text="{Binding LoginName}"

 WidthRequest="150" />

 <Label

Consuming REST Services228

 Grid.Row="1"

 Grid.Column="0"

 HorizontalOptions="End"

 Style="{StaticResource Prompt}"

 Text="Password" />

 <Entry

 Grid.Row="1"

 Grid.Column="1"

 Grid.ColumnSpan="2"

 IsPassword="True"

 Placeholder="Password"

 Text="{Binding Password}"

 WidthRequest="150" />

 <Button

 Grid.Row="2"

 Grid.Column="0"

 Command="{Binding DoLoginCommand}"

 Style="{StaticResource LoginButton}"

 Text="Submit" /> [2]

Once a user has filled in the fields (or is unable to do so because they’ve forgotten their password),
we will offer them the following choices:

 <Button

 Grid.Row="2"

 Grid.Column="1"

 Command="{Binding DoCreateAccountCommand}"

 Style="{StaticResource LoginButton}"

 Text="Create Account" /> [3]

 <Button

 Grid.Row="2"

 Grid.Column="2"

 BackgroundColor="LightGray"

 Command="{Binding ForgotPasswordCommand}"

 Style="{StaticResource LoginButton}"

 Text="Forgot Password" /> [4]

 </Grid>

Using the API 229

 <ActivityIndicator [6]

 x:Name="activityIndicator"

 HeightRequest="50"

 IsRunning="{Binding ShowActivityIndicator}"

 Color="Blue" />

 </VerticalStackLayout>

</ContentPage>

[1] I’ve expanded the two styles a bit to minimize the styling in the controls.

[2] Click Submit to submit the username and password to the API (as we’ll see in ViewModel a
little later).

[3] Click Create Account to go to the CreateAccount page.

[4] Forgot password is (as they say) left as an exercise for you.

With this new API-oriented Login page, we need to update LoginViewModel.

The AccountService class

Before updating LoginViewModel, we’ll need to create the AccountService class and its
associated interface:

using ForgetMeNot.Api.Dto;

using ForgetMeNot.ApiClient;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ForgetMeNotDemo.Services

{

 public class AccountService : IAccountService

 {

 readonly Client apiClient;

 public AccountService(Client apiClient)

 {

Consuming REST Services230

 this.apiClient = apiClient;

 }

 public async Task CreateAccount(AccountCreateRequest

 accountCreateRequest)

 {

 await apiClient.CreateAccount(accountCreateRequest);

 }

 public async Task GetNewPassword()

 {

 }

 public async Task Login(LoginRequest request)

 {

 await apiClient.Login(request);

 }

 public bool IsLoggedIn()

 {

 return apiClient.IsAuthenticated;

 }

 }

}

This class is used in the creation and authentication of the account. With this in place, we are ready
to update LoginViewModel.

Updating LoginViewModel

LoginViewModel must be updated to meet the new requirements of the updated LoginPage
class. Once again, delete all that you have and replace it with this:

using CommunityToolkit.Mvvm.ComponentModel;

using CommunityToolkit.Mvvm.Input;

using ForgetMeNot.API.Dto;

using ForgetMeNotDemo.Services;

Using the API 231

using ForgetMeNotDemo;

namespace ForgetMeNotDemo.ViewModel

{

 [ObservableObject]

 public partial class LoginViewModel

 {

 private AccountService; [1]

 [ObservableProperty] private string loginName;

 [ObservableProperty] private string password;

 [ObservableProperty] private bool showActivityIndicator

 = false;

The constructor is passed by AccountService by way of the Inversion of Control (IoC) container
and holds onto that service for its other methods:

 public LoginViewModel(AccountService accountService)

 [2]

 {

 this.accountService = accountService;

 }

 [RelayCommand]

 public async Task DoLogin()

 {

 try

 {

 LoginRequest loginRequest = new LoginRequest [3]

 {

 Username = LoginName,

 Password = Password

 };

Consuming REST Services232

We’ll set ActivityIndicator to display while we ask the API to log a user in:

 ShowActivityIndicator = true;

 await accountService.Login(loginRequest); [4]

 ShowActivityIndicator = false;

 if (accountService.IsLoggedIn()) [5]

 {

 Application.Current.MainPage = new AppShell();

 await Shell.Current.GoToAsync("mainpage");

 }

 else [6]

 {

 await Application.Current.MainPage.DisplayAlert

 ("Login failure",

 "Your username and password do not match our

 records", "Ok");

 }

 }

 catch (Exception exception)

 {

 await Application.Current.MainPage.DisplayAlert

 ("Authorization failure",

 "Your username and password do not match our

 records", "Ok");

 Console.WriteLine(exception);

 }

Implementing the logic to manage a forgotten password is left as an exercise for you:

 }

 [RelayCommand]

 public async Task ForgotPassword()

Using the API 233

 {

[7]

 }

We delegate to the server the responsibility for creating new accounts:

 [RelayCommand]

 public async Task DoCreateAccount() [8]

 {

 try

 {

 Application.Current.MainPage = new AppShell();

 await Shell.Current.GoToAsync($"createaccount");

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 }

 }

 }

}

[1] We create the AccountService field, which will mediate between ViewModel and the
Client class.

[2] The IoC passes in the AccountService we need, which we will assign to the AccountService
member we just created.

[3] We bundle up the username and password into a LoginRequest object. We get this class
from ForgetMeNot.API.DTO:

public class LoginRequest

{

 public string Username { get; set; }

 public string Password { get; set; }

}

Consuming REST Services234

[4] We turn ActivityIndicator on, pass LoginRequest to the API, and then, when we
get a response, turn ActivityIndicator off. We’ll look at what AccountService is actually
doing in the next step.

[5] We ask AccountService whether the login was successful. If it was (the happy path), we
reset MainPage (away from LoginPage) and navigate there.

[6] If login fails (the sad path), we inform the user that we are unable to log them in and give them
another chance to do so.

[7] This book will not implement the code to reset a password.

AccountService was responsible for the login. Let’s look at that next.

Using AccountService to log in

For security purposes, we want a server to be responsible for authenticating a user based on an email
address and password:

public async Task Login(LoginRequest request) [1]

{

 await apiClient.Login(request);

}

public bool IsLoggedIn() [2]

{

 return apiClient.IsAuthenticated;

}

Among other methods in AccountService (which we will return to shortly) are the following
two methods:

[1] Login simply delegates to apiClient the responsibility to handle the login through the API,
passing in LoginRequest, which contains the username and password.

[2] Similarly, the IsLoggedIn Boolean method uses apiClient to see whether the current
user is authenticated.

A second option exists for a user, which is to tap on the Create Account button. This brings us
to CreateAccountPage.

Using the API 235

Setting up the Create Account page

The Create Account page prompts a user for a username and a password, as well as their email. To keep
things simple, in this example, we only ask for the password once, but we do implement validation:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage

 x:Class="ForgetMeNotDemo.View.CreateAccountPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:behaviors="http://schemas.microsoft.com/dotnet/

 2022/maui/toolkit"

 Title="CreateAccount">

 <VerticalStackLayout>

 <Entry

 HorizontalOptions="FillAndExpand"

 Keyboard="Text"

 Placeholder="Enter Name"

 Text="{Binding Name}">

 <Entry.Behaviors>

 <behaviors:UserStoppedTypingBehavior

 Command="{Binding ValidateNameCommand}"

 StoppedTypingTimeThreshold="500" /> [1]

 </Entry.Behaviors>

 </Entry>

[1] We use the Community Toolkit’s StoppedTypingBehavior to detect when a user has finished
entering a field. We set StoppedTypingTimeThreshold to 500 – that is, half a second. This
indicates that once the user has not entered anything for half a second, we assume they are done and
kick in the validation. Note that the command is set to ValidateNameCommand. This is handled
in ViewModel (as shown later) but returns a Boolean, which indicates whether or not the user has
entered a valid name:

 <Label

 FontSize="13"

 IsVisible="{Binding ShowNameErrorMessage}"

 [1]

 Text="{Binding NameErrorMessage}"

Consuming REST Services236

 TextColor="Red" />

 <Entry

 HorizontalOptions="FillAndExpand"

 Keyboard="Email"

 Placeholder="Enter Email"

 Text="{Binding Email}">

 <Entry.Behaviors>

 <behaviors:UserStoppedTypingBehavior

 Command="{Binding ValidateEmailCommand}"

 StoppedTypingTimeThreshold="500" />

 [2]

 </Entry.Behaviors>

 </Entry>

[1] Only show the label if the name validation fails.

[2] Now, do the same for email as you did for the name, calling ValidateEmailCommand when
the user stops typing:

 <Label

 FontSize="13"

 IsVisible="{Binding ShowEmailErrorMessage}"

 Text="{Binding EmailErrorMessage}"

 TextColor="Red" />

 <Entry

 HorizontalOptions="FillAndExpand"

 IsPassword="True" [1]

 Keyboard="Default"

 Placeholder="Enter Password"

 Text="{Binding Password}">

 <Entry.Behaviors>

 <behaviors:UserStoppedTypingBehavior

 Command="{Binding ValidatePasswordCommand}"

 StoppedTypingTimeThreshold="500" />

 </Entry.Behaviors>

Using the API 237

 </Entry>

 <Label

 FontSize="13"

 IsVisible="{Binding ShowPasswordErrorMessage}"

 Text="{Binding PasswordErrorMessage}"

 TextColor="Red" />

 <Button

 Margin="0,30,0,0"

 BackgroundColor="LightGray"

 Command="{Binding SignUpCommand}" [2]

 CornerRadius="5"

 HorizontalOptions="Center"

 IsEnabled="{Binding EnableButton}"

 Text="Sign up"

 TextColor="Black"

 TextTransform="None"

 WidthRequest="100" />

 </VerticalStackLayout>

</ContentPage>

[1] The IsPassword property of the entry is set to true, and the password will be displayed as
a series of asterisks as a user enters a character.

[2] Once the fields are valid, the Signup Button will be enabled, and tapping it will invoke the
Signup command.

All of the supporting commands and validation are in CreateAccountViewModel.

Setting up CreateAccountViewModel

The first thing we see in this file are all the properties:

[ObservableProperty] accountService;

[ObservableProperty] private string name;

[ObservableProperty] private string email;

[ObservableProperty] private string password;

[ObservableProperty] private string nameErrorMessage;

[ObservableProperty] private string emailErrorMessage;

[ObservableProperty] private string passwordErrorMessage;

Consuming REST Services238

[ObservableProperty] private bool showNameErrorMessage;

[ObservableProperty] private bool showEmailErrorMessage;

[ObservableProperty] private bool showPasswordErrorMessage;

[ObservableProperty] private bool enableButton;

[ObservableProperty] private bool isValidName;

[ObservableProperty] private bool isValidEmail;

[ObservableProperty] private bool isValidPassword;

Note that there are properties for the error messages along with the prompts. There is also a Boolean
property, EnableButton, which defaults to false (if you don’t set a Boolean, it defaults to false).

The constructor takes AccountService, passed in by the IoC (this was registered in MauiProgram.
cs). Update the Client constructor to take a string serving as baseUrl:

var apiClient = new Client("https://forgetmenotapi

 20230113114628.azurewebsites.net/");

builder.Services.AddSingleton(apiClient);

builder.Services.AddTransient<AccountService>();

We’ll turn to the CreateAccountViewModel class:

public CreateAccountViewModel(AccountService

 accountService)

{

 this.accountService = accountService;

}

Let’s examine a Validation method.

The business requirement is that a valid name has at least two characters. The code to validate is a
simple if statement, as follows:

[RelayCommand]

public Task ValidateName()

{

 if (!string.IsNullOrEmpty(Name) && Name.Length >= 2)

 {

 IsValidName = true;

 ShowNameErrorMessage = false;

Using the API 239

 EnableButton = IsValidName && IsValidEmail &&

 IsValidPassword; [1]

 }

 else

 {

 NameErrorMessage = "*Please enter a name with at least

 two characters";

 IsValidName = false;

 ShowNameErrorMessage = true; [2]

 EnableButton = IsValidName && IsValidEmail &&

 IsValidPassword;

 }

 return Task.CompletedTask;

}

[1] The EnableButton property (which is used to determine whether the Submit button is
enabled) is only set as true when the name, email, and password are all valid.

[2] If the name is not valid, the ShowNameErrorMessage property is set to true, and the error
message is displayed.

In the next chapter, we’ll look at the support that .NET MAUI provides for a more elegant
validation approach.

The most important command in this file is the one that responds to SignUpCommand.

Handling the SignUp command

The SignUp method checks to ensure that the fields are valid (by making sure EnableButton is
true) and then creates an AccountCreateRequest object, which is defined in ForgetMeNot.
Api.Dto:

public class AccountCreateRequest

{

 public string FullName { get; set; }

 public string Email { get; set; }

 public string PlainPassword { get; set; }

}

Consuming REST Services240

It passes that object to the CreateAccount method on accountService. Let’s look at the entire
method in ForgetMeNot.Api.Dto AccountCreateRequest:

[RelayCommand]

async Task SignUp()

{

 if (EnableButton)

 {

 AccountCreateRequest = new() [1]

 {

 Email = this.Email,

 FullName = Name,

 PlainPassword = Password

 };

 try

 {

 await accountService.CreateAccount

 (accountCreateRequest); [2]

 await Application.Current.MainPage.DisplayAlert(

 "Sign up completed",

 "Your user has been created successfully", "Ok");

 [3]

 await Shell.Current.GoToAsync(".."); [4]

 }

 catch (Exception e)

 {

 await Application.Current.MainPage.DisplayAlert("Sign

 up failed",

 "We were not able to create an account with that

 user name", "Ok");

 }

 }

}

Using the API 241

[1] Start by creating AccountCreateRequest object, as explained earlier.

[2] Call CreateAccount on the service. We’ll look at that method in just a moment.

[3] If everything works, show a dialog box (or, as we did earlier, a toast).

[4] Once a user account has been created, go back a page to the Login page.

All that the CreateAccount method in AccountService does is pass along the
AccountCreateRequest object to the apiClient CreateAccount method.

The mechanisms described here are correct as far as they go, but they do not include the invitation
response that the final app should have (a user invites a buddy who then creates an account).

Let’s not forget that we originally created LoginCS as a way to mimic the XAML in C#. You’ll need
to fix up LoginCS to match the naming conventions in the XAML file or comment it out altogether,
as we are not using it.

It’s time to run the program and make sure everything we did works. However, sometimes, you will
get unexplained build errors when you make this many changes.

What to do if it won’t build

Assuming you’ve checked all your code, it is correct, and you are getting weird build errors (such as
InitializeComponents not found), it may be time to clean everything out. To do so, close
Visual Studio and navigate to the folder where your files are. Delete the bin and obj directories
within each project, as shown in Figure 10.1.

Figure 10.1 – Deleting the bin and obj directories

Consuming REST Services242

Follow these steps:

1. Restart Visual Studio and immediately select Build | Clean Solution from the menu. Finally,
select Build | Rebuild Solution, which forces a complete rebuild rather than an incremental
build. Give your project a moment or two to settle down and run it.

You should be brought directly to the Login page, as shown in the following figure:

Figure 10.2 – The Login page

2. Next, click on Create, and you’ll be brought to the CreateAccount page, as shown in Figure 10.3.
Note that there are no field name prompts on this page; instead, we use the Placeholder
property of the Entry control.

Figure 10.3 – The CreateAccount page

3. Fill in the fields and click Sign up. Your account will be created on the server, and a dialog box
will appear to let you know it worked, as shown in Figure 10.4.

Using the API 243

Figure 10.4 – A successful sign-up

If you try to log in, you will get an unauthorized message. The problem is that the system does
not want the username; it wants the user’s email.

Unauthorized
You will, of course, get an unauthorized message with any bad username or invalid password.

Let’s fix LoginPage.xaml and log in, as shown in Figure 10.5.

Figure 10.5 – Logging in with our new account

Consuming REST Services244

When the login is authenticated, you are taken directly to the home page.

It is important to note and revel in the fact that the account creation and the authentication both take
place in the cloud via the API.

Summary
In this chapter, we reviewed how to interact with an API. We gained insight into the internals of that
interaction by examining the API domain and DTO projects, and we saw how the APIClient class
wraps all the API calls to make life easier and more intuitive on the client side.

This is a reasonably advanced topic, and in the next chapter, we will dive into even more advanced
topics to move you from being a novice .NET MAUI programmer to an expert.

Quiz
1. What is a DTO?

2. Why don’t we need a local SQLite database?

3. What does the API Client class do?

4. Where does account creation occur?

5. Where does authentication occur?

You try it
Implement the Forgot Password client-side code.

11
Exploring Advanced Topics

You now have the knowledge and skills of an intermediate .NET MAUI programmer. You’ve seen how
to lay out controls and manage and manipulate those controls. You then learned about the MVVM
design pattern. These are the fundamentals.

After that, you advanced to Shell navigation, using SQLite for data persistence and the all-important
skill of writing unit tests with mocks.

This final chapter will take you beyond that level into the realm of expert .NET MAUI knowledge. In
this chapter, we will cover the following topics:

• Selecting data templates at runtime

• Managing visual state

• Utilizing Community Toolkit behaviors

• Taking action with triggers

• Validating forms

Technical requirements
The source code for this chapter can be found at https://github.com/PacktPublishing/.
NET-MAUI-for-C-Sharp-Developers/tree/AdvancedTopics. If you wish to follow
along, be sure to use the code from the previous chapter.

Selecting data templates at runtime
You saw data templates in use with collection views in Chapter 5. Let’s revisit that code and expand
upon it to allow us to modify the display of each object at runtime, based on the data in the object itself.

https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/AdvancedTopics
https://github.com/PacktPublishing/.NET-MAUI-for-C-Sharp-Developers/tree/AdvancedTopics

Exploring Advanced Topics246

To recap, we started with PreferenceService, where we mocked getting a list of Preference
objects. Now, we can get that from the API, with just a little work. Modify IPreferenceService
to remove GetPreferencesMock.

Next, we need to significantly rework PreferenceService to interact with the client. Delete
what you have and use the following:

using ForgetMeNot.ApiClient;

using ForgetMeNotDemo.Model;

namespace ForgetMeNotDemo.Services;

public class PreferenceService : IPreferenceService

{

 readonly Client apiClient;

 public PreferenceService(Client apiClient)

 {

 this.apiClient = apiClient;

 }

 public async Task<List<Preference>> GetPreferences()

 {

 try

 {

 var response = await apiClient.GetProfile();

 return response?.Preferences.Select(p => new

 Preference

 {

 PreferencePrompt = p.PreferencePrompt,

 PreferenceValue = p.PreferenceValue

 }).ToList();

 }

 catch (Exception e)

 {

 await Application.Current.MainPage.DisplayAlert

 ("Preferences error",

Selecting data templates at runtime 247

 "We were unable to get your preferences", "Ok");

 Console.WriteLine(e);

 }

 return null;

 }

}

There’s nothing new here; it is directly parallel to what we saw in Chapter 10 when obtaining the Buddies.
Now that we have a collection of Preference objects, we can display them in a CollectionView,
just as we did in Chapter 5 (as shown here in PreferencesPage, as seen in the previous chapter):

<CollectionView

 ItemsSource="{Binding PreferenceList}"

 Margin="20,20,10,10"

 SelectionMode="None">

 <CollectionView.ItemTemplate>

 <DataTemplate>

 <Grid ColumnDefinitions="*,2*">

 <Entry

 FontSize="10"

 Grid.Column="0"

 HorizontalOptions="Start"

 HorizontalTextAlignment="Start"

 Text="{Binding PreferencePrompt,

 Mode=TwoWay}"

 TextColor="{OnPlatform Black,

 iOS=White}" />

 <Entry

 FontSize="10"

 Grid.Column="1"

 HeightRequest="32"

 HorizontalOptions="Start"

 HorizontalTextAlignment="Start"

Exploring Advanced Topics248

 Text="{Binding PreferenceValue,

 Mode=TwoWay}"

 TextColor="{OnPlatform Black,

 iOS=White}"

 WidthRequest="350" />

 </Grid>

 </DataTemplate>

 </CollectionView.ItemTemplate>

</CollectionView>

Notice that the CollectionView’s ItemTemplate is declared inline, in the declaration of
CollectionView itself. That is not the only way to declare an ItemTemplate, however. Let’s
see how to do it another way.

Declaring ItemTemplates as resources

You can take ItemTemplate out of the definition of CollectionView and move it up into
a ResourceDictionary:

 <ContentPage.Resources> [1]

 <ResourceDictionary>

 <DataTemplate x:Key="PreferenceTemplate"> [2]

 <Grid ColumnDefinitions="*,2*"> [3]

 <Entry

 FontSize="10"

 Grid.Column="0"

 HorizontalOptions="Start"

 HorizontalTextAlignment="Start"

 Text="{Binding PreferencePrompt,

 Mode=TwoWay}"

 TextColor="{OnPlatform Black,

 iOS=White}" />

 <Entry

 FontSize="10"

 Grid.Column="1"

 HeightRequest="32"

 HorizontalOptions="Start"

 HorizontalTextAlignment="Start"

Selecting data templates at runtime 249

 Text="{Binding PreferenceValue,

 Mode=TwoWay}"

 TextColor="{OnPlatform Black,

 iOS=White}"

 WidthRequest="350" />

 </Grid>

 </DataTemplate>

 </ResourceDictionary>

 </ContentPage.Resources>

Let’s look at what we’ve done here:

• [1]: At the top of the file, we declared a Resources section with a ResourceDictionary

• [2]: We created DataTemplate and gave it a key so that we can refer to it later

• [3]: The rest of DataTemplate is just as it was inside CollectionView

CollectionView is now much simpler – it simply declares its ItemTemplate property to be
our created StaticResource:

<CollectionView

 ItemsSource="{Binding PreferenceList}"

 ItemTemplate="{StaticResource PreferenceTemplate}"

 Margin="20,20,10,10"

 SelectionMode="None">

</CollectionView>

This is valuable but is hardly all that exciting except that it opens up a new possibility.

Where to put the DataTemplate
Here, we show DataTemplate in the resources section, but you can put it in a different file
as well.

The DataTemplate selection

You can create two or more additional DataTemplates in the same ResourceDictionary. This
allows you to have .NET MAUI examine each item as it is about to display it and choose among the
available DataTemplates based on a condition.

Exploring Advanced Topics250

We know that when we get the preferences, some will have values and some will not. Let’s say we want to tell
the user to enter a value by turning the prompt red when the value is empty. We can create two DataTemplates:

 <ContentPage.Resources>

 <ResourceDictionary>

 <DataTemplate x:Key="PreferenceTemplate"> [1]

 <Grid ColumnDefinitions="*,2*">

 <Entry

 FontSize="10"

 Grid.Column="0"

 HorizontalOptions="Start"

 HorizontalTextAlignment="Start"

 Text="{Binding PreferencePrompt,

 Mode=TwoWay}"

 TextColor="{OnPlatform Black, [2]

 iOS=White}" />

 <Entry

 FontSize="10"

 Grid.Column="1"

 HeightRequest="32"

 HorizontalOptions="Start"

 HorizontalTextAlignment="Start"

 Text="{Binding PreferenceValue,

 Mode=TwoWay}"

 TextColor="{OnPlatform Black,

 iOS=White}"

 WidthRequest="350" />

 </Grid>

 </DataTemplate>

 <DataTemplate x:Key=

 "PreferenceTemplateEmpty">

 [3]

 <Grid ColumnDefinitions="*,2*">

 <Entry

 FontSize="10"

 Grid.Column="0"

 HorizontalOptions="Start"

 HorizontalTextAlignment="Start"

 Text="{Binding PreferencePrompt,

Selecting data templates at runtime 251

 Mode=TwoWay}"

 TextColor="{OnPlatform Red,

 iOS=Yellow}" /> [4]

 <Entry

 FontSize="10"

 Grid.Column="1"

 HeightRequest="32"

 HorizontalOptions="Start"

 HorizontalTextAlignment="Start"

 Text="{Binding PreferenceValue,

 Mode=TwoWay}"

 TextColor="{OnPlatform Black,

 iOS=White}"

 WidthRequest="350" />

 </Grid>

 </DataTemplate>

 </ResourceDictionary>

 </ContentPage.Resources>

Let’s take a look at this:

• [1]: The first data template

• [2]: The normal text colors

• [3]: The second data template (with its own key)

• [4]: The empty text colors

Now, the obvious question is, how does .NET MAUI know which to display? For that, we need
a DataTemplateSelector.

The DataTemplateSelector class

The first thing you must do is create a class that will contain the logic as to which template to display.
I’ve named that class PreferenceDataTemplateSelector. Since I only intend to have one,
I put it in the Services folder:

using ForgetMeNotDemo.Model;

namespace ForgetMeNotDemo.Services;

public class PreferenceDataTemplateSelector :

Exploring Advanced Topics252

 DataTemplateSelector [1]

{

 public DataTemplate PreferenceTemplate { get; set; }

 [2]

 public DataTemplate PreferenceTemplateEmpty { get; set; }

 protected override DataTemplate OnSelectTemplate(object

 item, [3] BindableObject container)

 {

 if (((Preference)item)?.PreferenceValue == null)

 return PreferenceTemplateEmpty;

 return ((Preference) item).PreferenceValue.Length > 0 ?

 PreferenceTemplate : PreferenceTemplateEmpty; [4]

 }

}

You must do the following:

[1]: Your class must derive from DataTemplateSelector.

[2]: You need a public property for each of your DataTemplates.

[3]: Override the OnSelectTemplate virtual method.

[4]: Add the logic as to which template to display.

With the class in place, we need to have a corresponding resource.

Adding the template selector to the page’s resources

Return to PreferencesPage.xaml. In the page declaration, add Xmlns:services="clr-
namespace:ForgetMeNotDemo.Services". Then, in ResourceDictionary, add
the following:

<services:PreferenceDataTemplateSelector

 PreferenceTemplate="{StaticResource

 PreferenceTemplate}"

 PreferenceTemplateEmpty="{StaticResource

 PreferenceTemplateEmpty}"

 x:Key="PreferenceDataTemplateSelector" />

This provides the link to the names in the class we just created. We now have the logic, but how do
we hook it up to CollectionView?

Selecting data templates at runtime 253

Adding DataTemplateSelector to CollectionView

Hooking all this into CollectionView is as simple as setting an ItemTemplate:

<CollectionView

 ItemTemplate="{StaticResource PreferenceDataTemplate

 Selector}"

 ItemsSource="{Binding PreferenceList}"

 Margin="20,20,10,10"

 SelectionMode="None" />

And it all comes together. CollectionView looks to PreferenceDataTemplateSelector
in the resources, which is tied to the class we created that holds the logic as to which DataTemplate
to show. The result is shown in Figure 11.1:

Figure 11.1 – DataTemplate selection

Exploring Advanced Topics254

DataTemplateSelector is a very powerful way to control what is displayed at runtime. A similar
mechanism is encapsulated in the concept of Visual State.

Managing Visual State
Every VisualElement has a Visual State at any given moment (for example, does VisualElement
have focus? Is it selected?). You can imagine responding to that state programmatically in C#, but there
are advantages to responding to changes in visual state declaratively, in the XAML. Doing so puts
more of the UI management in one place – your view (for example, MainPage.xaml).

VisualElement
VisualElement is the base class of all controls (and pages).

The object that sets visual properties on VisualElement based on its state is the Visual State
Manager. The Visual State Manager selects from among a set of VisualStates and displays a
VisualElement according to the properties set in the XAML.

This forces the question: what are visual states?

Defining the common visual states

.NET MAUI defines a set of common visual states:

• Normal

• Disabled

• Has focus

• Is selected

• Mouse over (for Windows and macOS)

.NET MAUI also allows you to define your own visual states, though that is less common.

You use these visual states to set properties on VisualElement. For example, you might change
the appearance of a button based on its VisualState. An example will make this much clearer.

A button VisualState example

When you first go to the Login page, you will see that the Submit button is disabled. We’d like it to
be gray. Once you fill in the Your Email and Password fields, the button should turn light green. If
you tab to the button, it should signify that it has the focus by turning fully green. You can do all this
declaratively by creating visual states, as shown in Figure 11.2:

Managing Visual State 255

Figure 11.2 – Visual states of buttons

You can set the visual state on an individual button, or, as we will do here, you can put the visual state’s
XAML into a style and apply it to all the buttons. Here is the complete Style for buttons:

<Style x:Key="LoginButton" TargetType="Button"> [1]

 <Setter Property="Margin" Value="0,20,0,0" />

 <Setter Property="TextColor" Value="Black" />

 <Setter Property="WidthRequest" Value="125" />

 <Setter Property="VisualStateManager

 .VisualStateGroups"> [2]

 <VisualStateGroupList>

 <VisualStateGroup x:Name="CommonStates"> [3]

 <VisualState x:Name="Normal"> [4]

 <VisualState.Setters> [5]

 <Setter Property="BackgroundColor"

 Value="LightGreen" /> [6]

 </VisualState.Setters>

 </VisualState>

 <VisualState x:Name="Focused">

 <VisualState.Setters>

 <Setter Property="BackgroundColor"

 Value="Green" />

 </VisualState.Setters>

 </VisualState>

 <VisualState x:Name="Disabled">

 <VisualState.Setters>

 <Setter Property="BackgroundColor"

 Value="Gray" />

Exploring Advanced Topics256

 </VisualState.Setters>

 </VisualState>

 </VisualStateGroup>

 </VisualStateGroupList>

 </Setter>

</Style>

Here, we have the following:

• [1]: We start by declaring a normal Style – in this case, it’s implicit for every button

• [2]: You may have one or more groups of visual states (we have one)

• [3]: The first group (and in this case, the only one) is CommonStates

• [4]: We declare each VisualState in turn (here, we’re starting with Normal)

• [5]: For each state, we can declare a set of Setters

• [6]: Our first (and in this case, only) Setter sets the BackgroundColor property

We then go on to set the Setters for all the other states. Notice that we did not set a Setter for
PointerOver, which means that, on Windows and macOS, if you hover the mouse over the button,
there will be no change.

.NET MAUI defines specialized visual states for controls. For example, Button adds the Pressed state,
while CheckBox adds the IsChecked state and CollectionViews adds Selected.

The .NET MAUI Community Toolkit provides further help for managing the appearance and behavior
of your app with a large collection of behaviors.

Utilizing Community Toolkit behaviors
We’ve already seen one behavior from the Community Toolkit that turns an event into a command
(EventToCommandBehavior), allowing us to respond to these events in our ViewModel.

The Community Toolkit is open source
The Community Toolkit is not officially part of .NET MAUI and consists of code supplied
by (surprise!) the community – that is, developers independent of Microsoft. That said, the
Microsoft documentation includes and increasingly integrates the Community Toolkit.

Utilizing Community Toolkit behaviors 257

CommunityToolkit provides a suite of behaviors to handle many other common programming
needs. Many of these behaviors assist with validating input. For example, the CommunityToolkit
includes the following:

• Character validation

• Numeric validation

• Required string validation

• Text validation

• URI validation

You attach behaviors to controls. For example, let’s add a rule to the Login page stating that the
username must be a valid email address. First, in the header, add the needed namespace:

Xmlns:behaviors=
http://schemas.microsoft.com/dotnet/2022/maui/toolkit

You are then ready to test for a valid email using the Community Toolkit behavior:

<Entry

 Grid.Column="1"

 Grid.ColumnSpan="2"

 Grid.Row="0"

 Placeholder="Please enter your email address"

 Text="{Binding LoginName}"

 WidthRequest="150">

 <Entry.Behaviors> [1]

 <behaviors:EmailValidationBehavior [2]

 InvalidStyle="{StaticResource InvalidUserName}"

 [3]

 ValidStyle="{StaticResource ValidUserName}" [4]

 Flags="ValidateOnValueChanged" /> [5]

 </Entry.Behaviors>

</Entry>

Do the following:

[1]: Begin the Behaviors section of the Entry tag.

[2]: Choose which behavior you want (in this case, email validation).

Exploring Advanced Topics258

[3]: Identify the style for an invalid email address.

[4]: Identify the style for a valid email address.

[5]: Add validation behaviors. They have flags to indicate when to do the validation (in this case,
when the value changes), as shown in the following figure:

Figure 11.3 – Validation flags

There are several other non-validating behaviors as well. These include behaviors to assist with
animating views, progress bar animation, a behavior to assist with customizing the color and style of
your device’s status bar, and a behavior to trigger an action when the user stops typing.

The last of these can be very helpful when allowing the user to search a large set of data. Rather than
having the search be incremental as the user types, or forcing the user to tap a Search button, you
can have the search begin when the user stops typing for a specified period:

Place the following code at the top of PreferencesPage.xaml

<Entry Placeholder="Search" x:Name="SearchEntry">

 <Entry.Behaviors>

 <behaviors:UserStoppedTypingBehavior

 Command="{Binding PreferencesSearchCommand}"

 [1]

 CommandParameter="{Binding Source={x:Reference

 SearchEntry}, Path=Text}" [2]

 MinimumLengthThreshold="4" [3]

 ShouldDismissKeyboardAutomatically="True" [4]

 StoppedTypingTimeThreshold="500" /> [5]

 </Entry.Behaviors>

</Entry>

Taking action with triggers 259

Let’s look at what this code does:

• [1]: When the user stops typing, call this command in your ViewModel

• [2]: Pass this parameter (the text of Entry) to the command

• [3]: Don’t execute the command unless at least this many characters have been entered

• [4]: When you execute the command, put away the keyboard

• [5]: Wait this long (half a second) to indicate the user has stopped typing

When you add this to your XAML, and the user enters Shoe in the entry, the command is fired
and the parameter is sent. Figure 11.4 shows the parameter being passed into the command handler
in PreferencesPageViewModel:

Figure 11.4 – Passing in the search string

Behaviors are a way to declare how the system should perform in XAML. Another powerful mechanism
for moving responsive actions into the XAML triggers.

Taking action with triggers
Triggers allow you to declare how a control should appear in your XAML based on data changes. You
can also use state triggers to change a control’s Visual State, as shown earlier.

For example, we may want to enforce that the Create Account button should be disabled if the user
has left the Password field blank. You can do this in code, but you can also do it declaratively in XAML
using a DataTrigger:

<Button

 Command="{Binding DoCreateAccountCommand}"

 Grid.Column="1"

 Grid.Row="2"

Exploring Advanced Topics260

 Style="{StaticResource LoginButton}"

 Text="Create Account">

 <Button.Triggers> [1]

 <DataTrigger

 Binding="{Binding Source={x:Reference

 passwordEntry}, Path=Text.Length}"

 TargetType="Button"

 Value="0"> [2]

 <Setter Property="IsEnabled" Value="False" />

 [3]

 </DataTrigger>

 </Button.Triggers>

</Button>

Let’s look at what this code does:

• [1]: This starts the Triggers collection of Button.

• [2]: This creates a DataTrigger and sets it to bind to the length of the text in the entry
control whose name is passwordEntry. Set TargetType to Button (required) and the
value for it to trigger on (that is, if the length of the password entry text is 0, then fire the trigger).

• [3]: This code uses a setter to declare what happens when the trigger fires.

In short, when the Password field is empty, the Create button should be disabled and as soon as it is
not empty, the button should be enabled.

Unexpected behavior
The field you are checking (Password) must have its text initialized to "" for this to work.
Otherwise, it will be null and the trigger may not act as expected. To solve this, initialize the
property in ViewModel:

[observableproperty]

public string password = string.Empty;

Summary 261

The result of this trigger is shown in Figure 11.5 and Figure 11.6.

Figure 11.5 – Trigger when the Password field is empty

In Figure 11.5, the Password field is empty, while in Figure 11.6, a character has been typed into the
Password field:

Figure 11.6 – Trigger when the Password field is not empty

For fun, change Property from IsEnabled to IsVisible. Now, the button is not there when
you enter the page, but will appear when you put a character into the Password field.

Summary
In this chapter, we reviewed four key advanced topics that allow you to manage the behavior of your
app declaratively:

• Selecting data templates allows you to change the display of your data based on the specific
content of each element in a collection

• Managing the view state allows you to modify the appearance of a control based on the state
of that control (for example, does it have focus?)

• Behaviors allow, among other things, data validation and otherwise assist in providing actions
that you declare

Exploring Advanced Topics262

• Triggers change the appearance of controls based on data values in other controls or based on
the state of other controls

This brings us to the end of .Net MAUI for C# Developers. You are now fully equipped to
create real-world professional .NET MAUI applications.

The key to success with .NET MAUI, as with so many programming skills, is hands-on experience. If
you are not currently working on a .NET MAUI project, you will want to assign one to yourself while
this information is front and center in your mind.

Here’s an application idea I’ve had for years, which you are free to write (and sell if you want). I’ll give
it to you without restriction:

Create a nice-looking application that gathers all the books on an online bookstore (using their public
API) that you rated with five stars. Next, gather all the people who have also rated a large percentage
of those books five stars. Exclude anyone who gave any of those books less than five stars. Now, take
those people who seem to agree with you, and find any books they rated as five stars that you’ve not
read yet. Those are books you’ll want to read.

Enjoy the project! I hope you have enjoyed this book.

Quiz
Answer the following questions to test your knowledge of this chapter:

1. Why would you use the Visual State Manager?

2. How does .NET MAUI decide which data template to use?

3. Name a behavior that is not used for validation.

4. When a trigger fires, how does it know what to do?

You try it
Modify the Login page so that it does the following:

• Disables the Login button unless the username is a valid email address and the password has
at least one character.

• Modifies the Forgot Password button to double in size and turn pink when you tab onto it
(giving it the focus), and returns to its normal size and color when it loses focus

Assessments

This section contains answers to questions from all chapters.

Chapter 1, Assembling Your Tools and Creating Your
First App

1. You can create a new project from the launch dialog by choosing Create a new project. If you’ve
been brought directly into Visual Studio, by clicking on File | New Project.

2. Use View | Solution Explorer.

3. The .xaml extension indicates that the file contains XAML markup.

4. The code-behind file.

5. MauiProgram.cs.

Chapter 3, XAML and Fluent C#
1. XAML is a markup language based on XML.

2. XAML is used in .NET MAUI for declaring layouts and controls.

3. Rather than writing in XAML, you can create your layouts and controls in C#.

4. We nest a layout or a control inside a layout by using the Children property.

5. An event handler is a method that is registered to an event in the UI.

6. The event handler is in the code-behind.

Chapter 4, MVVM and Controls
1. MVVM has two main advantages. First, it is nearly impossible to unit test a .NET MAUI

application if your logic is in the code-behind file – putting the logic in ViewModel is essential,
as we’ll see in the upcoming chapter on unit testing. Second, MVVM nicely decouples the UI
from your logic, allowing you to change one without breaking the other.

2. The all-important BindingContext. You typically assign ViewModel as the binding
context for View.

3. The Entry control and the Editor control.

Assessments264

4. The Label control.

5. SnackBar is a highly configurable Toast – a popup that comes up from the bottom of the
page and then can disappear either by its timer running out or by a user clicking on it.

Chapter 5, Advanced Controls
1. ActivityIndicator shows that something is happening, while ProgressBar tells the

user what fraction of the task is complete.

2. The essential difference as far as we are concerned is that events are typically handled in the code-
behind, while commands are handled in ViewModel. Handling commands in ViewModel
is preferable because it makes creating unit tests easier or possible.

3. WeakReferenceManager is the primary object used in messaging, allowing ViewModel
to send notifications to View or another ViewModel without a reference to that object, thus
supporting loose coupling.

4. Styles allow you to create a uniform appearance across instances of controls, centralizing the
properties and providing all the advantages of well-factored code.

5. One way to refactor styles is to create a base style and then use BasedOn to create derived
types, adding or overriding properties as needed.

Chapter 6, Layout
1. Stars, auto, and the value in dpi

2. Allocate 100 dpi to the last column, the needed size for the second column, and then divide
the first and third columns proportionally as 2:1

3. The row and column offsets are defined by enumerated constants

4. Grid allows for more precise alignment and placement of controls

5. BindableLayout does not allow you to make selections

Chapter 7, Understanding Navigation
1. AppShell.xaml

2. Title, ContentTemplate, and Icon

3. AppShell.xaml.cs

4. Shell.Current.GoToAsync

5. URL syntax or using a dictionary

Chapter 8, Storing and Retrieving Data 265

Chapter 8, Storing and Retrieving Data
1. Preferences (not to be confused with UserPreferences).

2. The key and a default value.

3. SQLite-net-pcl and possibly SQLitePCLRaw.bundle_green, if not included with SQLite-net-pcl.

4. SQLiteAsyncConnection

Chapter 9, Unit Testing
1. Unit tests are critical for ensuring the quality of your code and allow you to add to and change your

code with the confidence of knowing that if you break something, you’ll find out about it right away.

2. Most of the testable code in a .NET MAUI application will be in the ViewModel or, possibly,
the services.

3. When you need a slower service to test a method in your code, a mock can stand in for that
service and give you immediate responses.

4. In order to provide a mock to your test, you must be able to inject it into the code in lieu of
the runtime object.

Chapter 10, Consuming REST Services
1. A DTO is responsible for holding data that will be sent to and/or from the API.

2. The database is now in the cloud and managed through the API. As the client, we don’t know,
nor need to know, what kind of database is in use.

3. It wraps all the API calls so that a client can interact with the API as if it were a Plain Old CLR
Object (POCO).

4. Account creation is accomplished in the cloud via the API.

5. Authentication is accomplished in the cloud via the API.

Chapter 11, Exploring Advanced Topics
1. To modify the appearance of a control based on its state, such as whether or not it has the focus.

2. In the XAML, add a DataTemplateSelector to indicate the potential templates and then
add a class that derives from DataTemplateSelector that overrides OnSelectTemplate
and returns DataTemplate to be displayed.

3. We have seen the EventToCommand behavior, which allows you to add commands to controls
that only have events, allowing you to handle the event/command in ViewModel.

4. You add setters with the property to change and the value to set it to.

Index

Symbols
.NET MAUI

aspects 19, 20
.NET MAUI IoC container 198

A
About page

assembling 152-158
creating 151

actions
taking, with triggers 259-261

ActivityIndicator 96-98
Alert dialog 76, 77

ActionSheet 79, 80
BoxView 85-87
Frame 87, 88
prompt, displaying 80, 81
Snackbar 83-85
Toast view 81
user, presenting with choice 77, 78

API domain objects
examining 214-217

API, using
account, creating 225
AccountService class 229, 230
Buddy region 224
build errors, troubleshooting 241-244
Create Account page, setting up 235-237
CreateAccountViewModel,

setting up 237-239
logging in, with AccountService 234
Login page, modifying 225, 226
Login Page, updating 226-229
LoginViewModel, updating 230-234
SignUp command, handling 239-241

Application Program Interface (API) 210
Arrange, Act, Assert (AAA) pattern 192

B
BasedOn (style inheritance) 123, 124
behaviors 72-75
BindingContext

setting 160
setting up 48

brushes 88
LinearGradientBrush 89, 90
RadialGradientBrush 90, 91
Solid brush 88

Index268

Buddy 15
inviting 15, 16
page, creating 151

button VisualState example 254, 256

C
C#

comments, using in code 35
declaring 31-34
page, creating 107, 111
versus Fluent C# 35, 36
versus XAML 61-68

code-behind file
versus View Model 50, 51

collections
code-behind file 119-121
displaying 111-114
displaying, of Preference objects 116-119
OnAppearing, overriding 114
service, working 115, 116

CollectionView
DataTemplateSelector, adding to 253

commands
versus events 29

community toolkit behaviors
utilizing 256-259

corner conditions 186
CRUD methods

create 181
read 182
update 182

D
database

CRUD, implementing 181

data binding 46, 47
BindingContext, setting up 48
implementing 49, 50
public property, creating 47
values, assigning to View Model

class properties 49
ViewModel, versus code-behind file 50, 51

data templates
selecting, at runtime 245-248

DataTemplateSelector
adding, to CollectionView 253

Data Transfer Objects (DTOs)
key files 218-220
reviewing 217, 218

dependency injection 113, 195
.NET MAUI IoC container 198
class constructor, modifying 197
interface, creating 195-197
interfaces, registering 199, 200
services, registering 199, 200
ViewModels, registering 199, 200

derived styles 124
device-independent units (DIPs) 25

E
easing 100, 101
edge cases 186
event handlers 30
event handler signature 77
event handling

moving, to ViewModel 101-104
events

versus commands 29
explicit style

versus implicit style 122, 123

Index 269

Extensible Application Markup
Language (XAML) 102

code-behind file 23
layout options 23, 24
structure 22, 23
versus C# 61-68

F
FlexLayout 141, 143
Fluent C#

versus C# 35, 36
Forget Me Not 13, 14

About page 17-19
Buddy 15
User Preferences 19

Forget Me Not API architecture 210
models, fleshing out 211-213
projects, creating 211

ForgetMeNot.APIClient 220, 221
authentication 221-223
Buddy region 224
profile 223

ForgetMeNotDemo unit tests 191
limitations 194
triple-A pattern, implementing 191-194

G
Git

download link 7
Globally Unique ID (GUID) 212
Grid 129-134

rows and columns, naming 137, 140
rows and columns, sizing 134-136

H
happy path 186

I
images 52-54

clicking 55
implicit style

versus explicit style 122, 123
InitializeComponent 31
Integrated Development

Environments (IDEs) 5
Inversion of Control (IoC) 231
ItemTemplates

declaring, as resources 248, 249

L
Label 26-29
layout 127
LinearGradientBrush 89

M
messages

receiving 104
sending 104

mocks 194
Model-View-ViewModel (MVVM)

folders, creating 40, 41
Forget Me Not labels 43-46
setting up 40
views, exploring 42

MVVM Community Toolkit 41

Index270

N
NET MAUI Community Toolkit 31
NSubstitute package

adding, to test fixture 202-204
corner cases, testing 204, 205
using 200-202

O
OnAppearing

overriding 114
OneWay binding 62

P
page

creating, in C# 107, 111
Preference objects

collection, displaying 116, 119
program hanging issue 98
ProgressBar 98, 100

easing 100, 101

R
RadialGradientBrush 90, 91
Resharper 7, 195
REST API 210
REST Services

using 210
RestSharp library

reference link 210
routing entry

creating 160

S
sad path 186
ScrollView control 140
Semantic Properties 26
shell navigation

using 159
SignUp command

handling 239-241
Solid brush 88
SQLite 177

Database class 180, 181
database, creating 179
database, using 180
installing 178, 179

stack layouts 128, 129
style inheritance (BasedOn) 123, 124
styles 121, 122

explicit, versus implicit styles 122, 123
overriding, in control 123

T
TabBar

exploring 149, 151
Home page 150

template selector
adding, to page’s resource 252

text, displaying 60
editor, adding 69-72
Forget Me Not login page 61
login page, creating 61
LoginPage title 68
XAML, versus C# 61-68

tight coupling 195
triggers 259

action, taking with 259-261
TwoWay binding 62

Index 271

U
unit testing 185
unit tests

benefits 186, 187
creating 187-190
project file, tweaking 190
project reference, setting 189
running 190

user interface (UI) 102
user preferences

data, storing on device 178
navigation, setting up 175, 176
persistence, testing 177
retrieving 176, 177
storing 171-174
storing, locally or remotely 182
UserPreferencesViewModel 175

V
values, passing

dictionary, using 166-168
from page to page 161
url (?) syntax, using 164, 165
url (?) syntax.v, using 161

values, passing with url (?) syntax 161-163
Buddy Id, passing 163
QueryProperty 163, 164

View Model class properties
values, assigning to 49

ViewModel (vm)
event handling, moving to 101-104
naming convention 46, 114
versus code-behind file 50, 51

views 22, 51
button properties 56
exploring 42

ImageButton 57
images 52-54
TapGestureRecognizer 58-60
versus pages 42

visual state
defining 254
managing 254

Visual State Manager 254
Visual Studio

exploring 8-10
installing 5-7
obtaining 5
out-of-the-box app, exploring 10, 12

W
WeakReferenceMessenger

working with 105-107

X
XAML layout options

Code Behind 29
event handlers 30, 31
Image element 26
Label 26-29
VerticalStackLayout 24-26

XAML Styler
reference link 45

xUnit tests
facts 190
theories 190

Z
zero-based index 110

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

High-Performance Programming in C# and .NET

Jason Alls

ISBN: 9781800564718

• Use correct types and collections to enhance application performance

• Profile, benchmark, and identify performance issues with the codebase

• Explore how to best perform queries on LINQ to improve an application’s performance

• Effectively utilize a number of CPUs and cores through asynchronous programming

• Build responsive user interfaces with WinForms, WPF, MAUI, and WinUI

• Benchmark ADO.NET, Entity Framework Core, and Dapper for data access

• Implement CQRS and event sourcing and build and deploy microservices

https://packt.link/9781800564718

275Other Books You May Enjoy

Parallel Programming and Concurrency with C# 10 and .NET 6

Alvin Ashcraft

ISBN: 9781803243672

• Prevent deadlocks and race conditions with managed threading

• Update Windows app UIs without causing exceptions

• Explore best practices for introducing asynchronous constructs to existing code

• Avoid pitfalls when introducing parallelism to your code

• Implement the producer-consumer pattern with Dataflow blocks

• Enforce data sorting when processing data in parallel and safely merge data from multiple sources

• Use concurrent collections that help synchronize data across threads

• Debug an everyday parallel app with the Parallel Stacks and Parallel Tasks windows

https://packt.link/9781803243672

276

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished .Net MAUI for C# Developers, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1837631697

277

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837631698

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837631698

	Cover
	Copyright
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1 –
Getting Started
	Chapter 1: Assembling Your Tools and Creating Your First App
	Technical requirements
	Getting and installing Visual Studio
	Installing Visual Studio

	Git
	Opening Visual Studio
	Quick tour of the app

	Summary
	Quiz
	You try it

	Chapter 2: What We Will Build:
Forget Me Not
	Technical requirements
	What is Forget Me Not?
	Buddies
	Inviting Buddies

	Other pages
	What you’ll learn
	Summary

	Chapter 3: XAML and Fluent C#
	Technical requirements
	Understanding the structure of XAML
	The code-behind file

	Exploring the layout options
	VerticalStackLayout
	Image
	Label
	Code-behind and event handlers

	If you can do it in XAML, you can do it in C#
	C# versus Fluent C#

	Summary
	Quiz
	Try it out

	Chapter 4: MVVM and Controls
	Technical requirements
	Setting up for MVVM
	Creating folders
	The MVVM Community Toolkit
	Exploring views
	Forget Me Not labels

	Data binding
	Creating a public property
	Setting up BindingContext
	Assigning values to the View Model class properties
	Implementing Binding
	ViewModel versus code-behind

	Views
	Images
	Button properties
	ImageButton
	TapGestureRecognizer
	Entering text

	Behaviors
	Popups and dialogs
	Presenting the user with a choice
	ActionSheet
	Displaying a prompt
	Toast
	Snackbar
	BoxView
	Frame

	Brushes
	The Solid brush
	LinearGradientBrush
	RadialGradientBrush

	Summary
	Quiz
	You try it

	Chapter 5: Advanced Controls
	Technical requirements
	Keeping the user informed of activity
	ActivityIndicator
	ProgressBar

	Moving event handling to ViewModel
	Breaking it down

	Sending and receiving messages
	Getting started with WeakReferenceMessenger

	Creating the page in C#
	Displaying collections
	Overriding OnAppearing
	Understanding how the service works
	Displaying the collection of Preference objects
	The code-behind

	Styles
	Explicit versus implicit styles
	Style inheritance or BasedOn

	Summary
	Quiz
	You try it

	Chapter 6: Layout
	Technical requirements
	Stack layouts
	Grid
	Sizing rows and columns
	Named rows and columns

	ScrollView
	FlexLayout
	Summary
	Quiz
	You try it

	Part 2 –
Intermediate Topics
	Chapter 7: Understanding Navigation
	Technical requirements
	Exploring the TabBar
	Creating the About and Buddies pages
	Assembling the About page

	Shell navigation
	Routing
	Passing values from page to page
	Passing values with the url (?) syntax
	Passing values with a dictionary

	Summary
	Quiz
	You try it

	Chapter 8: Storing and Retrieving Data
	Technical requirements
	Storing user preferences
	UserPreferencesViewModel
	Navigating to UserPreferences
	Retrieving the preferences

	Storing to a database on your device
	Installing SQLite
	Getting started with SQLite
	The Database class
	CRUD

	Local or remote?
	Summary
	Quiz
	You try it

	Chapter 9: Unit Testing
	Technical requirements
	Why create unit tests?
	Vote early and vote often

	Creating unit tests
	Setting the project reference
	Creating the first unit test
	Tweaking the project file
	Running the test

	ForgetMeNotDemo unit tests
	Implementing the triple-A pattern
	What’s wrong with this test?

	Mocks
	Dependency injection
	Creating an interface
	Modifying the class constructor
	The .NET MAUI IoC container
	Registering your interfaces, services, and ViewModels

	Using the NSubstitute package
	Adding NSubstitute to your test fixture
	Testing corner cases

	Summary
	Quiz
	You try it

	Part 3 –
Advanced Topics
	Chapter 10: Consuming REST Services
	Technical requirements
	Using REST Services
	The Forget Me Not API architecture
	Creating the projects
	Fleshing out the models

	Examining the API domain objects
	Reviewing DTOs
	Other DTO files

	Understanding ForgetMeNot.APIClient
	Authentication
	Profile
	The Buddy region

	Using the API
	Creating the account
	Modifying the Login page
	Updating LoginPage
	The AccountService class
	Updating LoginViewModel
	Using AccountService to log in
	Setting up the Create Account page
	Setting up CreateAccountViewModel
	Handling the SignUp command
	What to do if it won’t build

	Summary
	Quiz
	You try it

	Chapter 11: Exploring Advanced Topics
	Technical requirements
	Selecting data templates at runtime
	Declaring ItemTemplates as resources
	The DataTemplate selection
	The DataTemplateSelector class
	Adding the template selector to the page’s resources
	Adding DataTemplateSelector to CollectionView

	Managing Visual State
	Defining the common visual states
	A button VisualState example

	Utilizing Community Toolkit behaviors
	Taking action with triggers
	Summary
	Quiz
	You try it

	Assessments
	Chapter 1, Assembling Your Tools and Creating Your
First App
	Chapter 3, XAML and Fluent C#
	Chapter 4, MVVM and Controls
	Chapter 5, Advanced Controls
	Chapter 6, Layout
	Chapter 7, Understanding Navigation
	Chapter 8, Storing and Retrieving Data
	Chapter 9, Unit Testing
	Chapter 10, Consuming REST Services
	Chapter 11, Exploring Advanced Topics

	Index
	Other Books You May Enjoy

